
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Discovering and Visualizing Ordering
Instance Spanning Constraints from Event

Streams

Julian Bouchard

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Discovering and Visualizing Ordering
Instance Spanning Constraints from Event

Streams

Entdeckung und Visualisierung von
ordnungsbezogenen instanzübergreifenden

Beschränkungen aus Event Streams

Author: Julian Bouchard
Supervisor: Prof. Dr. Stefanie Rinderle-Ma
Advisor: Dr. Karolin Winter
Submission Date: 15.09.2022

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.09.2022 Julian Bouchard

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Related Work . 3

1.3.1 Extent of Current Research . 3
1.3.2 Existing Tools and Algorithms . 3

1.4 Challenges and Contributions . 4

2 Online Ordering ISC Approach 5
2.1 Pre-processing . 7
2.2 Necessary Data Structures . 9
2.3 Processing . 9
2.4 Challenges . 12

3 Visualization Method 16

4 Implementation 23
4.1 Overview . 24
4.2 Planned Features . 27

5 Evaluation 28
5.1 Experiment Setup . 28
5.2 Experiment Results and Assessment . 30

6 Conclusion 34

Bibliography 36

iii

1 Introduction

Process mining is the means by which process models are extracted from event
logs [AWM04]. These event logs are often in the form of .XES files generated di-
rectly from companies. Certain mining algorithms, such as the Alpha Miner [AWM04]
or Heuristics Miner [WDD06], are then employed to discover models that reflect the
real world data. These are in turn displayed as a Petri net or in the Business Process
Model Notation (BPMN) [Kun+10].

1.1 Motivation

From this, the relatively young field of online process mining has sprouted and gar-
nered some scientific attention as of late. The first scientific papers appeared around
2014 [BSA14] and in recent years more and more papers are being dedicated to this
topic. The main advantage of online process mining is that the data can be used as it’s
being produced. This brings with it multiple positive advantages.

For one, it obviously eliminates the need to wait for larger batches of data to produce
models. Not only that, but the models that are produced adapt in real time as more data
flows in and thus provide live feedback to the end-user. Secondly, in many instances
there is no system in place or time to store data. Take Amazon, for example, that
processes 1.1 million requests per second [AMZN]. This was back in 2013. Since then
companies have only amassed more data. In cases like these there simply is no other
choice but to process the data immediately. Alternatively, online process mining can
deal with situations where an event log might be too large to store or process in its
entirety. It is therefore useful to possess an algorithm capable of dealing with virtually
unlimited data that is fed in gradually.

For these reasons, online process mining has a large number of real world applications
–– from optimizing business processes, to Big Data processing [ERF16], to fields with low
error tolerance such as the medical domain —- and is therefore in need of expansion.

Instance Spanning Constraints (ISC), as the name entails, are observed constraints
between multiple instances within or across various process types [WSR20]. They are
often overlooked yet play an important role with potentially life saving consequences.

1

1 Introduction

Take, for example, a case where a patient is being treated at a hospital by two different
departments (DA and DB) for two unrelated illnesses. From the hospital’s point of view
these are two different instances of two unrelated processes. However, if DA executes
task TA "give out medication MA" in order to treat the patient and the patient then
undergoes a surgery in DB, with the task TB "prepare for surgery", for which MA is not
allowed to be in the patient’s system, then going through with the surgery can have
dire consequences. Hence, an ISC must exist stating that TB can never occur after TA.
This kind of ordering mistake must be prevented in real time, before fatal harm can
ensue, therefore highlighting the need to discover ISC from event streams.

ISC have been grouped into four categories: I) ”Simultaneous execution of activities”,
II) “Constrained activity execution”, III) “Order of activity execution” and IV) “Non-
concurrent execution of activities” [WSR20]. In the above example, the order of activity
constraint is prominent and this work will limit itself to this particular constraint type.

This thesis aims to bridge the gap between offline instance spanning constraint dis-
covery and the ever widening online setting, in addition to overhauling the existing
visualization methods of online process models.

1.2 Research Questions

Over the course of my work I will address the following research questions:

RQ1: How to design an online algorithm for discovering ordering ISC?
RQ2: How to visualize the results of an online algorithm for discovering ordering
ISC?

The existing algorithm to derive ordering based ISC [WSR20] will serve as a base to
answer RQ1. However, this method must be adequately adapted to use multiple event
streams as its input. This in and of itself is a challenge. The streams must first be
merged for two reasons. Reason number one: Each stream represents an individual
process type. Therefore, in order to even apply the ordering ISC discovery, the pre-
processing phase as described in Section 4.1 of [WSR20] must take place. Analogous to
merging event logs, I will be merging streams. Reason number two: All current online
process model discovery algorithms assume a single stream input. Merging is therefore
advantageous, seeing as I implement my process discovery algorithm using existing
methods developed by [ZDA17].

For RQ2 I will propose an entirely new method which will incorporate statistical
information from the streams to deliver the user a more intuitive overview. Here I will
need to consider how and when to dynamically update the visual models.

2

1 Introduction

1.3 Related Work

1.3.1 Extent of Current Research

The first papers dealing with an event stream instead of an event log were, as mentioned,
already conceived in 2014 [BSA14]. This early research focused almost entirely on the
basic principles of process discovery from streams. This initial approach relied on the
Heuristics Miner as a base and was further developed and abstracted as time went
on [ZDA17].

With this groundwork laid, within the past 3 years emerging papers have branched
out that explore various extensions. ProM [ProM] implementations were created with
more algorithms than just the Heuristics Miner. The issue of unordered streams was
explored [AWS20]. Others researched to what extent activities could be parallelized
to increase efficiency [Tav+19]. Some focused on filtering anomalies from the event
streams [KF21]. Lastly, many papers have been dedicated to the topic of concept
drift [SR18], [CG12], [Mag+13].

However, certain areas are still in need of further attention. For example, how to
increase memory efficiency while not sacrificing accuracy is a question that remains
open. Furthermore, the subject of Instance Spanning Constraints is deserving of
attention, which will make up a large part of my work. ISC discovery on non-online
process mining has been detailed already [IFR18], [WR17], [WSR20], however no
approach exists in which ISC are identified in an online setting––i.e. from event
streams.

1.3.2 Existing Tools and Algorithms

Some public tools and algorithmic implementations already exist in the online pro-
cess mining space. The most prominent are the ProM [ProM] packages. These are
implemented in Java and published through the ProM Package Manager. The biggest
upside is the number of algorithms to choose from. Yet, data importation can be tricky,
the process requires multiple steps and more importantly there is no option to derive
Instance Spanning Constraints.

Multiple other online process mining implementations exist, each with slight varia-
tions and different focal points – often incorporating concept drift [Has+15], [ERF16],
[ZCH19], [Nav+20]. However, no tool or implementation exists where numerous
streams are taken into account and ISC are discovered.

On the flip side, there are tools for ISC discovery, mainly [ISC]. However, this tool is
for an offline setting –– i.e. it requires event logs and is incapable of dealing with event
streams.

3

1 Introduction

1.4 Challenges and Contributions

Discovering ISC and process models from event streams is not without hurdles. Seeing
as the incoming data stream could be “unlimited” but our model must fit in storage, a
trade-off has to be made between memory usage and accuracy [Cer+20].

Moreover, the real world is disorderly and processes can change over time. Detecting
and dealing with this so called concept drift [SR18] can be quite arduous, yet enables
models to more accurately reflect the real world changes. That being said, this thesis
will not focus on dealing with concept drift.

Another issue arises when data arrives in a different order than their timestamps.
This is often referred to as unorderedness and is dealt with here [AWS20]. This can
cause many difficulties, especially when examining order related ISC. However, for the
purposes of this work an ordered stream is assumed.

Similarly, most current techniques cannot detect and properly deal with anomalous
data in the incoming stream. Anomalous data can occur for many reasons: an event was
not logged, an event was logged twice, data was lost or corrupted during transmission
etc. This can have a massive negative effect on the resulting model as it usually assumes
all data to be valid and complete. This too was solved here [KF21] and an anomaly free
stream will be assumed from here on out.

