C3MD / BartModel.py
BartModel.py
Raw
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @Time    : 2023/12/15 22:36
# @Author  : yebulk
import random
from typing import Optional, Tuple, Union, List

import math
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import BartForConditionalGeneration, BartConfig, BartPretrainedModel
from transformers.modeling_outputs import Seq2SeqLMOutput, BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqModelOutput
from transformers.models.bart.modeling_bart import shift_tokens_right, BartModel, BartEncoder, \
    _expand_mask, BartEncoderLayer, BartLearnedPositionalEmbedding, BartDecoderLayer, _make_causal_mask
from transformers.utils import logging

logger = logging.get_logger(__name__)


class BartEncodecEncoder(BartEncoder):
    def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None, patch_size=None):
        super().__init__(config)
        self.patch_num, self.patch_dim = patch_size
        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop
        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)


        self.image_dense = nn.Linear(self.patch_dim, config.d_model)  # 1024 1024
        self.mha_layer = torch.nn.MultiheadAttention(embed_dim=config.hidden_size, kdim=config.hidden_size,
                                                     vdim=config.hidden_size, num_heads=1,
                                                     batch_first=True)  # 1024 1024 1024
        self.gate_dense = nn.Linear(2 * config.hidden_size, config.hidden_size)  # in 2048 1024
        self.sigmoid = nn.Sigmoid()



        if embed_tokens is not None:
            self.embed_tokens.weight = embed_tokens.weight

        self.embed_positions = BartLearnedPositionalEmbedding(
            config.max_position_embeddings,
            embed_dim,
        )
        self.layers = nn.ModuleList([BartEncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(embed_dim)
        learning_weight_init = torch.arange(8, 0, step=-1).float().view(8, 1, 1, 1)
        self.learning_weight = nn.Parameter(learning_weight_init)
        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def forward(
            self,
            image_ids=None,
            input_ids: torch.LongTensor = None,
            feature_type_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            head_mask: Optional[torch.Tensor] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input = input_ids
        elif inputs_embeds is not None:
            input = inputs_embeds[:, :, -1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            if feature_type_ids is None:
                inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
            else:
                input_ids = input_ids.view(-1, 8, input_ids.shape[-1])
                ENCODEC_RANGE = 8
                if inputs_embeds is None:
                    inputs_embeds = []
                    for i in range(ENCODEC_RANGE):
                        input_scale = self.embed_tokens(input_ids[:, i, :]) * self.embed_scale
                        inputs_embeds.append(input_scale)
                    weighted_inputs_embeds = torch.mul(torch.stack(inputs_embeds, dim=0),
                                                       F.softmax(self.learning_weight, dim=0))
                    inputs_embeds = torch.sum(weighted_inputs_embeds, dim=0)
                    embed_pos = self.embed_positions(inputs_embeds)
                    embed_pos = embed_pos.to(input.device)
                    inputs_embeds = inputs_embeds + embed_pos
        hidden_states = inputs_embeds
        hidden_states = self.layernorm_embedding(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            if head_mask.size()[0] != (len(self.layers)):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
                    f" {head_mask.size()[0]}."
                )

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):  # skip the layer
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                    )

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)


        image_embedding = self.image_dense(image_ids)

        image_att, _ = self.mha_layer(hidden_states, image_embedding, image_embedding)

        merge = torch.cat([hidden_states, image_att], dim=-1)
        gate = self.sigmoid(self.gate_dense(merge))
        hidden_states = (1 - gate) * hidden_states + gate * image_att



        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


def _make_nar_mask(
        input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
    """
    Make non-autoregressive mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape

    mask = torch.zeros((tgt_len, tgt_len), dtype=dtype, device=device)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


class BartEncodecDecoder(BartPretrainedModel):
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BartDecoderLayer`]

    Args:
        config: BartConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

        if embed_tokens is not None:
            self.embed_tokens.weight = embed_tokens.weight

        self.embed_positions = BartLearnedPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
        )
        self.layers = nn.ModuleList([BartDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(config.d_model)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def _prepare_decoder_attention_mask(self, attention_mask, type_condition_tensor, input_shape, inputs_embeds,
                                        past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )
            expanded_attn_mask = _make_nar_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )
            combined_attention_mask = torch.where(type_condition_tensor, combined_attention_mask, expanded_attn_mask)

