import os
import time
import shutil
import pathlib
import itertools
from PIL import Image
# Import data handling tools
import cv2
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_style('darkgrid')
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, precision_score, recall_score, f1_score
# Import deep learning libraries
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam, Adamax
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout, BatchNormalization, GlobalAveragePooling2D
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
from tensorflow.keras.applications import DenseNet121,InceptionV3,MobileNetV2
from tensorflow.keras.models import Model
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")
print('Modules loaded')
# Generate data paths with labels
data_dir = '/kaggle/input/lung-and-colon-cancer-histopathological-images/lung_colon_image_set'
filepaths = []
labels = []
folds = os.listdir(data_dir)
# Generate paths and labels
for fold in folds:
foldpath = os.path.join(data_dir, fold)
flist = os.listdir(foldpath)
for f in flist:
f_path = os.path.join(foldpath, f)
filelist = os.listdir(f_path)
for file in filelist:
fpath = os.path.join(f_path, file)
filepaths.append(fpath)
if f == 'colon_aca':
labels.append('Colon Adenocarcinoma')
elif f == 'colon_n':
labels.append('Colon Benign Tissue')
elif f == 'lung_aca':
labels.append('Lung Adenocarcinoma')
elif f == 'lung_n':
labels.append('Lung Benign Tissue')
elif f == 'lung_scc':
labels.append('Lung Squamous Cell Carcinoma')
# Concatenate data paths with labels into a DataFrame
df = pd.DataFrame({'filepaths': filepaths, 'labels': labels})
# Split dataset into train, validation, and test sets
train_df, temp_df = train_test_split(df, train_size=0.8, stratify=df['labels'], random_state=42)
valid_df, test_df = train_test_split(temp_df, train_size=0.5, stratify=temp_df['labels'], random_state=42)
# Define image size, channels, and batch size
batch_size = 64
img_size = (224, 224)
channels = 3
img_shape = (img_size[0], img_size[1], channels)
# Create ImageDataGenerator for training and validation
train_datagen = ImageDataGenerator()
valid_datagen = ImageDataGenerator()
train_gen = train_datagen.flow_from_dataframe(train_df, x_col='filepaths', y_col='labels',
target_size=img_size, class_mode='categorical',
batch_size=batch_size, shuffle=True)
valid_gen = valid_datagen.flow_from_dataframe(valid_df, x_col='filepaths', y_col='labels',
target_size=img_size, class_mode='categorical',
batch_size=batch_size, shuffle=True)
test_gen = valid_datagen.flow_from_dataframe(test_df, x_col='filepaths', y_col='labels',
target_size=img_size, class_mode='categorical',
batch_size=batch_size, shuffle=False)
# Get class names
num_classes = len(train_gen.class_indices)
# Define the model
#base_model = DenseNet121(input_shape=img_shape, include_top=False, weights='imagenet')
#base_model = InceptionV3(input_shape=img_shape, include_top=False, weights='imagenet')
#base_model = DenseNet121(input_shape=img_shape, include_top=False, weights='imagenet')
base_model = MobileNetV2(input_shape=img_shape, include_top=False, weights='imagenet')
base_model.trainable = True
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu')(x)
predictions = Dense(num_classes, activation='softmax')(x)
model_DenseNet = Model(inputs=base_model.input, outputs=predictions)
# Compile the model
model_DenseNet.compile(optimizer=Adamax(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
# Define callbacks
callbacks = [
ModelCheckpoint(filepath='best_model.keras', monitor='val_loss', save_best_only=True, verbose=1),
EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True, verbose=1),
ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=1e-6, verbose=1)
]
# Helper function to calculate metrics
def calculate_metrics(generator, model):
preds = model.predict(generator)
y_true = generator.classes
y_pred = np.argmax(preds, axis=1)
precision = precision_score(y_true, y_pred, average='weighted')
recall = recall_score(y_true, y_pred, average='weighted')
f1 = f1_score(y_true, y_pred, average='weighted')
return precision, recall, f1
# Train the model and calculate metrics for each epoch
class MetricsCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
# Training metrics
train_precision, train_recall, train_f1 = calculate_metrics(train_gen, self.model)
print(f'Epoch {epoch+1} Training Precision: {train_precision:.4f}, Recall: {train_recall:.4f}, F1 Score: {train_f1:.4f}')
# Validation metrics
val_precision, val_recall, val_f1 = calculate_metrics(valid_gen, self.model)
print(f'Epoch {epoch+1} Validation Precision: {val_precision:.4f}, Recall: {val_recall:.4f}, F1 Score: {val_f1:.4f}')
# Measure training time
start_time = time.time()
# Train the model with the custom metrics callback
history = model_DenseNet.fit(train_gen, validation_data=valid_gen, epochs=20, callbacks=[MetricsCallback()] + callbacks)
end_time = time.time()
training_time = end_time - start_time
print(f'Total Training Time: {training_time:.2f} seconds')
# Plot training history (accuracy and loss)
plt.figure(figsize=(12, 5))
# Plot accuracy
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Val Accuracy')
plt.title('Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
# Plot loss
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Val Loss')
plt.title('Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.tight_layout()
plt.show()
# Measure testing time
start_time = time.time()
# Evaluate on the test set
test_loss, test_acc = model_DenseNet.evaluate(test_gen)
end_time = time.time()
testing_time = end_time - start_time
print(f'Test Accuracy: {test_acc:.4f}')
print(f'Total Testing Time: {testing_time:.2f} seconds')
# Final metrics on the test set
test_precision, test_recall, test_f1 = calculate_metrics(test_gen, model_DenseNet)
print(f'Test Precision: {test_precision:.4f}, Recall: {test_recall:.4f}, F1 Score: {test_f1:.4f}')
Modules loaded
Found 20000 validated image filenames belonging to 5 classes.
