{ "cells": [ { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## KGLiDS APIs" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Connected to Stardog: https://cloud.stardog.com/\n" ] } ], "source": [ "from api.api import KGLiDS\n", "import pandas as pd\n", "kglids = KGLiDS(endpoint='localhost', port=5821)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Information captured: \n" ] }, { "data": { "text/html": [ "
\n", " | Datasets | \n", "Pipelines | \n", "Tables | \n", "Columns | \n", "
---|---|---|---|---|
0 | \n", "101 | \n", "969 | \n", "418 | \n", "9502 | \n", "
\n", " | source | \n", "
---|---|
0 | \n", "kaggle | \n", "
pandas.DataFrame
or plots in some cases \n",
"- KGLiDS is a transparent system, you can see the queries used by the system by setting show_query = True
in case of every API you wish to use."
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"2. Retrieving dataset(s) "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n", " | Dataset | \n", "Number_of_tables | \n", "
---|---|---|
0 | \n", "COVID-19 Corona Virus India Dataset | \n", "8 | \n", "
1 | \n", "COVID-19 Dataset | \n", "6 | \n", "
2 | \n", "COVID-19 Healthy Diet Dataset | \n", "5 | \n", "
3 | \n", "COVID-19 Indonesia Dataset | \n", "1 | \n", "
4 | \n", "COVID-19 World Vaccination Progress | \n", "2 | \n", "
... | \n", "... | \n", "... | \n", "
96 | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "22 | \n", "
97 | \n", "unitednations.international-greenhouse-gas-emi... | \n", "3 | \n", "
98 | \n", "upadorprofzs.testes | \n", "8 | \n", "
99 | \n", "vitaliymalcev.russian-passenger-air-service-20... | \n", "14 | \n", "
100 | \n", "ylchang.coffee-shop-sample-data-1113 | \n", "10 | \n", "
101 rows × 2 columns
\n", "\n", " | Table | \n", "Dataset | \n", "Path_to_table | \n", "
---|---|---|---|
0 | \n", "state_level_daily.csv | \n", "COVID-19 Corona Virus India Dataset | \n", "/data/shubham/datasets/data_lake/COVID-19 Coro... | \n", "
1 | \n", "state_level_latest.csv | \n", "COVID-19 Corona Virus India Dataset | \n", "/data/shubham/datasets/data_lake/COVID-19 Coro... | \n", "
2 | \n", "patients_data.csv | \n", "COVID-19 Corona Virus India Dataset | \n", "/data/shubham/datasets/data_lake/COVID-19 Coro... | \n", "
3 | \n", "tests_day_wise.csv | \n", "COVID-19 Corona Virus India Dataset | \n", "/data/shubham/datasets/data_lake/COVID-19 Coro... | \n", "
4 | \n", "nation_level_daily.csv | \n", "COVID-19 Corona Virus India Dataset | \n", "/data/shubham/datasets/data_lake/COVID-19 Coro... | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "
413 | \n", "pastry inventory.csv | \n", "ylchang.coffee-shop-sample-data-1113 | \n", "/data/shubham/datasets/data_lake/ylchang.coffe... | \n", "
414 | \n", "201904 sales reciepts.csv | \n", "ylchang.coffee-shop-sample-data-1113 | \n", "/data/shubham/datasets/data_lake/ylchang.coffe... | \n", "
415 | \n", "sales_outlet.csv | \n", "ylchang.coffee-shop-sample-data-1113 | \n", "/data/shubham/datasets/data_lake/ylchang.coffe... | \n", "
416 | \n", "product.csv | \n", "ylchang.coffee-shop-sample-data-1113 | \n", "/data/shubham/datasets/data_lake/ylchang.coffe... | \n", "
417 | \n", "Dates.csv | \n", "ylchang.coffee-shop-sample-data-1113 | \n", "/data/shubham/datasets/data_lake/ylchang.coffe... | \n", "
418 rows × 3 columns
\n", "\n", " | Table | \n", "Dataset | \n", "Path_to_table | \n", "
---|---|---|---|
0 | \n", "UK_Devolved_Nations_COVID_Dataset.csv | \n", "UK COVID-19 Data | \n", "/data/shubham/datasets/data_lake/UK COVID-19 D... | \n", "
1 | \n", "UK_Local_Authority_UTLA_COVID_Dataset.csv | \n", "UK COVID-19 Data | \n", "/data/shubham/datasets/data_lake/UK COVID-19 D... | \n", "
2 | \n", "England_Regions_COVID_Dataset.csv | \n", "UK COVID-19 Data | \n", "/data/shubham/datasets/data_lake/UK COVID-19 D... | \n", "
3 | \n", "UK_National_Total_COVID_Dataset.csv | \n", "UK COVID-19 Data | \n", "/data/shubham/datasets/data_lake/UK COVID-19 D... | \n", "
4 | \n", "NEW_Official_Population_Data_ONS_mid-2019.csv | \n", "UK COVID-19 Data | \n", "/data/shubham/datasets/data_lake/UK COVID-19 D... | \n", "
5 | \n", "Populations_for_UK_and_Devolved_Nations.csv | \n", "UK COVID-19 Data | \n", "/data/shubham/datasets/data_lake/UK COVID-19 D... | \n", "
\n", " | Dataset | \n", "Table | \n", "Number_of_columns | \n", "Number_of_rows | \n", "Path_to_table | \n", "
---|---|---|---|---|---|
0 | \n", "FIFA 21 complete player dataset | \n", "players_21.csv | \n", "106 | \n", "18944 | \n", "/data/shubham/datasets/data_lake/FIFA 21 compl... | \n", "
1 | \n", "FIFA 21 complete player dataset | \n", "players_20.csv | \n", "106 | \n", "18483 | \n", "/data/shubham/datasets/data_lake/FIFA 21 compl... | \n", "
2 | \n", "FIFA 20 complete player dataset | \n", "players_20.csv | \n", "104 | \n", "18278 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
3 | \n", "FIFA 21 complete player dataset | \n", "players_19.csv | \n", "106 | \n", "18085 | \n", "/data/shubham/datasets/data_lake/FIFA 21 compl... | \n", "