My primary contribution to this field of work will be an algorithm for discovering ISC
of constraint type “Order of activity execution” directly from an event stream. My
secondary contribution is a method of visualizing mined process models as well as
the aforementioned ISC in the context of an online environment. These two initially
theoretical components will then be practically instantiated within a web-based tool.
This tool will allow the end-user to upload .XES files which will be used to simulate an
event stream. The resulting process model—initially mined with the alpha algorithm—
and ISC will then be visually displayed to the user.

4

2 Online Ordering ISC Approach

Figure 2.1 illustrates the procedure of the online ISC discovery approach from start to
end compared to the existing offline approach (Figure 2.2).

Figure 2.1: Overview of the novel online approach.

Figure 2.2: Overview of the existing offline approach.

The following small example will serve to illustrate each step from raw input to final
output. The example consists of two instances which were individually logged. The
goal will be to find ordering constraints between the two instances. Their individual
process execution logs and process models can be viewed in Table 2.1 and Figure 2.3
respectively.

5

2 Online Ordering ISC Approach

Table 2.1: Unprocessed execution logs based on two .XES files.

Figure 2.3: Process models for L1 (left) and L2 (right) modeled as Petri nets.

6

2 Online Ordering ISC Approach

2.1 Pre-processing

There are three possible scenarios of how the raw input data might present itself:

(1) Multiple files

Akin to an offline approach, multiple complete event logs may also be used as
an input method. These can be employed to simulate a stream, allowing for better
replayability and testing. This input type is purely for testing and research purposes.
For offline ISC discovery on log files please see [WSR20].

(2) Multiple streams

Here each individual stream corresponds to a different instance. We assume each
stream emits their own ordered events independently and immediately — i.e. they do
not buffer or delay the emission of events.

(3) Singular stream

This is the easiest and preferred method to work with. One stream emits events from
all instances in the order that they occurred.

It is important that, no matter the method, all events contain the following attributes:

• Activity label | concept:name
• Timestamp | time:timestamp
• Unique Case Identifier

These three attributes are of utmost necessity considering that without any one of them
the algorithm ceases to function. The lifecycle attribute (lifecycle:transition) is technically
optional and all lifecycle checks can then be left out of the algorithm. Lastly, when
a single merged stream is present, it is paramount that each event also contains an
instance or log identifier to know from which instance said event originated from.

The algorithm assumes a single stream as its direct input. Therefore in both scenarios
(1) and (2) extra steps are required to bring them into the correct form. The singular
stream is utilized as the base input because it allows for easy compatibility with existing
online process mining algorithms which rely on a singular stream.

Multiple files→ Singular stream:
Given n process execution logs. Per log file, all events within the file are given the

additional log identifier attribute. This can either be i ∈ {1, . . . , n}, the filename or
any other alphanumeric sequence unique to this file. Then all events from all files are
accumulated in an ordered data structure, such as a list. Lastly, this data structure must
be sorted by timestamp, earliest event first. The resulting data can now be streamed.

7

2 Online Ordering ISC Approach

Table 2.2: Execution log as a result of merging L1 and L2.

When this approach is applied to our running example the merged log, as can be
seen in Table 2.2, is constructed.

Multiple streams→ Singular stream:
Given n streams that emit events. Monitor all streams. Once stream i emits an

event, the log identifier attribute with value i is added and the event is passed on as
the output of the merged stream. Additional precautions might be necessary in the
situation where two or more streams emit elements at the same time.

In the final step of preparing the input, all stream emissions — which were thus far
still xml elements –– are mapped to an Event type. An Event, within the bounds of
this paper, is defined as a 5-Tuple: (uid: Unique Case Identifier, lb: Activity Label, ts:
Timestamp, tc: Lifecycle Value, log: Log Identifier). A singular stream of Events will
serve as the final input for our Algorithm. In our running example all entries would
also undergo this conversion. For example, the entry with Event ID 3 turns into (2b,
Prepare A, 11-08-2022:11.54, start, 1).

In addition to the stream, the algorithm also requires γ3 ∈ [0, 1] as well as κ ∈ [0, 0.5).
These two parameters are taken directly from the offline algorithm [WSR20] and used
exclusively in the filter function (Algorithm 3: Function filter in [WSR20]).

8

2 Online Ordering ISC Approach

2.2 Necessary Data Structures

The ISC algorithm operates on three internal data structures: countEvs, ordActivities
and d. The former two are taken from the offline version of the algorithm [WSR20] and
serve the same purpose here. All three data structures are hash maps.

ordActivities maps Tuples of activity labels (lb1, lb2) to an object which contains a
“pairs” and “count” attribute, where “pairs” is a list of Tuples (or Lists) and “count” an
Integer. It records the ordered pairs and how often they have occurred. For example:
{(Prepare A, Prepare B)→ {“pairs”→ [(3, 11), (1, 12), (4, 16)], “count”→ 3}}. Side note:
All Tuple elements within "pairs" should be Events, but for brevity and readability their
Event ID was used. This structure is needed to note all potential ISC. Their count is
important for calculations in the filter function.

countEvs maps activity labels to Integers. It is responsible for keeping count of how
often a certain activity has been seen thus far. This information is necessary later on to
determine whether a particular pair in ordActivities is kept or filtered out.

d maps unique case identifiers to Sets of Events. It keeps track of previously seen,
unpaired e1 candidates for each case. This data structure is integral to discovering
ordActivities pairs.

2.3 Processing

The original offline algorithm relies on a different type of pre-processed event log. Here
all events are merged into traces based on their unique case identifier. Subsequently
all traces are sorted by timestamp. At the end, each trace contains all sorted events
across all instances with the same uid. During the offline algorithm, each event (e1)
in a given trace is compared to every following event (e2) in the same trace [WSR20].
This works perfectly in an environment where we have knowledge of all succeeding
events. However, in an online environment we cannot possibly know what events are
yet to come, we can only ever look backwards at the prior emissions. In other words,
we always operate from the perspective of e2 and we look through the past observed
events with the same unique case identifier to find our matching e1.

Per each incoming event, the algorithm checks whether this event’s particular uid
has already been witnessed. If this is the case, the algorithm inspects all past events
with the same uid. These can be found in d[uid]. Next, similar checks are performed
per possible (e1, e2) pair as in the offline algorithm in line 13 [WSR20]. This entails
checking whether the two events originated from separate logs. This ensures that
this constraint is indeed instance spanning. Additionally, it is necessary to verify that

9

2 Online Ordering ISC Approach

their timestamps are different. If the above-mentioned checks are passed, the pair is
added to ordActivities and e1 is removed from the d[uid] set. This removal is important
as it reflects the functionality of the break statement in the offline algorithm in line
19 [WSR20], inhibiting the creation of superfluous (e1, ei) pairs. Lastly, e2 is added to
d[uid] allowing it to be discovered as a possible e1 for the next emitted event with the
same case identifier. In effect, e2 replaces every e1 it paired with during the iteration.

The data structures are updated indefinitely. Consequently we cannot simply apply
the filter function once the main algorithm has completed its run, as this may never
happen. Therefore, the filtering function must be employed based on the intended
use case. Whenever output is required, be that every n events or upon a button press,
the filter function can be run with ordActivities, countEvs, γ3 and κ to obtain the final
ordActivities data.

Running the algorithm on the above example yields the following ordActivities once
all entries have been processed:

Before filtering:

ordActivities = {
(Prepare A, Prepare B)→ {“pairs”→ [(3, 11), (1, 12), (4, 16)], “count”→ 3},
(Execute A, Prepare B)→ {“pairs”→ [(2, 12)], “count”→ 1},
(Prepare B, Execute A)→ {“pairs”→ [(11, 5), (16, 8)], “count”→ 2},
(Execute A, Upload Result of B)→ {“pairs”→ [(5, 14), (8, 19)], “count”→ 2},
(Examine B, Conclude A)→ {“pairs”→ [(13, 6), (15, 7), (19, 9)], “count”→ 3},
(Upload Result of B, Conclude A)→ {“pairs”→ [(14, 6), (17, 7), (19, 9)], “count”→
3},
(Prepare B, Conclude A)→ {“pairs”→ [(12, 7)], “count”→ 1}

}

After filtering with γ3 = 1 and κ = 0:

ordActivities = {
(Prepare A, Prepare B)→ {“pairs”→ [(3, 11), (1, 12), (4, 16)], “count”→ 3},
(Examine B, Conclude A)→ {“pairs”→ [(13, 6), (15, 7), (19, 9)], “count”→ 3},
(Upload Result of B, Conclude A)→ {“pairs”→ [(14, 6), (17, 7), (19, 9)], “count”→
3}

}

The visual exemplification of which can be found in Figure 2.4.