Found 2500 validated image filenames belonging to 5 classes.
Found 2500 validated image filenames belonging to 5 classes.
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/mobilenet_v2/mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_224_no_top.h5
[1m9406464/9406464[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 0us/step
Epoch 1/20
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1727871783.847757 65 service.cc:145] XLA service 0x7d57b4003da0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
I0000 00:00:1727871783.847818 65 service.cc:153] StreamExecutor device (0): Tesla P100-PCIE-16GB, Compute Capability 6.0
[1m 1/313[0m [37m━━━━━━━━━━━━━━━━━━━━[0m [1m4:18:54[0m 50s/step - accuracy: 0.1719 - loss: 2.0469
I0000 00:00:1727871805.732449 65 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m97s[0m 302ms/step
Epoch 1 Training Precision: 0.2057, Recall: 0.1981, F1 Score: 0.1714
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 326ms/step
Epoch 1 Validation Precision: 0.1902, Recall: 0.1996, F1 Score: 0.1713
Epoch 1: val_loss improved from inf to 1.60402, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m441s[0m 1s/step - accuracy: 0.9419 - loss: 0.1607 - val_accuracy: 0.5972 - val_loss: 1.6040 - learning_rate: 0.0010
Epoch 2/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m97s[0m 310ms/step
Epoch 2 Training Precision: 0.2205, Recall: 0.2004, F1 Score: 0.1462
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 290ms/step
Epoch 2 Validation Precision: 0.1512, Recall: 0.1956, F1 Score: 0.1424
Epoch 2: val_loss did not improve from 1.60402
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m221s[0m 699ms/step - accuracy: 0.9943 - loss: 0.0188 - val_accuracy: 0.5292 - val_loss: 4.7299 - learning_rate: 0.0010
Epoch 3/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m92s[0m 294ms/step
Epoch 3 Training Precision: 0.2253, Recall: 0.1987, F1 Score: 0.1502
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 295ms/step
Epoch 3 Validation Precision: 0.2495, Recall: 0.1952, F1 Score: 0.1457
Epoch 3: val_loss did not improve from 1.60402
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m254s[0m 673ms/step - accuracy: 0.9974 - loss: 0.0083 - val_accuracy: 0.5976 - val_loss: 5.3271 - learning_rate: 0.0010
Epoch 4/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m95s[0m 304ms/step
Epoch 4 Training Precision: 0.1962, Recall: 0.1968, F1 Score: 0.1750
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 291ms/step
Epoch 4 Validation Precision: 0.1914, Recall: 0.1996, F1 Score: 0.1751
Epoch 4: val_loss did not improve from 1.60402
Epoch 4: ReduceLROnPlateau reducing learning rate to 0.00020000000949949026.