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            encoder_attention_mask: Optional[torch.LongTensor] = None,
            head_mask: Optional[torch.Tensor] = None,
            cross_attn_head_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            input = input_ids
            input_shape = input.shape
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            input = inputs_embeds[:, :, -1]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input) * self.embed_scale

        if input_ids.shape[1] == 1:
            type_condition_tensor = torch.tensor([True]). \
                unsqueeze(1).unsqueeze(2).unsqueeze(3)
        else:
            type_condition_tensor = (input_ids[:, 0] == self.config.decoder_start_token_id). \
                unsqueeze(1).unsqueeze(2).unsqueeze(3)
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, type_condition_tensor, input_shape, inputs_embeds, past_key_values_length
        )

        # expand encoder attention mask
        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])

        # embed positions
        positions = self.embed_positions(input, past_key_values_length)
        positions = positions.to(inputs_embeds.device)

        hidden_states = inputs_embeds + positions
        hidden_states = self.layernorm_embedding(hidden_states)

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
        next_decoder_cache = () if use_cache else None

        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
                if attn_mask.size()[0] != (len(self.layers)):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {head_mask.size()[0]}."
                    )

        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):
                continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, use_cache)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    head_mask[idx] if head_mask is not None else None,
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                    cross_attn_layer_head_mask=(
                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                    ),
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )
            hidden_states = layer_outputs[0] # 2 32 1024

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


class BartEncodecModel(BartModel):
    _keys_to_ignore_on_load_missing = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]

    def __init__(self, config: BartConfig, patch_size):
        super().__init__(config)

        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)

        self.encoder = BartEncodecEncoder(config, self.shared, patch_size)
        self.decoder = BartEncodecDecoder(config, self.shared)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
            self,
            input_ids: torch.LongTensor = None,
            image_ids = None,
            attention_mask: Optional[torch.Tensor] = None,
            decoder_input_ids: Optional[torch.LongTensor] = None,
            decoder_attention_mask: Optional[torch.LongTensor] = None,
            head_mask: Optional[torch.Tensor] = None,
            decoder_head_mask: Optional[torch.Tensor] = None,
            cross_attn_head_mask: Optional[torch.Tensor] = None,
            encoder_outputs: Optional[List[torch.FloatTensor]] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Seq2SeqModelOutput]:
        # different to other models, Bart automatically creates decoder_input_ids from
        # input_ids if no decoder_input_ids are provided
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            if input_ids is None:
                raise ValueError(
                    "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
                    "passed, `input_ids` cannot be `None`. Please pass either "
                    "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
                )

            decoder_input_ids = shift_tokens_right(
                input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
            )

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                image_ids=image_ids,
                attention_mask=attention_mask,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )


class BartForMultimodalGeneration(BartForConditionalGeneration):

    def __init__(self, config: BartConfig, patch_size):
        super().__init__(config)
        self.model = BartEncodecModel(config, patch_size)
        self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
        self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
        # Initialize weights and apply final processing
        self.post_init()

    def forward(
            self,
            input_ids: torch.LongTensor = None,
            image_ids=None,
            attention_mask: Optional[torch.Tensor] = None,
            decoder_input_ids: Optional[torch.LongTensor] = None,
            decoder_attention_mask: Optional[torch.LongTensor] = None,
            head_mask: Optional[torch.Tensor] = None,
            decoder_head_mask: Optional[torch.Tensor] = None,
            cross_attn_head_mask: Optional[torch.Tensor] = None,
            encoder_outputs: Optional[List[torch.FloatTensor]] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Seq2SeqLMOutput]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if labels is not None:
            if use_cache:
                logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
            use_cache = False
            if decoder_input_ids is None and decoder_inputs_embeds is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_ids,
            image_ids=image_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        lm_logits = self.lm_head(outputs[0]) # 2 32 51271
        lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(
            self, decoder_input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
    ):
        # cut decoder_input_ids if past is used
        if past is not None:
            decoder_input_ids = decoder_input_ids[:, -1:]

        output = {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
        }

        if "image_ids" in kwargs:
            output["image_ids"] = kwargs['image_ids']

        return output

    def test_step(self, tokenizer, batch, **kwargs):
        device = next(self.parameters()).device
        input_ids = batch['input_ids'].to(device)
        image_ids = batch['image_ids'].to(device)

        output = self.generate(
            input_ids=input_ids,
            image_ids=image_ids,
            **kwargs
        )

        generated_sents = tokenizer.batch_decode(output, skip_special_tokens=True)
        targets = tokenizer.batch_decode(batch['labels'], skip_special_tokens=True)

        result = {}
        result['preds'] = generated_sents
        result['targets'] = targets

        return result