10

2 Online Ordering ISC Approach

Algorithm 1: Category 3 ISC Discovery from Event Stream
Input: ordered stream, κ, γ3

Result: ordActivities (list of ISC candidates for Category 3)
1 ordActivities = dict()
2 countEvs = dict()
3 d = dict()
4 while true do
5 e2 ← observe(ordered stream)
6 if e2.lc != "start" then
7 continue
8 end
9 countEvs[e2.lb] += 1

10 if e2.uid in d then
11 for e1 in d[e2.uid] do
12 if e1.log != e2.log and e1.ts != e2.ts then
13 ordActivities[(e1.lb,e2.lb)]["pairs"].append([e1,e2])
14 ordActivities[(e1.lb,e2.lb)]["count"] +=1
15 d[e2.uid].remove(e1)
16 end
17 end
18 d[e2.uid].add(e2)
19 else
20 d[e2.uid]← {e2}
21 end
22 send filter(ordActivities, countEvs, κ, γ3) to f rontend
23 end

11

2 Online Ordering ISC Approach

Figure 2.4: ISC discovered by applying the algorithm with κ = 0 and γ3 = 1 to the
running example.

2.4 Challenges

The biggest challenge, as mentioned in Section 1.4, is that there are potentially infinitely
many incoming events yet we only have finite physical storage. This problem has been
explored within the context of online process mining algorithms. Many approaches with
varying advantages and drawbacks have been explored [BSA14], [Nav+20], [Bur+15],
[Cer+20].

These techniques can be transferred to the ISC algorithm to ensure that the employed
data structures remain upward bound. Currently, countEvs, ordActivities and d could all
take on an interminable amount of activity labels or unique case identifiers. Moreover,
ordActivities and d both contain sub-structures that also grow in O(n). Therefore, it is
crucial to limit the growth of these structures even at the cost of accuracy.

The final implementation (Chapter 4) incorporates Lossy Counting with Budget
(LCB). I chose this technique in particular for its decent practical performance according
to [MM02]. In order to realize LCB, the algorithm must be altered in the following
ways. First, a new input representing the available budget is required. This budget
B is shared by all three data structures. Second, all data structure entries are given

12

2 Online Ordering ISC Approach

an additional attribute “delta” and the entries in d are expanded to now include their
“count”. Finally, a check and clean is performed every time an element is about to be
inserted into any data structure.

Beyond the introduction of Lossy Counting with Budget, ordActivities can also be
simplified by removing the “pairs” attribute of an entry entirely. The List of Tuples of
activity pairs are not accessed in any further parts of this particular implementation
nor is it needed during the filtering operation. Accordingly, the reduced ordActivities
now maps a Tuple of activity labels to an Integer representing the count of said Tuple.
However, given alternative scenarios it might be useful or even necessary to keep the
“pairs” attribute.

The pseudo code for the memory bound algorithm using Lossy Counting with
Budget can be found below (Algorithm 2). The largest change from Algorithm 1 is the
introduction of lcb_clean() (Algorithm 3) before every possible new insertion into any
data structure. This sub-function first performs the LCB check — whether the sum
of all data structures is equal to B. In this case the budget was reached, the current
bucket is incremented and at very least one entry stemming from any data structure
is removed based on its sum of frequency ("count") and "delta" value. Once complete,
there is now space within the allotted budget for the new entry to be inserted.

Please keep in mind that other techniques could possibly fit certain use cases better
and should be considered when implementing this algorithm.

Chapter 2 Summary and Conclusion.
In this chapter, the approach was outlined to address the research question RQ1: How
to design an online algorithm for discovering ordering ISC. All pre-processing steps were
covered which detailed how the raw input in the form of process execution logs or
streams is converted into an input that is utilized by the core algorithm. Next, the
algorithm’s data structures were defined and the algorithm’s procedure demonstrated
using the running example. Finally, the algorithm was expanded upon in order to
address the original algorithm’s shortcomings.

13

2 Online Ordering ISC Approach

Algorithm 2: Algorithm 1 with Lossy Counting with Budget
Input: ordered stream, κ, γ3, B
Result: ordActivities (list of ISC candidates for Category 3)

1 ordActivities = dict()
2 countEvs = dict()
3 d = dict()
4 bcurr = 0
5 while true do
6 e2 ← observe(ordered stream)
7 if e2.lc != "start" then
8 continue
9 end

10 if e2.lb in countEvs then
11 countEvs[e2.lb]["count"] += 1
12 else
13 lcb_clean()
14 countEvs[e2.lb] = {"count": 1, "delta": bcurr}
15 end
16 if e2.uid in d then
17 for e1 in d[e2.uid] do
18 if e1.log != e2.log and e1.ts != e2.ts then
19 if (e1.lb,e2.lb) in ordActivities then
20 ordActivities[(e1.lb,e2.lb)]["count"] +=1
21 else
22 lcb_clean()
23 ordActivities[(e1.lb,e2.lb)] = {"count": 1, "delta": bcurr}
24 end
25 d[e2.uid].remove(e1)
26 end
27 end
28 d[e2.uid].add(e2)
29 else
30 lcb_clean()
31 d[e2.uid] = {"set": {e2}, "count": 1, "delta": bcurr}
32 end
33 send filter(ordActivities, countEvs, κ, γ3) to f rontend
34 end

14

2 Online Ordering ISC Approach

Algorithm 3: Sub-function for the LCB Check and Clean Phase

1 Function lcb_clean():
2 if |countEvs| + |ordActivities| + |d| = B then
3 bcurr += 1
4 while |countEvs| + |ordActivities| + |d| = B do
5 for entry in countEvs, ordActivities and d do
6 if entry["count"] + entry["delta"] ≤ bcurr then
7 remove entry
8 end
9 end

10 if no entry was removed then
11 bcurr = smallest ("count" + "delta") across all data structures
12 end
13 end
14 end
15 return

15

3 Visualization Method

Owing to the fact that we use either an Alpha or Heuristics Miner to derive the process
model, their output — a Petri net [RR98] — will serve as the base for our visualization
method. In the case of the Heuristics Miner, it is also possible to apply the following
visualization technique to a dependency graph [WDD06]. The downside of only using
a dependency graph is that there is no visual indication of possible AND or XOR
transitions, meaning certain relational information is not present.

A Petri net is a graphical construct consisting of three main components: places,
transitions and links. From a process model perspective, transitions represent the
activities of an event stream; they are visually represented by rectangles. The places,
depicted as circles, and links, as arrows, then allow us to model certain relationships
between two or more activities. For example, whether they occur in sequence (Fig.
3.1a), in parallel (Fig. 3.1b) or in a mutually exclusive manner (Fig. 3.1c). The relations,
referred to earlier, are not recognizable from a dependency graph alone, as illustrated
by the lack of differentiation in Figure 3.2b and 3.2c.

(a) In sequence. (b) In parallel. (c) In exclusive OR.

Figure 3.1: Types of relationships within a Petri net.

(a) In sequence. (b) In parallel. (c) In exclusive OR.

Figure 3.2: Relationships from Fig. 3.1 as dependency graphs.

16

3 Visualization Method

The visualization method can be separated into three categories: general, intra-
process links and inter-process links (a.k.a ISC links). The general categories contain
all visual contributions that apply to every component in entire graph equally, be
that a place, transition or link. The second category covers visualization specifics
that only affect links within a process model; in other words only those links which
connect components that originated from the same log. In contrast, the last category
encompasses the visual standard that only pertains to ISC links which bridge separate
processes.

