{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "b43834bd",
"metadata": {},
"outputs": [],
"source": [
"from numba import njit, prange\n",
"import numpy as np\n",
"\n",
"@njit(parallel=True)\n",
"def prange_ok_result_whole_arr(x):\n",
" n = x.shape[0]\n",
" y = np.zeros(4)\n",
" for i in prange(n):\n",
" y += x[i]\n",
" return y"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "17ae5fb5",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"OMP: Info #271: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n"
]
},
{
"data": {
"text/plain": [
"array([10., 10., 10., 10.])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prange_ok_result_whole_arr(np.array([1,2,3,4]))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}