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m214s[0m 679ms/step - accuracy: 0.9978 - loss: 0.0066 - val_accuracy: 0.7340 - val_loss: 2.1683 - learning_rate: 0.0010
Epoch 5/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m95s[0m 303ms/step
Epoch 5 Training Precision: 0.1973, Recall: 0.1976, F1 Score: 0.1940
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 295ms/step
Epoch 5 Validation Precision: 0.1991, Recall: 0.1936, F1 Score: 0.1921
Epoch 5: val_loss improved from 1.60402 to 0.60021, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m215s[0m 682ms/step - accuracy: 0.9999 - loss: 7.2275e-04 - val_accuracy: 0.8860 - val_loss: 0.6002 - learning_rate: 2.0000e-04
Epoch 6/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m91s[0m 291ms/step
Epoch 6 Training Precision: 0.2059, Recall: 0.2058, F1 Score: 0.2058
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 288ms/step
Epoch 6 Validation Precision: 0.1971, Recall: 0.1972, F1 Score: 0.1971
Epoch 6: val_loss improved from 0.60021 to 0.05372, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m261s[0m 680ms/step - accuracy: 0.9996 - loss: 0.0010 - val_accuracy: 0.9856 - val_loss: 0.0537 - learning_rate: 2.0000e-04
Epoch 7/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m91s[0m 289ms/step
Epoch 7 Training Precision: 0.1979, Recall: 0.1979, F1 Score: 0.1979
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 293ms/step
Epoch 7 Validation Precision: 0.2047, Recall: 0.2048, F1 Score: 0.2048
Epoch 7: val_loss improved from 0.05372 to 0.01571, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m213s[0m 674ms/step - accuracy: 0.9999 - loss: 4.3082e-04 - val_accuracy: 0.9960 - val_loss: 0.0157 - learning_rate: 2.0000e-04
Epoch 8/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m91s[0m 290ms/step
Epoch 8 Training Precision: 0.1968, Recall: 0.1968, F1 Score: 0.1968
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m11s[0m 275ms/step
Epoch 8 Validation Precision: 0.1907, Recall: 0.1908, F1 Score: 0.1908
Epoch 8: val_loss improved from 0.01571 to 0.01212, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m210s[0m 664ms/step - accuracy: 0.9998 - loss: 4.0760e-04 - val_accuracy: 0.9968 - val_loss: 0.0121 - learning_rate: 2.0000e-04
Epoch 9/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m93s[0m 298ms/step
Epoch 9 Training Precision: 0.1988, Recall: 0.1988, F1 Score: 0.1988
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 316ms/step
Epoch 9 Validation Precision: 0.1944, Recall: 0.1944, F1 Score: 0.1944
Epoch 9: val_loss improved from 0.01212 to 0.00903, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m213s[0m 676ms/step - accuracy: 0.9999 - loss: 7.3630e-04 - val_accuracy: 0.9976 - val_loss: 0.0090 - learning_rate: 2.0000e-04
Epoch 10/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m90s[0m 287ms/step
Epoch 10 Training Precision: 0.2003, Recall: 0.2003, F1 Score: 0.2003
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m11s[0m 275ms/step
Epoch 10 Validation Precision: 0.2016, Recall: 0.2016, F1 Score: 0.2016
Epoch 10: val_loss improved from 0.00903 to 0.00608, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m259s[0m 664ms/step - accuracy: 0.9998 - loss: 5.2550e-04 - val_accuracy: 0.9976 - val_loss: 0.0061 - learning_rate: 2.0000e-04
Epoch 11/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m91s[0m 292ms/step
Epoch 11 Training Precision: 0.1986, Recall: 0.1986, F1 Score: 0.1986
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 299ms/step
Epoch 11 Validation Precision: 0.2073, Recall: 0.2072, F1 Score: 0.2072
Epoch 11: val_loss did not improve from 0.00608
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m214s[0m 678ms/step - accuracy: 0.9999 - loss: 1.8689e-04 - val_accuracy: 0.9976 - val_loss: 0.0062 - learning_rate: 2.0000e-04
Epoch 12/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m92s[0m 293ms/step
Epoch 12 Training Precision: 0.2001, Recall: 0.2001, F1 Score: 0.2001
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 289ms/step
Epoch 12 Validation Precision: 0.2096, Recall: 0.2096, F1 Score: 0.2096
Epoch 12: val_loss improved from 0.00608 to 0.00523, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m213s[0m 673ms/step - accuracy: 1.0000 - loss: 9.4459e-05 - val_accuracy: 0.9980 - val_loss: 0.0052 - learning_rate: 2.0000e-04
Epoch 13/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m90s[0m 288ms/step
Epoch 13 Training Precision: 0.2013, Recall: 0.2013, F1 Score: 0.2013
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 297ms/step
Epoch 13 Validation Precision: 0.1921, Recall: 0.1920, F1 Score: 0.1920
Epoch 13: val_loss did not improve from 0.00523
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m211s[0m 667ms/step - accuracy: 1.0000 - loss: 4.1392e-04 - val_accuracy: 0.9972 - val_loss: 0.0068 - learning_rate: 2.0000e-04
Epoch 14/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m89s[0m 283ms/step
Epoch 14 Training Precision: 0.2014, Recall: 0.2014, F1 Score: 0.2014
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m11s[0m 279ms/step
Epoch 14 Validation Precision: 0.1985, Recall: 0.1984, F1 Score: 0.1984
Epoch 14: val_loss did not improve from 0.00523
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m261s[0m 663ms/step - accuracy: 1.0000 - loss: 1.4714e-04 - val_accuracy: 0.9972 - val_loss: 0.0084 - learning_rate: 2.0000e-04
Epoch 15/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m88s[0m 281ms/step
Epoch 15 Training Precision: 0.1979, Recall: 0.1979, F1 Score: 0.1979
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m11s[0m 285ms/step
Epoch 15 Validation Precision: 0.2007, Recall: 0.2008, F1 Score: 0.2007
Epoch 15: val_loss did not improve from 0.00523
Epoch 15: ReduceLROnPlateau reducing learning rate to 4.0000001899898055e-05.