1. General.
Because we are working on multiple instances it is crucial to properly and clearly
differentiate between the process models created by the different logs / streams. This is
important, considering scenarios where a process model belonging to one log contains
more than one component [Wik22]. This is especially likely to occur when utilizing
an Alpha Miner or a Heuristics Miner without the all-activities-connected heuristic. This
heuristic is an additional option for the Heuristics Miner which insures that every
activity is connected to at least one other activity. Thus no free standing activities can
come to be [WDD06]. Otherwise, choosing too high heuristic thresholds and not having
the all-activities-connected heuristic enabled may result in disconnects in the graph. Such
a resulting graph can be observed on the left side of Figure 3.3. Here it is challenging to
immediately differentiate between the two process models. To combat this ambiguity
we introduce either colors or borders or both. In the former case, all places, transitions
and links belonging to Streami are assigned a unique color ci. These components are
subsequently outlined or filled with ci, as shown in Figure 3.3b. Alternatively, one can
add borders around each process model to make it visually clear that all graphical
components within those borders resulted from the same log id Figure 3.3c.

Due to the nature of the online setting, process models resulting from streams are far
from static. This constant change can sometimes make it very hard to keep track of
which components were recently added or subtracted. Therefore, in order to make the
tracking of changes more intuitive, all new components are given fade-in animations
and all components that were removed from one update to the next receive fade-out
animations. Here fade-in and fade-out refer to the gradual increase or decrease of the
component’s opacity.

17

3 Visualization Method

(a) Ambiguous Petri net. (b) Applying colors. (c) Applying borders.

Figure 3.3: Eliminating ambiguity with colors or borders.

2. Intra-Process Links.
In a Petri net example (Fig. 3.4) created by the log Le, any two activities ai and aj
(i ∈N, j = i + 1) are connected in the following way: lai ,pi links ai to pi and then lpi ,aj

links pi to aj. With regards to these links we use two dimensions to better symbolize
the relation between ai and aj: i) the certainty — i.e. how certain we are that ai and aj
are in a causal relation — and ii) the time — i.e. we need to visually reflect whether we
have observed the link just recently or already some time ago.

Figure 3.4: Example of a Petri net with all three relation types.

18

3 Visualization Method

i) The first dimension is the width of each link. The width of the links that connect
ai to aj represents how sure we are that aj does indeed follow ai. In calculating these
widths we must differentiate between links similar to la1,p1 or lp1,a2 (Fig. 3.5a) and
the special case of AND-splits or joins (Fig. 3.6). Generally speaking, all widths are
computed by multiplying the maximum allowed width wmax with a scalar h. In the
most basic case, as depicted in Figure 3.1a, this h is simply the heuristics dependency
value ai ⇒Le aj which depicts “how certain we are that there is truly a dependency
relation between two events” [WDD06].

However, for la1,p1 we run into the issue that a1 can possess numerous subsequent
activities a2, . . . , an which are all connected from p1 with links of the form lp1,ak with
k ∈ [2, . . . , n]. If we were to set the h of la1,p1 to any single a1 ⇒Le ak value or a static
value, like 1, we lose insight into the average relation between a1 and all ak. Thus, we
cannot calculate a singular heuristic value a1 ⇒Le ak to represent the certainty of all
postceding events. Instead, we assign the average of all these dependency heuristics as
h to calculate the final width of la1,p1 . As a result, the width of la1,p1 signifies the average
certainty that a subsequent activity of p1 depends on a1 (Fig. 3.5a). This allows a user
to quickly gain an intuition about the certainty of an activity and all of its subsequent
activities even when the graphical representation of these ensuing activities becomes
more convoluted.

(a) (b)

Figure 3.5: Example showcasing how widths are assigned.

Naturally, the inverse problem, as portrayed in Figure 3.5b with numerous antecedent
activities, also exists. This obstacle is overcome in an equivalent manner to la1,p1 by
averaging the heuristic dependency values of all directly preceding activities that
connect to the same place. In the specific case of lp1,a2 there is only one antedate activity.
Consequently, h purely equals the heuristic dependency value a1 ⇒Le a2.

19

3 Visualization Method

The introduction of AND-splits and AND-joins is accompanied by the addition of
new links. The h of these links is directly equal to the AND-dependency value. For
details on the AND-dependency value see [WDD06]. In the example demonstrated
in Figure 3.6 this would mean that the width of all three links lp9,∧1 , l∧1,p10′ and l∧1,p11′

is given by wmax ∗ (a9 ⇒Le a10 ∧ a11). In the grand scheme of the graph, this measure
visualizes how certain we are that a10 and a11 are in an AND-relation, allowing the
viewer to quickly gain a good understanding of the relationship between a10 and a11.

Figure 3.6: Calculating widths of links in an AND-Split.

ii) The second dimension is the opacity of each link. The transparency of any link
visualizes how recently the directly follows pair which created this link was observed.

This is achieved by introducing a rate of decay rd and rate of growth rg. Additionally,
every directly follows pair is assigned a new attribute intensity with a value between
0.1 and 1. This attribute directly corresponds to the opacity of the link; 1 equates to
the link being fully opaque and 0.1 means the link is almost completely transparent.
We choose 0.1 as our minimal threshold so that even at lowest opacity the links can
still be viewed in the graph. This minimum opacity can also be decreased or raised
based on the use-case. Alternatively, one could outline all links with a solid border.
This would allow for the minimum opacity of the links to sink to 0 without losing the
visual indication of their existence.

We determine each pair’s intensity during runtime. Anytime a directly follows pair
is formed during the online process mining algorithm, all pairs’ intensity is reduced by
rd and the observed pair’s intensity is increased by rg. Here the biggest challenge is to
choose an optimum rd and rg –— given they depend on the total number of activities
and the emission rate of the stream. A too large rd or a too small rg will result in most
links being practically transparent while a too small rd and a too large rg will cause

20

3 Visualization Method

most links to be opaque. Either extreme will lead to information loss as the average
difference in transparency becomes imperceptible. This would defeat the purpose of
this visual indicator; an observer could no longer gain an intuitive understanding of
which pairs are more recent versus which have not been detected for a while.

Similarly to the first dimension, a1 can be involved in multiple directly follows pairs.
For our example in Figure 3.5a we have the following pairs: (a1, a2), (a1, a3), (a1, a4).
Therefore, analogous to the width, the intensity of la1,p1 is given as the average of all
three pairs’ intensities.

Lastly, the opacity of all links directly leading into or out of AND-splits and AND-
joins is always 1, as they are byproducts of these additional transitions.

3. Inter-Process Links.
The links that represent the Instance Spanning Constraints stand out from the normal
process model links in two ways. Visually, ISC links, unlike normal links, are presented
with a dashed line instead of a solid line. Moreover, they can be given a red color
to help them stand out further from all other graphical components. Structurally,
these links only ever connect two transitions denoting that the source activity must be
executed before the destination activity — like in Figure 3.7a. Linking two transitions,
technically speaking, threatens the integrity of the Petri net as this kind of link is
not permitted per its syntactic definition. Hence, if a structurally sound Petri net is
desired then a supplementary place needs to be introduced as exemplified in Figure
3.7b. Nevertheless, the transition-to-transition links can be kept as a shorthand if visual
clarity is prioritized to the functionality of the Petri net.

Contrary to the intra-process links, the ISC links do not currently possess a display
of certainty and therefore do not vary in size. However, in future work, the value
being compared to γ3 (see line 4 of Algorithm 3: Function filter in [WSR20]) could be
employed to represent the certainty.

Further, new ISC links are also given a fade-in animation and no longer existing ISC
links are faded out. This, just like the fading in and out of all other components, helps
the viewer to better follow and keep track of the ever changing model.

Chapter 3 Summary and Conclusion.
This chapter outlined the approach to address the research question RQ2: How to
visualize the results of an online algorithm for discovering ordering ISC? Techniques to
visually display important information in an intuitive manner were outlined for all
graphical components of a resulting Petri net. The main methods discussed pertain to
the width and opacity of links as well as their color scheme. Through this we can better
express the relationship between activities. Furthermore, edge cases were covered and
illustrated with various figures. These visualizing techniques will help the user to
easily follow the process models evolution.

21

3 Visualization Method

(a) Simple ISC link. (b) Functional ISC link. (c) ISC link with borders.

Figure 3.7: Three different ISC link implementations.