4 | \n", "FIFA 21 complete player dataset | \n", "players_18.csv | \n", "106 | \n", "17954 | \n", "/data/shubham/datasets/data_lake/FIFA 21 compl... | \n", "
5 | \n", "FIFA22 OFFICIAL DATASET | \n", "FIFA19_official_data.csv | \n", "64 | \n", "17943 | \n", "/data/shubham/datasets/data_lake/FIFA22 OFFICI... | \n", "
6 | \n", "FIFA22 OFFICIAL DATASET | \n", "FIFA18_official_data.csv | \n", "64 | \n", "17927 | \n", "/data/shubham/datasets/data_lake/FIFA22 OFFICI... | \n", "
7 | \n", "FIFA 20 complete player dataset | \n", "players_19.csv | \n", "104 | \n", "17770 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
8 | \n", "FIFA 21 complete player dataset | \n", "players_17.csv | \n", "106 | \n", "17597 | \n", "/data/shubham/datasets/data_lake/FIFA 21 compl... | \n", "
9 | \n", "FIFA 20 complete player dataset | \n", "players_18.csv | \n", "104 | \n", "17592 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
10 | \n", "FIFA22 OFFICIAL DATASET | \n", "FIFA17_official_data.csv | \n", "63 | \n", "17560 | \n", "/data/shubham/datasets/data_lake/FIFA22 OFFICI... | \n", "
11 | \n", "FIFA22 OFFICIAL DATASET | \n", "FIFA21_official_data.csv | \n", "65 | \n", "17108 | \n", "/data/shubham/datasets/data_lake/FIFA22 OFFICI... | \n", "
12 | \n", "FIFA22 OFFICIAL DATASET | \n", "FIFA20_official_data.csv | \n", "65 | \n", "17104 | \n", "/data/shubham/datasets/data_lake/FIFA22 OFFICI... | \n", "
13 | \n", "FIFA 20 complete player dataset | \n", "players_17.csv | \n", "104 | \n", "17009 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
14 | \n", "FIFA22 OFFICIAL DATASET | \n", "FIFA22_official_data.csv | \n", "65 | \n", "16710 | \n", "/data/shubham/datasets/data_lake/FIFA22 OFFICI... | \n", "
15 | \n", "FIFA 21 complete player dataset | \n", "players_15.csv | \n", "106 | \n", "16155 | \n", "/data/shubham/datasets/data_lake/FIFA 21 compl... | \n", "
16 | \n", "FIFA 21 complete player dataset | \n", "players_16.csv | \n", "106 | \n", "15623 | \n", "/data/shubham/datasets/data_lake/FIFA 21 compl... | \n", "
17 | \n", "FIFA 20 complete player dataset | \n", "players_15.csv | \n", "104 | \n", "15465 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
18 | \n", "FIFA 20 complete player dataset | \n", "players_16.csv | \n", "104 | \n", "14881 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
19 | \n", "open-source-sports.mens-professional-basketball | \n", "basketball_draft.csv | \n", "11 | \n", "9003 | \n", "/data/shubham/datasets/data_lake/open-source-s... | \n", "
20 | \n", "open-source-sports.mens-professional-basketball | \n", "basketball_awards_players.csv | \n", "6 | \n", "1719 | \n", "/data/shubham/datasets/data_lake/open-source-s... | \n", "
21 | \n", "open-source-sports.mens-professional-basketball | \n", "basketball_player_allstar.csv | \n", "23 | \n", "1609 | \n", "/data/shubham/datasets/data_lake/open-source-s... | \n", "
\n", " | Dataset | \n", "Recommended_table | \n", "Score | \n", "Path_to_table | \n", "
---|---|---|---|---|
0 | \n", "FIFA 20 complete player dataset | \n", "players_20.csv | \n", "1.00 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
1 | \n", "FIFA 20 complete player dataset | \n", "players_19.csv | \n", "0.85 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
2 | \n", "FIFA 20 complete player dataset | \n", "players_18.csv | \n", "0.85 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
3 | \n", "FIFA 20 complete player dataset | \n", "players_17.csv | \n", "0.85 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
4 | \n", "FIFA 20 complete player dataset | \n", "players_15.csv | \n", "0.84 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
\n", " | Dataset | \n", "Recommended_table | \n", "Score | \n", "Path_to_table | \n", "
---|---|---|---|---|
0 | \n", "FIFA 20 complete player dataset | \n", "players_20.csv | \n", "1.0 | \n", "/data/shubham/datasets/data_lake/FIFA 20 compl... | \n", "
1 | \n", "FIFA22 OFFICIAL DATASET | \n", "FIFA22_official_data.csv | \n", "0.5 | \n", "/data/shubham/datasets/data_lake/FIFA22 OFFICI... | \n", "
\n", " | Pipeline | \n", "Dataset | \n", "Author | \n", "Written_on | \n", "Number_of_votes | \n", "Score | \n", "
---|---|---|---|---|---|---|
0 | \n", "How Models Work | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2022-01-05 13:51:41 | \n", "5315 | \n", "0.834509 | \n", "
1 | \n", "Your First Machine Learning Model | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2021-11-09 00:01:04 | \n", "2909 | \n", "0.634321 | \n", "
2 | \n", "Model Validation | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2021-11-09 00:00:51 | \n", "2659 | \n", "0.765677 | \n", "
3 | \n", "Underfitting and Overfitting | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2021-11-09 00:01:33 | \n", "2502 | \n", "0.644229 | \n", "
4 | \n", "Machine Learning Tutorial for Beginners | \n", "uciml.biomechanical-features-of-orthopedic-pat... | \n", "DATAI | \n", "2018-07-24 14:43:45 | \n", "2129 | \n", "0.895508 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
