import os
import time
import shutil
import pathlib
import itertools
from PIL import Image
# Import data handling tools
import cv2
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_style('darkgrid')
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, precision_score, recall_score, f1_score
# Import deep learning libraries
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam, Adamax
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout, BatchNormalization, GlobalAveragePooling2D
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
from tensorflow.keras.applications import DenseNet121,InceptionV3
from tensorflow.keras.models import Model
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")
print('Modules loaded')
# Generate data paths with labels
data_dir = '/kaggle/input/lung-and-colon-cancer-histopathological-images/lung_colon_image_set'
filepaths = []
labels = []
folds = os.listdir(data_dir)
# Generate paths and labels
for fold in folds:
foldpath = os.path.join(data_dir, fold)
flist = os.listdir(foldpath)
for f in flist:
f_path = os.path.join(foldpath, f)
filelist = os.listdir(f_path)
for file in filelist:
fpath = os.path.join(f_path, file)
filepaths.append(fpath)
if f == 'colon_aca':
labels.append('Colon Adenocarcinoma')
elif f == 'colon_n':
labels.append('Colon Benign Tissue')
elif f == 'lung_aca':
labels.append('Lung Adenocarcinoma')
elif f == 'lung_n':
labels.append('Lung Benign Tissue')
elif f == 'lung_scc':
labels.append('Lung Squamous Cell Carcinoma')
# Concatenate data paths with labels into a DataFrame
df = pd.DataFrame({'filepaths': filepaths, 'labels': labels})
# Split dataset into train, validation, and test sets
train_df, temp_df = train_test_split(df, train_size=0.8, stratify=df['labels'], random_state=42)
valid_df, test_df = train_test_split(temp_df, train_size=0.5, stratify=temp_df['labels'], random_state=42)
# Define image size, channels, and batch size
batch_size = 64
img_size = (224, 224)
channels = 3
img_shape = (img_size[0], img_size[1], channels)
# Create ImageDataGenerator for training and validation
train_datagen = ImageDataGenerator()
valid_datagen = ImageDataGenerator()
train_gen = train_datagen.flow_from_dataframe(train_df, x_col='filepaths', y_col='labels',
target_size=img_size, class_mode='categorical',
batch_size=batch_size, shuffle=True)
valid_gen = valid_datagen.flow_from_dataframe(valid_df, x_col='filepaths', y_col='labels',
target_size=img_size, class_mode='categorical',
batch_size=batch_size, shuffle=True)
test_gen = valid_datagen.flow_from_dataframe(test_df, x_col='filepaths', y_col='labels',
target_size=img_size, class_mode='categorical',
batch_size=batch_size, shuffle=False)
# Get class names
num_classes = len(train_gen.class_indices)
# Define the model
#base_model = DenseNet121(input_shape=img_shape, include_top=False, weights='imagenet')
#base_model = InceptionV3(input_shape=img_shape, include_top=False, weights='imagenet')
base_model = DenseNet121(input_shape=img_shape, include_top=False, weights='imagenet')
base_model.trainable = True
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu')(x)
predictions = Dense(num_classes, activation='softmax')(x)
model_DenseNet = Model(inputs=base_model.input, outputs=predictions)
# Compile the model
model_DenseNet.compile(optimizer=Adamax(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
# Define callbacks
callbacks = [
ModelCheckpoint(filepath='best_model.keras', monitor='val_loss', save_best_only=True, verbose=1),
EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True, verbose=1),
ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=1e-6, verbose=1)
]
# Helper function to calculate metrics
def calculate_metrics(generator, model):
preds = model.predict(generator)
y_true = generator.classes
y_pred = np.argmax(preds, axis=1)
precision = precision_score(y_true, y_pred, average='weighted')
recall = recall_score(y_true, y_pred, average='weighted')
f1 = f1_score(y_true, y_pred, average='weighted')
return precision, recall, f1
# Train the model and calculate metrics for each epoch
class MetricsCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
# Training metrics
train_precision, train_recall, train_f1 = calculate_metrics(train_gen, self.model)
print(f'Epoch {epoch+1} Training Precision: {train_precision:.4f}, Recall: {train_recall:.4f}, F1 Score: {train_f1:.4f}')
# Validation metrics
val_precision, val_recall, val_f1 = calculate_metrics(valid_gen, self.model)
print(f'Epoch {epoch+1} Validation Precision: {val_precision:.4f}, Recall: {val_recall:.4f}, F1 Score: {val_f1:.4f}')
# Measure training time
start_time = time.time()
# Train the model with the custom metrics callback
history = model_DenseNet.fit(train_gen, validation_data=valid_gen, epochs=20, callbacks=[MetricsCallback()] + callbacks)
end_time = time.time()
training_time = end_time - start_time
print(f'Total Training Time: {training_time:.2f} seconds')
# Plot training history (accuracy and loss)
plt.figure(figsize=(12, 5))
# Plot accuracy
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Val Accuracy')
plt.title('Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
# Plot loss
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Val Loss')
plt.title('Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.tight_layout()
plt.show()
# Measure testing time
start_time = time.time()
# Evaluate on the test set
test_loss, test_acc = model_DenseNet.evaluate(test_gen)
end_time = time.time()
testing_time = end_time - start_time
print(f'Test Accuracy: {test_acc:.4f}')
print(f'Total Testing Time: {testing_time:.2f} seconds')
# Final metrics on the test set
test_precision, test_recall, test_f1 = calculate_metrics(test_gen, model_DenseNet)
print(f'Test Precision: {test_precision:.4f}, Recall: {test_recall:.4f}, F1 Score: {test_f1:.4f}')
Modules loaded
Found 20000 validated image filenames belonging to 5 classes.