22

4 Implementation

All of the previously mentioned algorithms and methods were implemented within a
free and open source web-tool called Tool for Online Instance-Spanning-Constraints
Discovery (TOID). This proof-of-concept implementation can currently be found at:

https://lehre.bpm.in.tum.de/ports/8030

It is still in its early stages and is intended for scientific use only.
I wrote TOID using Python in the backend. This python server is hosted using Flask

and provides a RESTful API for the frontend client. I wrote the frontend in TypeScript
using React and MaterialUI. The graphical output itself is greatly aided by Cytoscape.js.
Once the start button has been pressed, a post request containing the files and settings
is sent to the backend. In turn, the files are parsed, processed and their events are
fed into the main algorithm. Finally, the resulting stream of JSON encoded outputs is
continuously provided to the frontend over an EventSource connection.

While building TOID certain design and implementation decisions had to be made.
First, the application accepts .XES files — which are internally converted to a singular
event stream — instead of multiple event streams as its input. This was done in order
to facilitate testing and increase controllability. Because the stream is created internally,
we can easily manipulate the emission rate, even during runtime. This allows us to
artificially slow down or speed up the stream depending on our current observational
needs. Moreover, .XES is the standard for process execution logs. Therefore, the myriad
of files which already exist can be reused without additional modification in an online
setting. The downside is, of course, that real streams cannot be used with the current
implementation. At least not yet.

Second, colors were chosen to differentiate the process models instead of borders.
Partially due to library restrictions, but mainly for the reason that the colors serve as
log identifiers in other parts of TOID. For example, the colors used in the timeline (see
feature 14. Timeline) correspond to the colors in the main graph.

Last, simple ISC links were implemented rather than functional ones (Fig. 3.7) for the
sake of reducing unnecessary clutter in the graph. Furthermore, TOID is not designed
to run or verify Petri nets, simply to provide information about Instance Spanning
Constraints in a manner that is visually easy to digest.

23

https://lehre.bpm.in.tum.de/ports/8030
https://www.python.org/
https://flask.palletsprojects.com/en/2.2.x/
https://www.typescriptlang.org/
https://reactjs.org/
https://mui.com/
https://js.cytoscape.org/
https://developer.mozilla.org/en-US/docs/Web/API/EventSource

4 Implementation

4.1 Overview

Below is a screenshot of the complete product in action along with a detailed legend
which is categorized into three parts: Input, Options and Output.

Figure 4.1: A screenshot of TOID during runtime.

Input.
1. Upload: The upload button allows the user to submit up to 10 .XES files. These files
must possess a valid XES structure [XES] and every therein contained event must own
all necessary attributes as described in Section 2.1. Uploaded files are displayed in a
list view below the upload button and can be removed by clicking the X next to the
filename.

2. Start: Once the start button is pressed, all selected files and option settings are
transmitted to the backend. Here, the files — as detailed in Section 2.1 — are internally
converted to simulate an event stream, the algorithms are applied and the output is
sent back.

3. Stop: When TOID is running, the start button turns into a stop button. This can be
clicked to completely halt all backend activity.

4. Pause Stream: The pause stream button enables the user to temporarily suspend the
internal event stream. No new event can be emitted during this time. This functionality

24

4 Implementation

serves to facilitate testing. It allows the user to take as much time as needed to fully
explore the Petri net in detail, which would otherwise not be possible given a real
stream.

5. Resume Stream: When the stream is paused, the unpause button replaces the pause
button allowing the user to resume the internal event stream.

Options.
6. Miner Budget: This option permits the user to set the maximum budget to be used
for the Lossy Counting with Budget in the online process mining algorithm. [Nav+20]

7. ISC Budget: Similar to 6., the user can set the maximum budget for the LCB in the
ISC discovery algorithm, see Section 2.4 and Algorithm 2.

8. ISC Parameter k: This feature allows the user to set the algorithm parameter κ. The
parameter accepts a number between [0, 0.5) to be used in the filtering function of
Algorithm 1 and 2.

9. ISC Parameter y_3: This field allows the user to set the algorithm parameter γ3.
The parameter accepts a number between [0, 1] to be used in the filtering function of
Algorithm 1 and 2.

10. Update Frequency: The update frequency determines how often the backend per-
forms a filter and subsequently sends the output to the frontend. An update frequency
of 1 means an update is sent after every single event. A value of 50 means an update is
sent after every 50 events.

11. Update Delay: This field controls how long is waited in seconds between sending
updates. An update frequency of 50 together with an update delay of 2 means that
every 50 events the update is sent and 2 seconds are waited before sending the update
of the next 50.

Both the update frequency (10.) and the update delay (11.) fields provide the user with
further freedom and versatility while testing. If so desired, one could set the frequency
to 1 and the delay to 10 which results in an update being shown after every incoming
event but with a long enough pause for the user to fully acknowledge and understand
the changes.

12. Cross Instance ID: Because the attribute that represents the unique case identifier
might be named differently depending on what tool the log was created with, this
option exists to allow the user to specify the attribute name whose value should be
used as the uid.

25

4 Implementation

Output.
13. Graph: Most of TOIDs space is designated to the canvas which displays the graph.
The resulting graphs are configured to grow top to bottom. All transitions and places
within the graphs are movable. Additionally, a link can be hovered over to view their
exact width and opacity percentages.

14. Timeline: The timeline component above the graph keeps snapshots of the last 10
ISC states. These snapshots are visually indicated in the form of multicolored circles.
The color ratio expresses which logs are involved and to which extent. For example,
the coloring of the leftmost snapshot in Figure 4.1 denotes that the log corresponding
to the color orange was involved in half of the ISC link changes at that time. While
blue and purple had an equal 25% percent participation in link changes. Hovering over
the snapshots also displays their timestamp and how many ISC links were added or
removed. Each of these snapshots can be clicked to display the graph as it was at that
point in time. Further, the fade-in and fade-out animations are replayed so that a user
might gain a better understanding of the updates that were made at the time. While
viewing such a snapshot the stream does not pause, only the graphical view does. In
order to return to viewing the latest graph, the live button (16.) can be pressed.

15. Pause: The pause button next to the timeline can be used to freeze the current
frontend view. Unlike the pause stream button (4.) this option does not halt the internal
stream or stop the backend from sending any updates. The client will continuously
receive updates in the background. This is once more a feature to aid testing by
allowing the user to closely examine a specific frame without halting the progress of
the algorithm.

16. Live: When in a paused view, the live button replaces the pause button (15.) A user
may press it to return to the live view of the stream. Hovering over either the pause or
live button displays the timestamp of the most recently received update.

Furthermore, TOID offers the choice of using the Alpha Miner or the Heuristics Miner.
In the latter case, additional option boxes appear which allow all thresholds for the
Heuristics Miner to be set individually. Moreover, some options are changeable during
runtime, such as both ISC parameters as well as the update frequency and update delay.
This provides greater flexibility after the start button was pressed. Otherwise the whole
stream would have to be restarted any time one would want to test out different ISC
parameters or change the streams emission rate. At the same time, certain input options
become greyed out and inaccessible once the stream has been started. This is because
they either make no sense to change during runtime, such as the Cross Instance ID
field which is only ever used to create the stream, or because a post-start change would
cause problems within the algorithm, like changing the Miner Budget or ISC Budget.

26

4 Implementation

4.2 Planned Features

Due to time constraints, certain features were left out for the time being. In the future,
TOID would benefit from allowing the user to specify multiple event streams as the
primary input source. One possibility of realizing this is through the CPEE [CPEE],
allowing the users to create or publish streams which can then be specified in TOID.
This input option mirrors reality far more closely and enables anyone to experiment
on real world stream data sets. This would be a direct alternative to the current file
upload system, but would not replace this current feature.

Additionally, the current implementation only allows for one backend process that
can be viewed from every browser. Eventually, multiple users should be able to run
separate experiments simultaneously. In affiliation with this, either an account or stream
ID system would be useful to allow multiple devices to observe the same specified
stream.

Chapter 4 Summary and Conclusion.
In summary, the proof-of-concept implementation TOID was introduced for research
and testing purposes in the field of online ISC discovery. It combines all algorithms and
techniques from the previous two chapters into one web-based tool. In the beginning,
important design decision were elaborated on, in addition to the application workflow.
Following this, all components of TOID and their functionality were described in detail
all. Lastly, future features which would drastically increase the applications utility were
laid out. Successfully running sample scenarios through TOID proved that it is a viable
instrument for online ISC discovery.