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m207s[0m 654ms/step - accuracy: 0.9997 - loss: 5.8473e-04 - val_accuracy: 0.9972 - val_loss: 0.0067 - learning_rate: 2.0000e-04
Epoch 16/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m91s[0m 292ms/step
Epoch 16 Training Precision: 0.1999, Recall: 0.1999, F1 Score: 0.1999
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 294ms/step
Epoch 16 Validation Precision: 0.1864, Recall: 0.1864, F1 Score: 0.1864
Epoch 16: val_loss improved from 0.00523 to 0.00509, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m212s[0m 670ms/step - accuracy: 1.0000 - loss: 1.7205e-04 - val_accuracy: 0.9972 - val_loss: 0.0051 - learning_rate: 4.0000e-05
Epoch 17/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m87s[0m 279ms/step
Epoch 17 Training Precision: 0.1956, Recall: 0.1956, F1 Score: 0.1956
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 300ms/step
Epoch 17 Validation Precision: 0.2056, Recall: 0.2056, F1 Score: 0.2056
Epoch 17: val_loss improved from 0.00509 to 0.00495, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m212s[0m 670ms/step - accuracy: 1.0000 - loss: 1.1527e-04 - val_accuracy: 0.9972 - val_loss: 0.0050 - learning_rate: 4.0000e-05
Epoch 18/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m89s[0m 283ms/step
Epoch 18 Training Precision: 0.1981, Recall: 0.1981, F1 Score: 0.1981
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 294ms/step
Epoch 18 Validation Precision: 0.1992, Recall: 0.1992, F1 Score: 0.1992
Epoch 18: val_loss improved from 0.00495 to 0.00400, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m208s[0m 658ms/step - accuracy: 1.0000 - loss: 7.9588e-05 - val_accuracy: 0.9980 - val_loss: 0.0040 - learning_rate: 4.0000e-05
Epoch 19/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m92s[0m 294ms/step
Epoch 19 Training Precision: 0.1988, Recall: 0.1988, F1 Score: 0.1988
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m11s[0m 286ms/step
Epoch 19 Validation Precision: 0.2100, Recall: 0.2100, F1 Score: 0.2100
Epoch 19: val_loss improved from 0.00400 to 0.00298, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m210s[0m 666ms/step - accuracy: 1.0000 - loss: 7.2323e-05 - val_accuracy: 0.9988 - val_loss: 0.0030 - learning_rate: 4.0000e-05
Epoch 20/20
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m89s[0m 283ms/step
Epoch 20 Training Precision: 0.2003, Recall: 0.2003, F1 Score: 0.2003
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 288ms/step
Epoch 20 Validation Precision: 0.1832, Recall: 0.1832, F1 Score: 0.1832
Epoch 20: val_loss improved from 0.00298 to 0.00246, saving model to best_model.keras
[1m313/313[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m209s[0m 663ms/step - accuracy: 1.0000 - loss: 4.7209e-05 - val_accuracy: 0.9992 - val_loss: 0.0025 - learning_rate: 4.0000e-05
Restoring model weights from the end of the best epoch: 20.
Total Training Time: 4658.02 seconds
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m19s[0m 468ms/step - accuracy: 1.0000 - loss: 1.4570e-04
Test Accuracy: 1.0000
Total Testing Time: 19.66 seconds
[1m40/40[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m12s[0m 297ms/step
Test Precision: 1.0000, Recall: 1.0000, F1 Score: 1.0000