Found 2500 validated image filenames belonging to 5 classes.
Found 2500 validated image filenames belonging to 5 classes.
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/densenet/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5
[1m29084464/29084464[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 0us/step
Epoch 1/20
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1727877429.788395 66 service.cc:145] XLA service 0x7ee670004570 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
I0000 00:00:1727877429.788469 66 service.cc:153] StreamExecutor device (0): Tesla P100-PCIE-16GB, Compute Capability 6.0
I0000 00:00:1727877519.057475 66 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m126s[0m 376ms/step
Epoch 1 Training Precision: 0.2049, Recall: 0.2047, F1 Score: 0.2045
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m18s[0m 443ms/step
Epoch 1 Validation Precision: 0.2066, Recall: 0.2064, F1 Score: 0.2061
Epoch 1: val_loss improved from inf to 0.08119, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m627s[0m 2s/step - accuracy: 0.9469 - loss: 0.1441 - val_accuracy: 0.9708 - val_loss: 0.0812 - learning_rate: 0.0010
Epoch 2/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m101s[0m 322ms/step
Epoch 2 Training Precision: 0.1954, Recall: 0.1955, F1 Score: 0.1954
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 321ms/step
Epoch 2 Validation Precision: 0.1956, Recall: 0.1956, F1 Score: 0.1956
Epoch 2: val_loss improved from 0.08119 to 0.01547, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m241s[0m 762ms/step - accuracy: 0.9978 - loss: 0.0084 - val_accuracy: 0.9956 - val_loss: 0.0155 - learning_rate: 0.0010
Epoch 3/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m97s[0m 311ms/step
Epoch 3 Training Precision: 0.1980, Recall: 0.1980, F1 Score: 0.1980
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 308ms/step
Epoch 3 Validation Precision: 0.1932, Recall: 0.1932, F1 Score: 0.1932
Epoch 3: val_loss improved from 0.01547 to 0.01127, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m234s[0m 741ms/step - accuracy: 0.9977 - loss: 0.0078 - val_accuracy: 0.9980 - val_loss: 0.0113 - learning_rate: 0.0010
Epoch 4/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m102s[0m 327ms/step
Epoch 4 Training Precision: 0.2038, Recall: 0.2037, F1 Score: 0.2038
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 356ms/step
Epoch 4 Validation Precision: 0.1916, Recall: 0.1916, F1 Score: 0.1916
Epoch 4: val_loss did not improve from 0.01127
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m238s[0m 755ms/step - accuracy: 0.9977 - loss: 0.0069 - val_accuracy: 0.9928 - val_loss: 0.0362 - learning_rate: 0.0010
Epoch 5/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m102s[0m 327ms/step
Epoch 5 Training Precision: 0.1990, Recall: 0.1990, F1 Score: 0.1990
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 316ms/step
Epoch 5 Validation Precision: 0.2018, Recall: 0.2020, F1 Score: 0.2019
Epoch 5: val_loss did not improve from 0.01127
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m241s[0m 762ms/step - accuracy: 0.9990 - loss: 0.0035 - val_accuracy: 0.9896 - val_loss: 0.0357 - learning_rate: 0.0010
Epoch 6/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m99s[0m 317ms/step
Epoch 6 Training Precision: 0.2038, Recall: 0.2038, F1 Score: 0.2038
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 335ms/step
Epoch 6 Validation Precision: 0.2064, Recall: 0.2064, F1 Score: 0.2064
Epoch 6: val_loss improved from 0.01127 to 0.00370, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m239s[0m 757ms/step - accuracy: 0.9991 - loss: 0.0036 - val_accuracy: 0.9992 - val_loss: 0.0037 - learning_rate: 0.0010
Epoch 7/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m102s[0m 325ms/step
Epoch 7 Training Precision: 0.1999, Recall: 0.1998, F1 Score: 0.1999
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 320ms/step
Epoch 7 Validation Precision: 0.2075, Recall: 0.2076, F1 Score: 0.2075
Epoch 7: val_loss did not improve from 0.00370
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m239s[0m 758ms/step - accuracy: 0.9994 - loss: 0.0016 - val_accuracy: 0.9892 - val_loss: 0.0332 - learning_rate: 0.0010
Epoch 8/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m103s[0m 328ms/step
Epoch 8 Training Precision: 0.2001, Recall: 0.2001, F1 Score: 0.2000
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 330ms/step
Epoch 8 Validation Precision: 0.2047, Recall: 0.2052, F1 Score: 0.2048
Epoch 8: val_loss did not improve from 0.00370
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m238s[0m 754ms/step - accuracy: 0.9973 - loss: 0.0082 - val_accuracy: 0.9776 - val_loss: 0.0735 - learning_rate: 0.0010