27

5 Evaluation

For the sake of direct comparison, the evaluation was performed on the same two
examples as used in [WSR20].

The first is an artificially generated set of three logs: flyerinstances.xes, billinstances.xes
and posterinstances.xes. Flyer- and posterinstances are comprised of 900 instances while
billinstances encompasses 1800 instances. Each log contains between 3 and 5 activities
which are all connected in a linear fashion and without loops of any kind. The cross
instance ID for these logs is “knr” and the intended true ISC are “receive flyer order”
→ “write bill” and “receive order and photo”→ “write bill” (Fig. 5.1a).

The second is taken from the manufacturing industry and is a real-life example.
It is composed of 9 files that detail “the production and quality assurance of valve
lifters” [WSR20]. This example also only consists of linear process models, however
there are some loops of length 1. Its cross instance ID is “machine_merge_identifier”
and there should be ISC connecting all processes to one another according to [WSR20].

Both sets of logs, along with the evaluation data of the offline algorithm can be found
here http://bit.ly/2lztLv6 under data sets.

5.1 Experiment Setup

The process models were mined using the Heuristics Miner with a dependency thresh-
old of 0.45, a positive observations threshold of 1 and a relative to best threshold of 0.4.
These are the recommended default values as described by [WDD06]. Additionally, the
all-activities-connected heuristic was used. These thresholds differ slightly from those
used by [WSR20], but because of the all-activities-connected heuristic the resulting
process models remain the same.

In order to compare the impact of budget on the result of the algorithm all tests were
executed with three different ISC budgets. All measurements were conducted with the
budget levels of 100, 1000 and 10000 which represent a major, minor and no constraint
on the algorithm respectively. This is interesting to observe in order to find out how
drastically, if at all, the results differ between budget levels. The hope is that this
insight provides a better understanding of how to allocate the appropriate amount of

28

http://bit.ly/2lztLv6

5 Evaluation

budget. During all measurements the miner budget, however, remained constant and
non-constrictive as to maintain consistency while testing.

For the purpose of evaluating the implemented algorithm, the following three metrics
were measured with regards to ISC discovery: precision ∈ [0, 1], recall ∈ [0, 1] and
computation time in seconds. Exactly these three measurements were chosen in order
to directly compare the newly proposed online algorithm to its offline counterpart
(Algorithm 3 in [WSR20]).

Precision in this case describes how many of the discovered ISC links are actually
meant to be there. It is calculated by dividing the number of true positives by the
addition of true and false positives. For example, if our graph shows 4 ISC links but
we know that only two of these links are correct then the precision in this case would
be 2

4 = 0.5.

Precision =
#TP

#TP + #FP

Recall, on the other hand, informs us about how many ISC are present compared
to how many ISC should be present. It is calculated by dividing the number of true
positives by the addition of true positives and false negatives. For instance, if the
algorithms discovered 1 ISC link but we know that there should be 4 in total then the
recall would be 1

4 = 0.25.

Recall =
#TP

#TP + #FN

Lastly, the computation time was measured by calling python’s time.time() method
before and after creating the stream and letting the algorithm run. This results in two
time measurements. Preprocessing is the time it took to parse and merge the logs as
described in Section 2.1. Runtime is the time it took for the algorithm to complete, i.e.
consume every element of the stream and perform one final filter(). An implementation
of the offline algorithm was also timed for comparison purposes. All time measurements
were not directly taken from TOID itself, but rather a separate, bare-bones test bench
with the intention of reducing network overhead and runtime variation. Moreover, this
separate test bench allowed for both algorithms to be implemented side by side in the
exact same environments, making it ideal for a direct comparison. All measurements
were carried out on an AMD Ryzen 7 3700X @ 3.6 GHz with 16GB of RAM @ 2133 MHz
and using a κ of 0 and a γ3 of 1. The parameters κ and γ3 were once again selected to
best compare with [WSR20].

29

5 Evaluation

(a) Intended ISC. (b) Discovered ISC.

Figure 5.1: Truly intended ISC compared to actually discovered ISC using κ = 0.05 and
γ3 = 0.99.

5.2 Experiment Results and Assessment

The resulting tables with precision and recall, based on various combinations of κ and
γ3, can be viewed below. The main focus is Table 5.1 where the artificial example
was examined in unison with a high enough budget as to not constrain the ISC
algorithm. This allows us to directly compare the results to that of the offline algorithm
— specifically Table A.3 in [WSR20]. While doing so we find that all columns, except
for the first, are the exact same. In other words, the online algorithm achieves the
same precision and recall and delivers the same results as its offline predecessor. The
occasional discrepancy is explained by a slight difference in implementation. In the
paper detailing the offline algorithm [WSR20], the measurements were made based

30

5 Evaluation

on an implementation where in line 4 of the filter function the equal sign of the
greater-equals was left out. Therefore, ≥ became > and certain ISC were filtered out.
This difference is especially profound in the manufacturing example. Here the online
implementation with the greater-equals outputs significantly more ISC, as illustrated by
Figure 5.2. In the artificial example, 6 ISC have a γ3 value of 1. These are subsequently
filtered out in [WSR20] which explains the precision of 1 and recall of 0 in their first
column of Table A.3. By removing this equal sign in the filter function of the online
implementation, all results consequently completely overlap with those of the offline
implementation.

(a) ISC results using > as implemented in [WSR20].

(b) ISC results using ≥ as implemented in TOID.

Figure 5.2: Discovered ISC from the manufacturing example using either > or ≥ with
κ = 0 and γ3 = 1.

31

5 Evaluation

Comparing Budgets.
Comparing the three tables 5.1, 5.2 and 5.3 we can observe the impact of changing the
ISC budget. At the lowest budget level the least amount of ISC are discovered, because
less frequently observed ones are deleted from the data structure. In this particular
example, this leads to a precision score of at least double compared to its higher budget
correspondents. At the same time however, its recall scores for a γ3 of 1, 0.99 and 0.95
are 0 because there are no ISC being outputted. Therefore, just because the precision
scores happen to be higher it does not mean that a very low budget is optimal. The
medium budget level manages to discover almost all ISC links and only differs from
the offline algorithm in the first and second column. As expected, the highest budget
level acts as if there were no budget and coincides with the offline algorithm.

Table 5.1: Precision and recall for various κ and γ3 with a budget of 10000.

Table 5.2: Precision and recall for various κ and γ3 with a budget of 1000.

Table 5.3: Precision and recall for various κ and γ3 with a budget of 100.

32

5 Evaluation

Comparing Runtime.
When it comes to the runtime of the online algorithm, it performs very similarly to
its offline counterpart (see Table 5.4). For the smaller manufacturing example, which
contains 2546 events in total, the difference in measured time for the algorithms is
almost negligible — 0.0003 seconds. Yet, this does change in the larger artificial example
of 30 646 events. Here, the online algorithm seems to be moderately slower, resulting
in a 0.0462 second difference in completion time. Nevertheless, the computation times
of the online algorithm are still within an acceptable range and with some optimisation
it is perfectly viable for practical use. The biggest slowdown in either case is parsing
of the files and preparing the simulated stream, as illustrated by the two Preprocessing
columns. Using an actual stream as the input would naturally eliminate this overhead.

Table 5.4: Comparison of algorithm duration using κ = 0 and γ3 = 1.

Additional Observations.
One last observation I would like to point out is that during the runtime of the
algorithm, the amount of discovered ISC often fluctuates drastically. They are not
linearly discovered and once discovered, they rarely remain in place for the rest of the
stream. Newly added ISC seem to disappear and reappear frequently. Therefore, the
snapshot of found ISC at time A might significantly differ to that of time B which both
might substantially differ from the final result. I hypothesize that when an ISC between
activities a1 and a2 is first found its ordActivities[(a1, a2)][“count”], countEvs[a1] and
countEvs[a2] values are all quite low. This means that even when a small change is
made (say countEvs[a1] is increased by 1), the relative impact this change has is quite
high. This changing power is then significantly reduced later on in the stream when all
counts are higher. This might explain the initially sensitive nature of newly discovered
ISC and the constant fluctuations in ISC count throughout time.
Chapter 5 Summary and Conclusion.
In conclusion, this evaluation has demonstrated that the newly designed online version
of the existing category 3 (order of activity execution) ISC discovery algorithm delivers
the same ISC results in a comparably timed fashion. However, a slight distinction in
implementation was identified which led to an initial divergence in output. Nonetheless,
when this implementation difference was accommodated for all ISC, precision and
recall results lined up perfectly.

