[Main] ; Path to data directory with DICOMs data_dir=/archive/bioinformatics/DLLab/STUDIES/***/data ; Path to BIDS-compliant study directory study_dir=/archive/bioinformatics/DLLab/STUDIES/***/source ; Path to output directory root derivatives_dir=/archive/bioinformatics/DLLab/KevinNguyen/data/ADNI23_sMRI ; Whether to check the study directory for full BIDS compliance. This may help ensure that ; the correct files and metadata are found for each sub-pipeline. If files aren't getting found, ; try setting this to "no"; the study directly probably isn't fully BIDS-compliant. bids_validate=no ; Name for this run. This will create a subdirectory under derivatives_dir run_name=DLLabPipeline_sMRI_20220103 ; Check for previously computed outputs and skip sub-pipeline jobs if all outputs are ; already present. use_previous=yes ; Store intermediate outputs in a temp directory that will be removed after the run completes. use_tmp=no ; Number of CPUs to allocate per job cpus_per_job=32 ; Number of GPUs to allocate per job gpus_per_job=0 [SLURM] ; SLURM node type partition=32GB ; Number of SLURM nodes nodes=8 ; Time for job time=8-00:00:00 [Dependencies] conda=/project/bioinformatics/DLLab/shared/CondaEnvironments/DLLabPipelineV2_1 FSL=/project/bioinformatics/DLLab/softwares/fsl/5.0.10 ANTS=/project/bioinformatics/DLLab/softwares/ants2.3.1_build AROMA=/project/bioinformatics/DLLab/softwares/ICA-AROMA/ICA-AROMA-0.4.3-beta ROBEX=/project/bioinformatics/DLLab/softwares/robex/ROBEXv1.2 AFNI=/cm/shared/apps/afni/v17.2.17 MATLABPATH=/project/bioinformatics/DLLab/distribution/matlab DCM2NIIX=/project/bioinformatics/DLLab/softwares/dcm2niix FreeSurfer=/archive/bioinformatics/DLLab/software/freesurfer7/freesurfer [Seeds] ; python's random module seed and numpy seed python_seed=42 ; random seed for ANTs registration ants_seed=42 ; dcm2bids sub-pipeline options [dcm2bids] run=no config_json=/archive/bioinformatics/DLLab/STUDIES/***/derivatives/DLLabPipeline***/config/dcm2bids_config.json ; sMRI sub-pipeline options [sMRI] run=yes ; skull-stripping method. Can be consnet, robex, bet, or none skullstrip_method=consnet ; MNI template template=default ; parallel threads for ANTs registration ants_threads=8 ; fMRI sub-pipeline options [fMRI] ; True: Do fMRI sub-pipeline run=no ; parallel threads for ANTs registration ants_threads=8 ; Smoothing kernel (generally 2x voxel size) fwhm=6 ; Perform T1-based spatial normalization instead of default EPI-norm. Requires ; running sMRI sub-pipeline first. do_t1norm=no ; EPI MNI template epi_template=default ; Outlier frame detection parameters (for frame scrubbing) ; frames where the norm of head motion (in mm) exceeds this value are marked as ; outliers for scrubbing outlier_motion_norm_threshold=1 ; frames where the intensity Z-score exceeds this value are marked as outliers ; for scrubbing outlier_intensity_z_threshold=3 ; Motion artifact correction do_motion_correction=yes ; Intensity normalization (min-max scaling) range norm_units=1000 ; ICA-AROMA mode: aggr or nonaggr aroma_mode=nonaggr ; Expand regressors with derivatives expand_derivatives=yes ; Detrend regressors detrend_regressors=no ; Expand regressors with squares expand_squares=yes ; Resting state fMRI derivatives do_resting_state=no ; Voxel cluster (neighborhood) type for regional homogeneity, can be 27, 19, or 7 reho_cluster_size=27 ; ALFF bandpass cutoffs in Hz alff_high_pass=0.009 alff_low_pass=0.08 ; Atlases for computing regional BOLD timeseries. For each atlas, give the path ; to the 3D label map (atlas_<name>_path) and a text file containing the region ; labels (atlas_<name>_labels) atlas_schaefer_path=/archive/bioinformatics/DLLab/shared/atlases/Schaefer2018_100Parcels_7Networks_w_SubCortAtlas_MNI152_2mm.nii.gz atlas_schaefer_labels=/archive/bioinformatics/DLLab/shared/atlases/Schaefer2018_100Parcels_7Networks_w_SubCortAtlas_MNI152_2mm_names.txt ; Detrend the regional BOLD timeseries detrend_roi_signal=no ; Task GLM do_task_glm=no ; Use the GM and WM segmentations from the T1 image to mask the functional image ; (otherwise, just use the whole brain mask) use_tissue_mask=yes ; Highpass filter cutoff in Hz. Typically, this is set to 2x the longest inter-onset interval. task_glm_highpass=0.008 ; (optional) Column in events file containing the regressor amplitude (parametric modulator) events_amplitude_column=None ; Contrast definitions for each task fMRI GLM. Parameter should be named contrast_task-<taskname>_<contrastname> contrast_task-force_grip=force_grip,1.0,force_rest,-1.0 ; pet sub-pipeline options [PET] run=no ;if the PET image is not dynamic (i.e. a 3D single image) then set dynamic_input=no. The pipeline will then omit the motion correction and averaging. dynamic_input=yes ; parallel threads for ANTs registration fwhm=0 #normalization regions e.g. [[[7,8],[46,47]],[[7],[46]],[[8],[47]]] SUVr_norm_regions=[[[7,8],[46,47]],[[7],[46]],[[8],[47]]] #Segmentation file, this is the name of the file in the freesurfer subjects path to use for stats seg_file=wmparc.mgz #Region LUT, The path to the LUT for the segmenation file. For default freesurfer segmentations FreeSurferColorLUT.txt will work. seg_CTAB=/project/bioinformatics/DLLab/softwares/freesurfer/FreeSurferColorLUT.txt #Freesurfer SUBJECTS_DIR. This is the root folder for the freesurfers output. In freesurfer its the SUBJECTS_DIR variable. freesurfer_subjects_dir= #max time (days) between the T1 and PET scans. The closest T1 to the PET will always be used reguarless of this value. max_days_between_PET_T1=99999999 #Freesurfer segstats multiplication factor. Used when calcualting the PET stats using freesurfers mri_segstats. #If your PET values are small this will help precision. It will be factored back out when outputting the SUV/SUVr summary sheet. SUV_segstats_mul_factor=10000 [FreeSurfer] run=no use_available_T2=True