964 | \n", "Predicting EPL table for 2019-2020 | \n", "idoyo92.epl-stats-20192020 | \n", "anupriyo | \n", "2020-07-28 10:16:17 | \n", "0 | \n", "0.987387 | \n", "
965 | \n", "notebookc8a19c85bb | \n", "fedesoriano.hepatitis-c-dataset | \n", "Moschopoulos Apo | \n", "2021-07-15 14:32:57 | \n", "0 | \n", "0.816314 | \n", "
966 | \n", "Neural nets VS KNN | \n", "idoyo92.epl-stats-20192020 | \n", "Karthiks061992 | \n", "2020-05-14 21:32:25 | \n", "0 | \n", "0.514592 | \n", "
967 | \n", "Project-EDA EPL2020 | \n", "idoyo92.epl-stats-20192020 | \n", "Ishdeep Chadha | \n", "2020-05-24 07:48:36 | \n", "0 | \n", "0.600902 | \n", "
968 | \n", "Hurricanes | \n", "noaa.hurricane-database | \n", "Eric Song | \n", "2020-04-11 19:47:02 | \n", "0 | \n", "0.504264 | \n", "
969 rows × 6 columns
\n", "\n", " | Pipeline | \n", "Dataset | \n", "Author | \n", "Written_on | \n", "Number_of_votes | \n", "Score | \n", "
---|---|---|---|---|---|---|
0 | \n", "How Models Work | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2022-01-05 13:51:41 | \n", "5315 | \n", "0.834509 | \n", "
1 | \n", "Your First Machine Learning Model | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2021-11-09 00:01:04 | \n", "2909 | \n", "0.634321 | \n", "
2 | \n", "Model Validation | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2021-11-09 00:00:51 | \n", "2659 | \n", "0.765677 | \n", "
3 | \n", "Underfitting and Overfitting | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2021-11-09 00:01:33 | \n", "2502 | \n", "0.644229 | \n", "
4 | \n", "Random Forests | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2021-11-09 00:03:02 | \n", "1710 | \n", "0.618779 | \n", "
5 | \n", "Basic Data Exploration | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2021-11-09 00:01:19 | \n", "1551 | \n", "0.535365 | \n", "
6 | \n", "Explore Your Data | \n", "dansbecker.home-data-for-ml-course | \n", "DanB | \n", "2019-01-23 01:07:33 | \n", "1328 | \n", "0.695214 | \n", "
7 | \n", "Basic Data Exploration Daily | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2019-08-24 02:41:50 | \n", "95 | \n", "0.616984 | \n", "
8 | \n", "How Models Work Daily | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2019-08-24 02:42:02 | \n", "71 | \n", "0.947072 | \n", "
9 | \n", "Model Validation Daily | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2019-08-24 02:41:47 | \n", "61 | \n", "0.918014 | \n", "
10 | \n", "Underfitting and Overfitting Daily | \n", "iabhishekofficial.mobile-price-classification | \n", "DanB | \n", "2019-08-24 02:41:52 | \n", "37 | \n", "0.779103 | \n", "
11 | \n", "Exercise: Explore Your Data | \n", "dansbecker.home-data-for-ml-course | \n", "DanB | \n", "2019-01-23 01:07:42 | \n", "14 | \n", "0.864991 | \n", "
\n", " | Pipeline | \n", "Dataset | \n", "Author | \n", "Written_on | \n", "Number_of_votes | \n", "Score | \n", "
---|---|---|---|---|---|---|
0 | \n", "Twitch Streamers Analytics using Python | \n", "aayushmishra1512.twitchdata | \n", "Aleix Castellvi | \n", "2022-02-16 14:05:16 | \n", "2 | \n", "0.986247 | \n", "
\n", " | Pipeline | \n", "Dataset | \n", "Author | \n", "Written_on | \n", "Number_of_votes | \n", "Score | \n", "
---|---|---|---|---|---|---|
0 | \n", "Liver Disease Analysis: EDAâ¡ï¸SMOTEâ¡ï¸OP... | \n", "fedesoriano.hepatitis-c-dataset | \n", "caleb reigada | \n", "2022-02-14 12:51:35 | \n", "13 | \n", "0.581313 | \n", "
\n", " | Pipeline | \n", "Dataset | \n", "Author | \n", "Written_on | \n", "Number_of_votes | \n", "Score | \n", "
---|---|---|---|---|---|---|
0 | \n", "hepatitis c | \n", "fedesoriano.hepatitis-c-dataset | \n", "RATNADEEP GAWADE | \n", "2021-07-13 19:50:43 | \n", "1 | \n", "0.999835 | \n", "
1 | \n", "Comprehensive EDA + Predicting Subscriber Count | \n", "andrewmvd.udemy-courses | \n", "Sayar Banerjee | \n", "2020-05-23 15:23:34 | \n", "22 | \n", "0.999729 | \n", "
2 | \n", "notebooke72847ec86 | \n", "andrewmvd.udemy-courses | \n", "semih çınar | \n", "2021-07-19 22:23:00 | \n", "11 | \n", "0.999695 | \n", "
3 | \n", "Topic Modeling with LDA | \n", "kulgen.elon-musks-tweets | \n", "mohamed elbeih | \n", "2021-02-21 16:22:46 | \n", "0 | \n", "0.999219 | \n", "
4 | \n", "India Import and Export | \n", "lakshyaag.india-trade-data | \n", "Mysterious9912 | \n", "2019-10-13 13:08:48 | \n", "3 | \n", "0.998829 | \n", "
\n", " | Pipeline | \n", "Dataset | \n", "Author | \n", "Written_on | \n", "Number_of_votes | \n", "Score | \n", "
---|---|---|---|---|---|---|
0 | \n", "hepatitis c | \n", "fedesoriano.hepatitis-c-dataset | \n", "RATNADEEP GAWADE | \n", "2021-07-13 19:50:43 | \n", "1 | \n", "0.999835 | \n", "
1 | \n", "Starter: Hepatitis C Dataset c674c472-8 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Kaggle Kerneler | \n", "2020-12-21 17:02:06 | \n", "2 | \n", "0.985005 | \n", "
2 | \n", "Modelo Preditivo Doenças Hepáticas | \n", "fedesoriano.hepatitis-c-dataset | \n", "Ives Santos | \n", "2021-09-05 21:00:40 | \n", "1 | \n", "0.968082 | \n", "