33

6 Conclusion

Two accompanying research questions were posed in the introduction of this thesis.
These have been addressed throughout this work and are summarized up below:

RQ1: How to design an online algorithm for discovering ordering ISC?

We have seen that the online version of the ordering ISC algorithms faces additional
challenges that its offline correspondent does not, such as limited storage as well
as the inability to look into the future. Both of these challenges were overcome
and it was shown, through the design of an algorithm and ultimately through
its implementation, that such an algorithm is feasible. Moreover, its viability was
demonstrated as this online algorithm produces the same results as its counterpart
given a comparable implementation — i.e. both algorithms either use > or ≥ in line
4 the filter function of [WSR20]. Prior to this thesis the online setting was limited to
a handful of process mining algorithms; now the doors have been opened to explore
Instance Spanning Constraints in a stream based environment.

RQ2: How to visualize the results of an online algorithm for discovering ordering
ISC?
The chapter dedicated to visualization (Chapter 3) directly answers RQ2 and provides
methods to visually highlight important information about the process model and
the discovered ISC in a way that is instantaneously absorbable by an observer.
Furthermore, it affords possible points of flexibility, such as choosing between using
colors or borders, to better reflect potentially diverse use cases. Despite little research
interest to date in visualizing online process mining, this field provides real end-user
benefits.

Subsequently, online process mining, online discovery of ISC category 3 and the
aforementioned visualization techniques were all combined into a singular web based
proof-of-concept implementation as explained in Chapter 4.

34

6 Conclusion

Real Life Application and Impact.
This thesis serves as the first step towards creating online counterparts for all ISC
categories. Not only are algorithms that function in an online setting altogether useful
in practical and commercial scenarios, as in real life the input data is usually present in
the form of a stream, but specifically ISC play a crucial role in preventing possibly fatal
mistakes across a plethora of professional industries.

Furthermore, the tool will be improved to include all features as presented in Section
4.2 and finally presented to the process mining community over a platform similar to
the ICPM Demo Track [ICPM]. Hopefully by doing so it will increase the visibility and
access to this topic for other researchers. The intent is to encourage the expansion of
this fairly new field of research.

Future Work.
The next big step is developing online algorithms for the other three ISC categories:
Simultaneous execution of activities, Constrained activity execution and Non-concurrent ex-
ecution of activities. Constrained activity execution would hold the highest priority as it
seems to be the most common type found in real life [WSR20]. Another aspect to
explore here would be how to visually differentiate between the various categories so
that a user might easily tell apart the different constraint links.

In addition, an interesting phenomenon to inquire into would be recurring concept
drift in the context of ISC. When it comes to online process mining concept drift has
been examined in various papers [SR18], [Cer+20], [CG12], [Mag+13]. However, it
would be compelling to explore how concept drift presents itself in ISC. Moreover, is it
possible to detect whether this drift occurs repeatedly, for example certain constraints
that reappear every winter and then disappear in the spring.

On a similar note, the constant fluctuation, as described at the end of the evaluation
(Chapter 5), could also be explored further. So far it is uncertain whether there is a
pattern, whether these fluctuation only occur for ISC of category 3 or whether they can
be smoothed out.

Lastly, real life data streams are often far from perfect. They are subject to packet loss,
duplicate events, missing attributes, ordering anomalies etc., all of which the presented
algorithm is incapable of dealing with. And while this thesis did not delve into dealing
with imperfections, if practical and commercial products are to be developed for this
field then an algorithm that is capable of dealing with these kinds of anomalies must
be developed in the future. Certain techniques for dealing with anomalous data do
exist [AWS20], [KF21], [Tav+19], but once again only for online process mining and not
yet for online ISC discovery.

35

Bibliography

[AMZN] Amazon S3 – Two Trillion Objects, 1.1 Million Requests / Second | AWS News
Blog. https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-
objects-11-million-requests-second/. Accessed: 2022-09-05.

[AWM04] W. M. P. van der Aalst, T. Weijters, and L. Maruster. “Workflow Mining:
Discovering Process Models from Event Logs.” In: IEEE Trans. Knowl. Data
Eng. 16.9 (2004), pp. 1128–1142. doi: 10.1109/TKDE.2004.47.

[AWS20] A. Awad, M. Weidlich, and S. Sakr. “Process Mining over Unordered Event
Streams.” In: 2nd International Conference on Process Mining, ICPM 2020,
Padua, Italy, October 4-9, 2020. Ed. by B. F. van Dongen, M. Montali, and
M. T. Wynn. IEEE, 2020, pp. 81–88. doi: 10.1109/ICPM49681.2020.00022.

[BSA14] A. Burattin, A. Sperduti, and W. M. P. van der Aalst. “Control-flow discov-
ery from event streams.” In: Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2014, Beijing, China, July 6-11, 2014. IEEE, 2014, pp. 2420–
2427. doi: 10.1109/CEC.2014.6900341.

[Bur+15] A. Burattin, M. Cimitile, F. M. Maggi, and A. Sperduti. “Online Discovery
of Declarative Process Models from Event Streams.” In: IEEE Transactions
on Services Computing 8.6 (2015), pp. 833–846. doi: 10.1109/TSC.2015.
2459703.

[Cer+20] P. Ceravolo, G. Marques Tavares, S. B. Junior, and E. Damiani. “Evaluation
Goals for Online Process Mining: a Concept Drift Perspective.” In: IEEE
Transactions on Services Computing (2020), pp. 1–1. doi: 10.1109/TSC.2020.
3004532.

[CG12] J. Carmona and R. Gavaldà. “Online Techniques for Dealing with Concept
Drift in Process Mining.” In: Advances in Intelligent Data Analysis XI - 11th
International Symposium, IDA 2012, Helsinki, Finland, October 25-27, 2012.
Proceedings. Ed. by J. Hollmén, F. Klawonn, and A. Tucker. Vol. 7619. Lecture
Notes in Computer Science. Springer, 2012, pp. 90–102. doi: 10.1007/978-
3-642-34156-4_10.

[CPEE] CPEE - The Engine. https://cpee.org/. Accessed: 2022-09-05.

36

https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/
https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/ICPM49681.2020.00022
https://doi.org/10.1109/CEC.2014.6900341
https://doi.org/10.1109/TSC.2015.2459703
https://doi.org/10.1109/TSC.2015.2459703
https://doi.org/10.1109/TSC.2020.3004532
https://doi.org/10.1109/TSC.2020.3004532
https://doi.org/10.1007/978-3-642-34156-4_10
https://doi.org/10.1007/978-3-642-34156-4_10
https://cpee.org/

Bibliography

[ERF16] J. Evermann, J. Rehse, and P. Fettke. “Process Discovery from Event Stream
Data in the Cloud - A Scalable, Distributed Implementation of the Flex-
ible Heuristics Miner on the Amazon Kinesis Cloud Infrastructure.” In:
2016 IEEE International Conference on Cloud Computing Technology and Sci-
ence, CloudCom 2016, Luxembourg, December 12-15, 2016. IEEE Computer
Society, 2016, pp. 645–652. doi: 10.1109/CloudCom.2016.0111.

[Has+15] M. Hassani, S. Siccha, F. Richter, and T. Seidl. “Efficient Process Discovery
From Event Streams Using Sequential Pattern Mining.” In: IEEE Symposium
Series on Computational Intelligence, SSCI 2015, Cape Town, South Africa, De-
cember 7-10, 2015. IEEE, 2015, pp. 1366–1373. doi: 10.1109/SSCI.2015.195.

[ICPM] Demo Track – Process Mining Conference 2022. https://icpmconference.
org/2022/call-for-demo-papers/. Accessed: 2022-09-02.

