{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "b43834bd", "metadata": {}, "outputs": [], "source": [ "from numba import njit, prange\n", "import numpy as np\n", "\n", "@njit(parallel=True)\n", "def prange_ok_result_whole_arr(x):\n", " n = x.shape[0]\n", " y = np.zeros(4)\n", " for i in prange(n):\n", " y += x[i]\n", " return y" ] }, { "cell_type": "code", "execution_count": 4, "id": "17ae5fb5", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "OMP: Info #271: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n" ] }, { "data": { "text/plain": [ "array([10., 10., 10., 10.])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prange_ok_result_whole_arr(np.array([1,2,3,4]))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 5 }