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1 NODE CLASSIFICATION RESULTS

Figures 1,2, and 3 show the results for the six node classification tasks.
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Figure 1: Performance of RGCN, Graph-SAINT, ShaDow-SAINT, and SeHGNN in the NC tasks. (A) Accuracy (higher is better), (B)
Training-Time (lower is better), (C) Training-Memory (lower is better). The figures on top show the results for the paper-venue
classification task on DBLP. The figures at the bottom show the results for the Author-Affalition_Country classification task.
KG-TOSA enables all methods to reduce memory and time while improving accuracy or keeping comparable scores, even
with KG-TOSA’s preprocessing time in yellow.
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Figure 2: Performance of RGCN, Graph-SAINT, ShaDow-SAINT, and SeHGNN in the NC tasks. (A) Accuracy (higher is better), (B)
Training-Time (lower is better), (C) Training-Memory (lower is better). The figures on top show the results for the place-country
classification task on YAGO. The figures at the bottom show the results for the CreativeWork-Genere classification task. KG-TOSA
enables all methods to reduce memory and time while improving accuracy , even with KG-TOSA’s preprocessing time in yellow.
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Figure 3: Performance of RGCN, Graph-SAINT, ShaDow-SAINT, and SeHGNN in the NC tasks. (A) Accuracy (higher is better), (B)
Training-Time (lower is better), (C) Training-Memory (lower is better). The figures on top show the results for the paper-venue
classification task on MAG. The figures at the bottom show the results for the Paper-Discipline classification task on MAG.
KG-TOSA enables all methods to reduce memory, time and accuracy, even with KG-TOSA’s preprocessing time in yellow

2 TRAINING CONVERGENCE RATE RESULTS

Figure 4 shows the convergence rate of RGCN (50 epochs) on the six node classification tasks.
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Figure 4: Convergence rate analysis. RGCN while training the six NC tasks using the full graph (FG) and KG’ extracted by
KG-TOSA. KG-TOSA enables the GNN method to generalize faster with comparable accuracy.
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