3 | \n", "Hepatitis_c_pred | \n", "fedesoriano.hepatitis-c-dataset | \n", "Sanket Sharma | \n", "2021-07-23 09:02:09 | \n", "2 | \n", "0.954447 | \n", "
4 | \n", "Liver Disorders Storytelling | \n", "fedesoriano.hepatitis-c-dataset | \n", "Mohammed Omda | \n", "2022-01-19 21:26:46 | \n", "24 | \n", "0.928420 | \n", "
\n", " | Dataset | \n", "Pipeline | \n", "Classifier | \n", "Score | \n", "
---|---|---|---|---|
0 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Modelo Preditivo Doenças Hepáticas | \n", "DecisionTreeClassifier | \n", "0.968082 | \n", "
1 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Modelo Preditivo Doenças Hepáticas | \n", "RandomForestClassifier | \n", "0.968082 | \n", "
2 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Modelo Preditivo Doenças Hepáticas | \n", "LogisticRegression | \n", "0.968082 | \n", "
3 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Modelo Preditivo Doenças Hepáticas | \n", "GradientBoostingClassifier | \n", "0.968082 | \n", "
4 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis_c_pred | \n", "LogisticRegression | \n", "0.954447 | \n", "
5 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis_c_pred | \n", "SVC | \n", "0.954447 | \n", "
6 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis_c_pred | \n", "RandomForestClassifier | \n", "0.954447 | \n", "
7 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis_c_pred | \n", "DecisionTreeClassifier | \n", "0.954447 | \n", "
8 | \n", "fedesoriano.hepatitis-c-dataset | \n", "EDA and hepatitis C prediction using RFs | \n", "RandomForestClassifier | \n", "0.848565 | \n", "
9 | \n", "fedesoriano.hepatitis-c-dataset | \n", "notebookc8a19c85bb | \n", "LogisticRegression | \n", "0.816314 | \n", "
10 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis Prediction+EDA+Validation | \n", "LogisticRegression | \n", "0.788348 | \n", "
11 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis Prediction+EDA+Validation | \n", "ExtraTreesClassifier | \n", "0.788348 | \n", "
12 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis Prediction+EDA+Validation | \n", "RandomForestClassifier | \n", "0.788348 | \n", "
13 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis Prediction+EDA+Validation | \n", "AdaBoostClassifier | \n", "0.788348 | \n", "
14 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis Prediction+EDA+Validation | \n", "DecisionTreeClassifier | \n", "0.788348 | \n", "
15 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis C Predictions 𩺠| \n", "LogisticRegression | \n", "0.774037 | \n", "
16 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis C Predictions 𩺠| \n", "DecisionTreeClassifier | \n", "0.774037 | \n", "
17 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis C Predictions 𩺠| \n", "RandomForestClassifier | \n", "0.774037 | \n", "
18 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis C Predictions 𩺠| \n", "GradientBoostingClassifier | \n", "0.774037 | \n", "
19 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Easy Hepatitis C Prediction ACC=98%!!! | \n", "MLPClassifier | \n", "0.671879 | \n", "
20 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Easy Hepatitis C Prediction ACC=98%!!! | \n", "DecisionTreeClassifier | \n", "0.671879 | \n", "
21 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Easy Hepatitis C Prediction ACC=98%!!! | \n", "XGBClassifier | \n", "0.671879 | \n", "
22 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Easy Hepatitis C Prediction ACC=98%!!! | \n", "RandomForestClassifier | \n", "0.671879 | \n", "
23 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis dataset study | \n", "DecisionTreeClassifier | \n", "0.611311 | \n", "
24 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis dataset study | \n", "LogisticRegression | \n", "0.611311 | \n", "
25 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis dataset study | \n", "RandomForestClassifier | \n", "0.611311 | \n", "
26 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis dataset study | \n", "SVC | \n", "0.611311 | \n", "
27 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Liver Disease Analysis: EDAâ¡ï¸SMOTEâ¡ï¸OP... | \n", "LogisticRegression | \n", "0.581313 | \n", "
28 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Liver Disease Analysis: EDAâ¡ï¸SMOTEâ¡ï¸OP... | \n", "SVC | \n", "0.581313 | \n", "
29 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Liver Disease Analysis: EDAâ¡ï¸SMOTEâ¡ï¸OP... | \n", "VotingClassifier | \n", "0.581313 | \n", "
30 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis-C Prediction | \n", "RandomForestClassifier | \n", "0.558427 | \n", "
31 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis-C Prediction | \n", "RidgeClassifier | \n", "0.558427 | \n", "
32 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis-C Prediction | \n", "SVC | \n", "0.558427 | \n", "
33 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis-C Prediction | \n", "ExtraTreesClassifier | \n", "0.558427 | \n", "
