## KGLiDS APIs
KGLiDS provides predefined operations in form of python apis that allow seamless integration with a
conventional data science pipeline.
List of all APIs available:
| S.no | API | Description |
|------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | `query()` | Executes ad-hoc queries on fly |
| 2. | `show_graph_info()` | Summarizes the information captured by KGLiDS. Shows:
1. Total number of datasets abstracted
2. Total number of tables abstracted
3. Total number of columns abstracted
4. Total number of pipelines abstracted |
| 3. | `get_datasets_info()` | Shows the number of tables and pipelines per dataset |
| 4. | `get_tables_info()` | Shows all tables alongside their physical file path and dataset |
| 5. | `search_tables_on()` | Searches tables containing specific column names. |
| 6. | `recommend_k_unionable_tables()` | Returns the top k tables that are unionable |
| 7. | `recommend_k_joinable_tables()` | Returns the top k tables that are joinable |
| 8. | `get_path_between_tables()` | Visualizes the paths between a starting table and the target one |
| 9. | `get_pipelines_info()` | Shows the following information for all pipeline:
1. Pipeline name
2. Dataset
3. Author
4. Date written on
5. Number of votes
6. Score |
| 10. | `get_most_recent_pipeline()` | Returns the most recent pipeline |
| 11. | `get_top_k_scoring_pipelines_for_dataset()` | Returns the top k pipeline with the highest score |
| 12. | `search_classifier()` | Shows all the classifiers used for a dataset |
| 13. | `get_hyperparameters()` | Returns the hyperparameter values that were used for a given classifier |
| 14. | `get_top_k_library_used()` | Visualizes the top-k libraries that were used overall or for a given dataset |
| 15. | `get_top_used_libraries()` | Retrieve the top-k libraries used in a particular task. Task here could be:
1. Classification
2. Clustering
3. Regression
4. Visualization |
| 16. | `get_pipelines_calling_libraries()` | Returns a list of pipelines matching the criteria along with other important metadata, such as author, language, etc. |
| 17. | `recommend_transformations()` | Returns the possible set of transformation for tables |