[IFR18] C. Indiono, W. Fdhila, and S. Rinderle-Ma. “Evolution of Instance-Spanning
Constraints in Process Aware Information Systems.” In: On the Move to
Meaningful Internet Systems. OTM 2018 Conferences - Confederated Interna-
tional Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, Octo-
ber 22-26, 2018, Proceedings, Part I. Ed. by H. Panetto, C. Debruyne, H. A.
Proper, C. A. Ardagna, D. Roman, and R. Meersman. Vol. 11229. Lecture
Notes in Computer Science. Springer, 2018, pp. 298–317. doi: 10.1007/978-
3-030-02610-3_17.

[ISC] ISC Mining Algorithm. http://isc-mining.wst.univie.ac.at/. Accessed:
2022-04-05.

[KF21] P. Krajsic and B. Franczyk. “Variational Autoencoder for Anomaly Detec-
tion in Event Data in Online Process Mining.” In: Proceedings of the 23rd
International Conference on Enterprise Information Systems, ICEIS 2021, Online
Streaming, April 26-28, 2021, Volume 1. Ed. by J. Filipe, M. Smialek, A. Brod-
sky, and S. Hammoudi. SCITEPRESS, 2021, pp. 567–574. doi: 10.5220/
0010375905670574.

[Kun+10] S. Kunz, T. Fickinger, J. Prescher, and K. Spengler. “Managing Complex
Event Processes with Business Process Modeling Notation.” In: Business Pro-
cess Modeling Notation - Second International Workshop, BPMN 2010, Potsdam,
Germany, October 13-14, 2010. Proceedings. Ed. by J. Mendling, M. Weidlich,
and M. Weske. Vol. 67. Lecture Notes in Business Information Processing.
Springer, 2010, pp. 78–90. doi: 10.1007/978-3-642-16298-5_8.

[Mag+13] F. M. Maggi, A. Burattin, M. Cimitile, and A. Sperduti. “Online Process Dis-
covery to Detect Concept Drifts in LTL-Based Declarative Process Models.”

37

https://doi.org/10.1109/CloudCom.2016.0111
https://doi.org/10.1109/SSCI.2015.195
https://icpmconference.org/2022/call-for-demo-papers/
https://icpmconference.org/2022/call-for-demo-papers/
https://doi.org/10.1007/978-3-030-02610-3_17
https://doi.org/10.1007/978-3-030-02610-3_17
http://isc-mining.wst.univie.ac.at/
https://doi.org/10.5220/0010375905670574
https://doi.org/10.5220/0010375905670574
https://doi.org/10.1007/978-3-642-16298-5_8

Bibliography

In: On the Move to Meaningful Internet Systems: OTM 2013 Conferences - Con-
federated International Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE
2013, Graz, Austria, September 9-13, 2013. Proceedings. Ed. by R. Meersman,
H. Panetto, T. S. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. D. Leenheer,
and D. Dou. Vol. 8185. Lecture Notes in Computer Science. Springer, 2013,
pp. 94–111. doi: 10.1007/978-3-642-41030-7_7.

[MM02] G. S. Manku and R. Motwani. “Approximate Frequency Counts over Data
Streams.” In: Proceedings of 28th International Conference on Very Large Data
Bases, VLDB 2002, Hong Kong, August 20-23, 2002. Morgan Kaufmann, 2002,
pp. 346–357. doi: 10.1016/B978-155860869-6/50038-X.

[Nav+20] N. Navarin, M. Cambiaso, A. Burattin, F. M. Maggi, L. Oneto, and A.
Sperduti. “Towards Online Discovery of Data-Aware Declarative Process
Models from Event Streams.” In: 2020 International Joint Conference on Neural
Networks, IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020. IEEE, 2020,
pp. 1–8. doi: 10.1109/IJCNN48605.2020.9207500.

[ProM] start | ProM Tools. https://www.promtools.org/doku.php. Accessed:
2022-04-05.

[RR98] W. Reisig and G. Rozenberg, eds. Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course on Petri
Nets, held in Dagstuhl, September 1996. Vol. 1491. Lecture Notes in Computer
Science. Springer, 1998. isbn: 3-540-65306-6. doi: 10.1007/3-540-65306-6.

[SR18] F. Stertz and S. Rinderle-Ma. “Process Histories - Detecting and Represent-
ing Concept Drifts Based on Event Streams.” In: On the Move to Meaningful
Internet Systems. OTM 2018 Conferences - Confederated International Confer-
ences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October 22-26, 2018,
Proceedings, Part I. Ed. by H. Panetto, C. Debruyne, H. A. Proper, C. A.
Ardagna, D. Roman, and R. Meersman. Vol. 11229. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 318–335. doi: 10.1007/978-3-030-02610-
3_18.

[Tav+19] G. M. Tavares, P. Ceravolo, V. G. T. da Costa, E. Damiani, and S. B. Junior.
“Overlapping Analytic Stages in Online Process Mining.” In: 2019 IEEE
International Conference on Services Computing, SCC 2019, Milan, Italy, July
8-13, 2019. Ed. by E. Bertino, C. K. Chang, P. Chen, E. Damiani, M. Goul,
and K. Oyama. IEEE, 2019, pp. 167–175. doi: 10.1109/SCC.2019.00037.

[WDD06] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros. “Process mining
with the heuristics miner-algorithm.” In: Technische Universiteit Eindhoven,
Tech. Rep. WP 166.July 2017 (2006), pp. 1–34.

38

https://doi.org/10.1007/978-3-642-41030-7_7
https://doi.org/10.1016/B978-155860869-6/50038-X
https://doi.org/10.1109/IJCNN48605.2020.9207500
https://www.promtools.org/doku.php
https://doi.org/10.1007/3-540-65306-6
https://doi.org/10.1007/978-3-030-02610-3_18
https://doi.org/10.1007/978-3-030-02610-3_18
https://doi.org/10.1109/SCC.2019.00037

Bibliography

[Wik22] Wikipedia contributors. Component (graph theory) — Wikipedia, The Free En-
cyclopedia. [Online; accessed 3-September-2022]. 2022.

[WR17] K. Winter and S. Rinderle-Ma. “Discovering Instance-Spanning Constraints
from Process Execution Logs Based on Classification Techniques.” In: 21st
IEEE International Enterprise Distributed Object Computing Conference, EDOC
2017, Quebec City, QC, Canada, October 10-13, 2017. Ed. by S. Hallé, R. Ville-
maire, and R. Lagerström. IEEE Computer Society, 2017, pp. 79–88. doi:
10.1109/EDOC.2017.20.

[WSR20] K. Winter, F. Stertz, and S. Rinderle-Ma. “Discovering instance and process
spanning constraints from process execution logs.” In: Inf. Syst. 89 (2020),
p. 101484. doi: 10.1016/j.is.2019.101484.

[XES] IEEE 1849-2016 XES Standard. https://xes- standard.org/. Accessed:
2022-08-11.

[ZCH19] R. Zaman, A. Cuzzocrea, and M. Hassani. “An Innovative Online Pro-
cess Mining Framework for Supporting Incremental GDPR Compliance
of Business Processes.” In: 2019 IEEE International Conference on Big Data
(IEEE BigData), Los Angeles, CA, USA, December 9-12, 2019. Ed. by C. Baru, J.
Huan, L. Khan, X. Hu, R. Ak, Y. Tian, R. S. Barga, C. Zaniolo, K. Lee, and Y. F.
Ye. IEEE, 2019, pp. 2982–2991. doi: 10.1109/BigData47090.2019.9005705.

[ZDA17] S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst. “Event
Stream-Based Process Discovery using Abstract Representations.” In: CoRR
abs/1704.08101 (2017). arXiv: 1704.08101.

39

https://doi.org/10.1109/EDOC.2017.20
https://doi.org/10.1016/j.is.2019.101484
https://xes-standard.org/
https://doi.org/10.1109/BigData47090.2019.9005705
http://arxiv.org/abs/1704.08101

	Contents
	Introduction
	Motivation
	Research Questions
	Related Work
	Extent of Current Research
	Existing Tools and Algorithms

	Challenges and Contributions

	Online Ordering ISC Approach
	Pre-processing
	Necessary Data Structures
	Processing
	Challenges

	Visualization Method
	Implementation
	Overview
	Planned Features

	Evaluation
	Experiment Setup
	Experiment Results and Assessment

	Conclusion
	Bibliography