34 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis-C Prediction | \n", "MLPClassifier | \n", "0.558427 | \n", "
35 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Hepatitis-C Prediction | \n", "GradientBoostingClassifier | \n", "0.558427 | \n", "
36 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Gradient Boosting Prediction - 97.74% Accuracy | \n", "RandomForestClassifier | \n", "0.501611 | \n", "
37 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Gradient Boosting Prediction - 97.74% Accuracy | \n", "LogisticRegression | \n", "0.501611 | \n", "
38 | \n", "fedesoriano.hepatitis-c-dataset | \n", "Gradient Boosting Prediction - 97.74% Accuracy | \n", "GradientBoostingClassifier | \n", "0.501611 | \n", "
\n", " | RandomForestClassifier_hyperparameter | \n", "Value | \n", "
---|---|---|
0 | \n", "class_weight | \n", "balanced | \n", "
1 | \n", "n_jobs | \n", "None | \n", "
2 | \n", "random_state | \n", "100 | \n", "
3 | \n", "n_estimators | \n", "100 | \n", "
\n", " | Library | \n", "Module | \n", "Pipeline | \n", "Dataset | \n", "
---|---|---|---|---|
0 | \n", "sklearn | \n", "ensemble.RandomForestClassifier | \n", "Final table predictions using XGb and VAR fore... | \n", "idoyo92.epl-stats-20192020 | \n", "
1 | \n", "sklearn | \n", "metrics.classification_report | \n", "Glass - Classification | \n", "uciml.glass | \n", "
2 | \n", "sklearn | \n", "metrics.classification_report | \n", "Predict the Winning Horse(100% on small test d... | \n", "gdaley.hkracing | \n", "
3 | \n", "sklearn | \n", "ensemble.RandomForestClassifier | \n", "Hepatitis-C Prediction | \n", "fedesoriano.hepatitis-c-dataset | \n", "
4 | \n", "sklearn | \n", "ensemble.GradientBoostingClassifier | \n", "Hepatitis-C Prediction | \n", "fedesoriano.hepatitis-c-dataset | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
102 | \n", "transformers | \n", "TFDistilBertForSequenceClassification | \n", "Cell Phones Reviews Sentiment Analysis - Body | \n", "grikomsn.amazon-cell-phones-reviews | \n", "
103 | \n", "xgboost | \n", "XGBClassifier | \n", "Tutorial: Machine Learning Interpretability | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "
104 | \n", "yellowbrick | \n", "classifier.DiscriminationThreshold | \n", "Catboost classifier for astronomical objects | \n", "muhakabartay.sloan-digital-sky-survey-dr16 | \n", "
105 | \n", "yellowbrick | \n", "classifier.ROCAUC | \n", "Catboost classifier for astronomical objects | \n", "muhakabartay.sloan-digital-sky-survey-dr16 | \n", "
106 | \n", "yellowbrick | \n", "classifier.classification_report | \n", "Catboost classifier for astronomical objects | \n", "muhakabartay.sloan-digital-sky-survey-dr16 | \n", "
107 rows × 4 columns
\n", "\n", " | Library | \n", "Module | \n", "Pipeline | \n", "Dataset | \n", "
---|---|---|---|---|
0 | \n", "lightgbm | \n", "LGBMRegressor | \n", "Electric Price Prediction - LightGBM | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
1 | \n", "sklearn | \n", "linear_model.LogisticRegression | \n", "Best of 14 Alg. to classify Mushrooms (100% acc.) | \n", "uciml.mushroom-classification | \n", "
2 | \n", "sklearn | \n", "tree.ExtraTreeRegressor | \n", "U-Courses Exploration + Reviews Prediction | \n", "andrewmvd.udemy-courses | \n", "
3 | \n", "sklearn | \n", "linear_model.LinearRegression | \n", "U-Courses Exploration + Reviews Prediction | \n", "andrewmvd.udemy-courses | \n", "
4 | \n", "sklearn | \n", "linear_model.SGDRegressor | \n", "prediction energetique 3 - modelisation simple | \n", "city-of-seattle.sea-building-energy-benchmarking | \n", "
5 | \n", "sklearn | \n", "linear_model.LinearRegression | \n", "Marcos - Aprendizado de Máquinas - Treinament... | \n", "agajorte.zoo-animals-extended-dataset | \n", "
6 | \n", "sklearn | \n", "linear_model.LogisticRegression | \n", "Marcos - Aprendizado de Máquinas - Treinament... | \n", "agajorte.zoo-animals-extended-dataset | \n", "
7 | \n", "sklearn | \n", "ensemble.GradientBoostingRegressor | \n", "Intro to Parameter Tuning in Scikit [Acc :0.9175] | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "
8 | \n", "sklearn | \n", "linear_model.LinearRegression | \n", "Intro to Parameter Tuning in Scikit [Acc :0.9175] | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "
9 | \n", "sklearn | \n", "ensemble.RandomForestRegressor | \n", "Intro to Parameter Tuning in Scikit [Acc :0.9175] | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "
10 | \n", "sklearn | \n", "ensemble.AdaBoostRegressor | \n", "Intro to Parameter Tuning in Scikit [Acc :0.9175] | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "
11 | \n", "sklearn | \n", "linear_model.LogisticRegression | \n", "Hepatitis-C Prediction | \n", "fedesoriano.hepatitis-c-dataset | \n", "
12 | \n", "sklearn | \n", "linear_model.LogisticRegression | \n", "sky-survey-dr16 classifier | \n", "muhakabartay.sloan-digital-sky-survey-dr16 | \n", "
13 | \n", "sklearn | \n", "ensemble.GradientBoostingRegressor | \n", "Electric Price Prediction - LightGBM | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