Epoch 9/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m99s[0m 316ms/step
Epoch 9 Training Precision: 0.2058, Recall: 0.2058, F1 Score: 0.2058
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 332ms/step
Epoch 9 Validation Precision: 0.2040, Recall: 0.2040, F1 Score: 0.2040
Epoch 9: val_loss improved from 0.00370 to 0.00127, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m236s[0m 747ms/step - accuracy: 0.9982 - loss: 0.0044 - val_accuracy: 0.9996 - val_loss: 0.0013 - learning_rate: 0.0010
Epoch 10/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m102s[0m 326ms/step
Epoch 10 Training Precision: 0.1983, Recall: 0.1983, F1 Score: 0.1983
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 333ms/step
Epoch 10 Validation Precision: 0.2008, Recall: 0.2008, F1 Score: 0.2008
Epoch 10: val_loss improved from 0.00127 to 0.00041, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m239s[0m 756ms/step - accuracy: 0.9993 - loss: 0.0019 - val_accuracy: 1.0000 - val_loss: 4.1266e-04 - learning_rate: 0.0010
Epoch 11/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m101s[0m 321ms/step
Epoch 11 Training Precision: 0.1967, Recall: 0.1967, F1 Score: 0.1967
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 330ms/step
Epoch 11 Validation Precision: 0.2072, Recall: 0.2072, F1 Score: 0.2072
Epoch 11: val_loss improved from 0.00041 to 0.00016, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m245s[0m 775ms/step - accuracy: 1.0000 - loss: 7.3654e-05 - val_accuracy: 1.0000 - val_loss: 1.6086e-04 - learning_rate: 0.0010
Epoch 12/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m100s[0m 320ms/step
Epoch 12 Training Precision: 0.1973, Recall: 0.1973, F1 Score: 0.1973
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 322ms/step
Epoch 12 Validation Precision: 0.2107, Recall: 0.2108, F1 Score: 0.2107
Epoch 12: val_loss did not improve from 0.00016
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m234s[0m 743ms/step - accuracy: 0.9996 - loss: 0.0021 - val_accuracy: 0.9884 - val_loss: 0.0509 - learning_rate: 0.0010
Epoch 13/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m101s[0m 322ms/step
Epoch 13 Training Precision: 0.2058, Recall: 0.2059, F1 Score: 0.2058
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 340ms/step
Epoch 13 Validation Precision: 0.1966, Recall: 0.1968, F1 Score: 0.1966
Epoch 13: val_loss did not improve from 0.00016
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m239s[0m 755ms/step - accuracy: 0.9997 - loss: 6.9319e-04 - val_accuracy: 0.9844 - val_loss: 0.0522 - learning_rate: 0.0010
Epoch 14/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m100s[0m 319ms/step
Epoch 14 Training Precision: 0.2015, Recall: 0.2017, F1 Score: 0.2015
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 337ms/step
Epoch 14 Validation Precision: 0.2111, Recall: 0.2112, F1 Score: 0.2110
Epoch 14: val_loss did not improve from 0.00016
Epoch 14: ReduceLROnPlateau reducing learning rate to 0.00020000000949949026.
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m237s[0m 750ms/step - accuracy: 0.9987 - loss: 0.0037 - val_accuracy: 0.9620 - val_loss: 0.1705 - learning_rate: 0.0010
Epoch 15/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m101s[0m 324ms/step
Epoch 15 Training Precision: 0.2011, Recall: 0.2011, F1 Score: 0.2011
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 330ms/step
Epoch 15 Validation Precision: 0.2024, Recall: 0.2024, F1 Score: 0.2024
Epoch 15: val_loss did not improve from 0.00016
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m236s[0m 749ms/step - accuracy: 0.9995 - loss: 0.0023 - val_accuracy: 0.9988 - val_loss: 0.0042 - learning_rate: 2.0000e-04
Epoch 16/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m99s[0m 315ms/step
Epoch 16 Training Precision: 0.1997, Recall: 0.1997, F1 Score: 0.1997
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 317ms/step
Epoch 16 Validation Precision: 0.1920, Recall: 0.1920, F1 Score: 0.1920
Epoch 16: val_loss did not improve from 0.00016
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m233s[0m 738ms/step - accuracy: 1.0000 - loss: 1.9201e-04 - val_accuracy: 0.9988 - val_loss: 0.0040 - learning_rate: 2.0000e-04
Epoch 16: early stopping
Restoring model weights from the end of the best epoch: 11.
Total Training Time: 4199.01 seconds
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m27s[0m 692ms/step - accuracy: 1.0000 - loss: 2.4379e-04
Test Accuracy: 1.0000
Total Testing Time: 28.88 seconds
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 311ms/step
Test Precision: 1.0000, Recall: 1.0000, F1 Score: 1.0000