14 | \n", "sklearn | \n", "linear_model.LinearRegression | \n", "Energy Price Prediction [ML] | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
15 | \n", "sklearn | \n", "linear_model.LogisticRegression | \n", "Mobile Price Prediction ð·ï¸ð± | \n", "iabhishekofficial.mobile-price-classification | \n", "
16 | \n", "sklearn | \n", "ensemble.RandomForestRegressor | \n", "U-Courses Exploration + Reviews Prediction | \n", "andrewmvd.udemy-courses | \n", "
17 | \n", "sklearn | \n", "linear_model.SGDRegressor | \n", "U-Courses Exploration + Reviews Prediction | \n", "andrewmvd.udemy-courses | \n", "
\n", " | Library | \n", "Module | \n", "Pipeline | \n", "Dataset | \n", "
---|---|---|---|---|
0 | \n", "bokeh | \n", "plotting.figure | \n", "Exploring EPL | \n", "thefc17.epl-results-19932018 | \n", "
1 | \n", "bokeh | \n", "plotting.show | \n", "Space Missions: EDA Plotly | \n", "agirlcoding.all-space-missions-from-1957 | \n", "
2 | \n", "bokeh | \n", "plotting.show | \n", "ð Data Visualization Analysis | \n", "iabhishekofficial.mobile-price-classification | \n", "
3 | \n", "bokeh | \n", "plotting.show | \n", "What's this? Chai and DataScience? | \n", "rohanrao.chai-time-data-science | \n", "
4 | \n", "bokeh | \n", "plotting.show | \n", "Exploring EPL | \n", "thefc17.epl-results-19932018 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
90 | \n", "sklearn | \n", "metrics.plot_precision_recall_curve | \n", "Nueral Network Regression VS Sklearn Algorithms | \n", "alexteboul.heart-disease-health-indicators-dat... | \n", "
91 | \n", "sklearn | \n", "metrics.plot_confusion_matrix | \n", "Log_KNN | \n", "alexteboul.heart-disease-health-indicators-dat... | \n", "
92 | \n", "sklearn | \n", "metrics.plot_roc_curve | \n", "Energy Price Prediction [ML] | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
93 | \n", "sklearn | \n", "metrics.plot_confusion_matrix | \n", "ML models Feature Importance | \n", "becksddf.churn-in-telecoms-dataset | \n", "
94 | \n", "sklearn | \n", "metrics.plot_precision_recall_curve | \n", "Gender Classification-II | \n", "hb20007.gender-classification | \n", "
95 rows × 4 columns
\n", "\n", " | Library | \n", "Module | \n", "Pipeline | \n", "Dataset | \n", "
---|---|---|---|---|
0 | \n", "scipy | \n", "cluster.hierarchy.linkage | \n", "Machine Learning Tutorial for Beginners | \n", "uciml.biomechanical-features-of-orthopedic-pat... | \n", "
1 | \n", "scipy | \n", "cluster.hierarchy.dendrogram | \n", "Machine Learning Tutorial for Beginners | \n", "uciml.biomechanical-features-of-orthopedic-pat... | \n", "
2 | \n", "scipy | \n", "cluster.hierarchy.dendrogram | \n", "Unsupervised Learning KMeans and Hierarchical | \n", "uciml.biomechanical-features-of-orthopedic-pat... | \n", "
3 | \n", "scipy | \n", "cluster.hierarchy.linkage | \n", "EDA and Machine Learning | \n", "uciml.biomechanical-features-of-orthopedic-pat... | \n", "
4 | \n", "scipy | \n", "cluster.vq.vq | \n", "Super Hero Recommender based on Powers | \n", "claudiodavi.superhero-set | \n", "
5 | \n", "scipy | \n", "cluster.hierarchy.linkage | \n", "Clustering Methods on Stars Dataset | \n", "mariopasquato.star-cluster-simulations | \n", "
6 | \n", "yellowbrick | \n", "cluster.SilhouetteVisualizer | \n", "Catboost classifier for astronomical objects | \n", "muhakabartay.sloan-digital-sky-survey-dr16 | \n", "
7 | \n", "yellowbrick | \n", "cluster.InterclusterDistance | \n", "Catboost classifier for astronomical objects | \n", "muhakabartay.sloan-digital-sky-survey-dr16 | \n", "
\n", " | Pipeline | \n", "Dataset | \n", "Author | \n", "Score | \n", "Number_of_votes | \n", "
---|---|---|---|---|---|
0 | \n", "ML models Feature Importance | \n", "becksddf.churn-in-telecoms-dataset | \n", "Mellissa Valle | \n", "0.815066 | \n", "1 | \n", "
1 | \n", "Easy Hepatitis C Prediction ACC=98%!!! | \n", "fedesoriano.hepatitis-c-dataset | \n", "Fran Valuch | \n", "0.671879 | \n", "7 | \n", "
\n", " | Pipeline | \n", "Dataset | \n", "Author | \n", "Written_on | \n", "Score | \n", "Number_of_votes | \n", "
---|---|---|---|---|---|---|
0 | \n", "K-Nearest Neighbors (KNN) Classification (75.2... | \n", "uciml.biomechanical-features-of-orthopedic-pat... | \n", "Furkan Gulsen | \n", "2020-05-15 00:20:26 | \n", "0.973140 | \n", "24 | \n", "
1 | \n", "Self-Supervised Beer Similarity API | \n", "nickhould.craft-cans | \n", "Dionisio Chiuratto Agourakis | \n", "2021-01-07 17:08:25 | \n", "0.941796 | \n", "3 | \n", "
2 | \n", "Cell Phones Reviews Sentiment Analysis - Title | \n", "grikomsn.amazon-cell-phones-reviews | \n", "Gaurav Dutta | \n", "2021-09-03 07:50:20 | \n", "0.921559 | \n", "3 | \n", "
3 | \n", "Electricity price forecasting with DNNs (+ EDA) | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "Dimitrios Roussis | \n", "2021-03-25 16:02:26 | \n", "0.886413 | \n", "112 | \n", "
4 | \n", "VGG16-Honey Bee Health Classification | \n", "jenny18.honey-bee-annotated-images | \n", "xan | \n", "2018-12-03 13:18:17 | \n", "0.865201 | \n", "2 | \n", "
5 | \n", "Biomechanical features - 20 popular models | \n", "uciml.biomechanical-features-of-orthopedic-pat... | \n", "Vitalii Mokin | \n", "2020-10-11 19:52:55 | \n", "0.841577 | \n", "58 | \n", "
6 | \n", "Cell Phones Reviews Sentiment Analysis - Body | \n", "grikomsn.amazon-cell-phones-reviews | \n", "Gaurav Dutta | \n", "2021-09-03 12:31:00 | \n", "0.715935 | \n", "1 | \n", "
7 | \n", "Twitter Sentiment Analysis (MultinomialNB+LSTM) | \n", "arkhoshghalb.twitter-sentiment-analysis-hatred... | \n", "Dev Chauhan | \n", "2021-07-07 23:15:26 | \n", "0.677666 | \n", "10 | \n", "
8 | \n", "A Story about Unsupervised Learning ⨠| \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "ðµ | \n", "2021-11-18 21:31:03 | \n", "0.675113 | \n", "50 | \n", "
9 | \n", "SDSS Classification with Deep Neural Networks | \n", "muhakabartay.sloan-digital-sky-survey-dr16 | \n", "Kevin Trinh | \n", "2020-05-22 23:15:09 | \n", "0.661107 | \n", "3 | \n", "
10 | \n", "Univariate Time Series Forecasting With Keras | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "Nicholas Jhana | \n", "2020-03-26 18:27:49 | \n", "0.622930 | \n", "58 | \n", "
11 | \n", "Classification_of_temp_reading_using_LR_and | \n", "atulanandjha.temperature-readings-iot-devices | \n", "Bhushan Rajput | \n", "2019-12-30 19:37:51 | \n", "0.622849 | \n", "5 | \n", "
12 | \n", "Who said this line[EDA/Classification/Keras/ANN] | \n", "thec03u5.seinfeld-chronicles | \n", "Siddharth Yadav | \n", "2018-06-09 05:28:57 | \n", "0.613280 | \n", "75 | \n", "
13 | \n", "Logistic Regression & KNN Online Ads Purchases | \n", "rohanrao.chai-time-data-science | \n", "Umerkk12 | \n", "2020-07-24 22:38:07 | \n", "0.594176 | \n", "12 | \n", "
14 | \n", "Trends in 2020 with Advice from Top Kagglers | \n", "rohanrao.chai-time-data-science | \n", "Leonie | \n", "2020-12-20 21:06:57 | \n", "0.571417 | \n", "77 | \n", "
15 | \n", "Mushroom Classification using Genetic Algorithm | \n", "uciml.mushroom-classification | \n", "Alin Cijov | \n", "2021-03-07 15:51:55 | \n", "0.511241 | \n", "68 | \n", "
\n", " | Transformation | \n", "Pipeline | \n", "Table | \n", "Dataset | \n", "
---|---|---|---|---|
0 | \n", "sklearn.preprocessing.StandardScaler | \n", "Predict the winner - Data Visualization and Model | \n", "runs.csv | \n", "gdaley.hkracing | \n", "
1 | \n", "sklearn.preprocessing.StandardScaler | \n", "Predict the winner - Data Visualization and Model | \n", "races.csv | \n", "gdaley.hkracing | \n", "
2 | \n", "sklearn.preprocessing.StandardScaler | \n", "P2_Seattle - Nettoyage | \n", "Xs_no_es.csv | \n", "city-of-seattle.sea-building-energy-benchmarking | \n", "
3 | \n", "sklearn.preprocessing.StandardScaler | \n", "P2_Seattle - Nettoyage | \n", "2016-building-energy-benchmarking.csv | \n", "city-of-seattle.sea-building-energy-benchmarking | \n", "
4 | \n", "sklearn.preprocessing.StandardScaler | \n", "P2_Seattle - Nettoyage | \n", "Ys_no_es.csv | \n", "city-of-seattle.sea-building-energy-benchmarking | \n", "
5 | \n", "sklearn.preprocessing.StandardScaler | \n", "P2_Seattle - Nettoyage | \n", "2015-building-energy-benchmarking.csv | \n", "city-of-seattle.sea-building-energy-benchmarking | \n", "
6 | \n", "sklearn.preprocessing.LabelEncoder | \n", "Premier league fantasy point prediction | \n", "players_1920_fin.csv | \n", "idoyo92.epl-stats-20192020 | \n", "
7 | \n", "sklearn.preprocessing.StandardScaler | \n", "IoT Temperature Forecasting | \n", "IOT-temp.csv | \n", "atulanandjha.temperature-readings-iot-devices | \n", "
8 | \n", "sklearn.preprocessing.LabelEncoder | \n", "SDSS Classification with Random Forests (99.2%) | \n", "Skyserver_12_30_2019%204_49_58%20PM.csv | \n", "muhakabartay.sloan-digital-sky-survey-dr16 | \n", "
9 | \n", "sklearn.preprocessing.LabelBinarizer | \n", "Liver Disorders Storytelling | \n", "HepatitisCdata.csv | \n", "fedesoriano.hepatitis-c-dataset | \n", "
10 | \n", "sklearn.preprocessing.StandardScaler | \n", "Altı ÃzelliÄe Göre Hastaların Sınıfland... | \n", "column_3C_weka.csv | \n", "uciml.biomechanical-features-of-orthopedic-pat... | \n", "
11 | \n", "sklearn.preprocessing.StandardScaler | \n", "Altı ÃzelliÄe Göre Hastaların Sınıfland... | \n", "column_2C_weka.csv | \n", "uciml.biomechanical-features-of-orthopedic-pat... | \n", "
12 | \n", "sklearn.preprocessing.LabelEncoder | \n", "What kind of Bee am I? | \n", "bee_data.csv | \n", "jenny18.honey-bee-annotated-images | \n", "
13 | \n", "sklearn.preprocessing.MinMaxScaler | \n", "Electricity price forecasting with DNNs (+ EDA) | \n", "weather_features.csv | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
14 | \n", "sklearn.preprocessing.MinMaxScaler | \n", "Electricity price forecasting with DNNs (+ EDA) | \n", "energy_dataset.csv | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
15 | \n", "sklearn.preprocessing.LabelEncoder | \n", "Electricity price forecasting with DNNs (+ EDA) | \n", "weather_features.csv | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
16 | \n", "sklearn.preprocessing.LabelEncoder | \n", "Electricity price forecasting with DNNs (+ EDA) | \n", "energy_dataset.csv | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
17 | \n", "sklearn.preprocessing.StandardScaler | \n", "Demand forecasting RMSLE 49.24 | \n", "submission.csv | \n", "kannanaikkal.food-demand-forecasting | \n", "
18 | \n", "sklearn.preprocessing.StandardScaler | \n", "Demand forecasting RMSLE 49.24 | \n", "meal_info.csv | \n", "kannanaikkal.food-demand-forecasting | \n", "
19 | \n", "sklearn.preprocessing.StandardScaler | \n", "Demand forecasting RMSLE 49.24 | \n", "test.csv | \n", "kannanaikkal.food-demand-forecasting | \n", "
20 | \n", "sklearn.preprocessing.StandardScaler | \n", "Demand forecasting RMSLE 49.24 | \n", "fulfilment_center_info.csv | \n", "kannanaikkal.food-demand-forecasting | \n", "
21 | \n", "sklearn.preprocessing.StandardScaler | \n", "Demand forecasting RMSLE 49.24 | \n", "train.csv | \n", "kannanaikkal.food-demand-forecasting | \n", "
22 | \n", "sklearn.preprocessing.LabelEncoder | \n", "Intro to Parameter Tuning in Scikit [Acc :0.9175] | \n", "winequality-red.csv | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "
23 | \n", "sklearn.preprocessing.MinMaxScaler | \n", "Intro to Parameter Tuning in Scikit [Acc :0.9175] | \n", "winequality-red.csv | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "
24 | \n", "sklearn.preprocessing.StandardScaler | \n", "Intro to Parameter Tuning in Scikit [Acc :0.9175] | \n", "winequality-red.csv | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "
25 | \n", "sklearn.preprocessing.OneHotEncoder | \n", "U-Courses Exploration + Reviews Prediction | \n", "udemy_courses.csv | \n", "andrewmvd.udemy-courses | \n", "
26 | \n", "sklearn.preprocessing.MinMaxScaler | \n", "U-Courses Exploration + Reviews Prediction | \n", "udemy_courses.csv | \n", "andrewmvd.udemy-courses | \n", "
27 | \n", "sklearn.preprocessing.LabelEncoder | \n", "U-Courses Exploration + Reviews Prediction | \n", "udemy_courses.csv | \n", "andrewmvd.udemy-courses | \n", "
28 | \n", "sklearn.preprocessing.MaxAbsScaler | \n", "ML models Feature Importance | \n", "bigml_59c28831336c6604c800002a.csv | \n", "becksddf.churn-in-telecoms-dataset | \n", "
29 | \n", "sklearn.preprocessing.StandardScaler | \n", "Kırmızı Åarap Kalite Tahmini(Sınıflandı... | \n", "winequality-red.csv | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "
30 | \n", "sklearn.preprocessing.LabelEncoder | \n", "Prediction of quality of Wine | \n", "winequality-red.csv | \n", "uciml.red-wine-quality-cortez-et-al-2009 | \n", "
31 | \n", "sklearn.preprocessing.StandardScaler | \n", "DL_Learning | \n", "hotel.csv | \n", "piyushgoyal443.red-wine-dataset | \n", "
32 | \n", "sklearn.preprocessing.StandardScaler | \n", "DL_Learning | \n", "fuel.csv | \n", "piyushgoyal443.red-wine-dataset | \n", "
33 | \n", "sklearn.preprocessing.StandardScaler | \n", "SDSS Classification with Deep Neural Networks | \n", "Skyserver_12_30_2019%204_49_58%20PM.csv | \n", "muhakabartay.sloan-digital-sky-survey-dr16 | \n", "
34 | \n", "sklearn.preprocessing.OneHotEncoder | \n", "Electric Price Prediction - LightGBM | \n", "weather_features.csv | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
35 | \n", "sklearn.preprocessing.OneHotEncoder | \n", "Electric Price Prediction - LightGBM | \n", "energy_dataset.csv | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
36 | \n", "sklearn.preprocessing.LabelEncoder | \n", "Electric Price Prediction - LightGBM | \n", "energy_dataset.csv | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
37 | \n", "sklearn.preprocessing.RobustScaler | \n", "Electric Price Prediction - LightGBM | \n", "weather_features.csv | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
38 | \n", "sklearn.preprocessing.RobustScaler | \n", "Electric Price Prediction - LightGBM | \n", "energy_dataset.csv | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
39 | \n", "sklearn.preprocessing.LabelEncoder | \n", "Electric Price Prediction - LightGBM | \n", "weather_features.csv | \n", "nicholasjhana.energy-consumption-generation-pr... | \n", "
40 | \n", "sklearn.preprocessing.OneHotEncoder | \n", "Who said this line[EDA/Classification/Keras/ANN] | \n", "scripts.csv | \n", "thec03u5.seinfeld-chronicles | \n", "
41 | \n", "sklearn.preprocessing.MinMaxScaler | \n", "PNAD: Income Prediction | \n", "pnad_2015_clean.csv | \n", "upadorprofzs.testes | \n", "
42 | \n", "sklearn.preprocessing.StandardScaler | \n", "Liver Disease Analysis: EDAâ¡ï¸SMOTEâ¡ï¸OP... | \n", "HepatitisCdata.csv | \n", "fedesoriano.hepatitis-c-dataset | \n", "
43 | \n", "sklearn.preprocessing.MinMaxScaler | \n", "Heart Disease - Binary Classification | \n", "heart_disease_health_indicators_BRFSS2015.csv | \n", "alexteboul.heart-disease-health-indicators-dat... | \n", "
44 | \n", "sklearn.preprocessing.LabelEncoder | \n", "Mushroom Classification using Genetic Algorithm | \n", "mushrooms.csv | \n", "uciml.mushroom-classification | \n", "