
Jayden Sansom, jksanso2

Homework 1: SFML Foundations

Introduction
This assignment allowed for an introduction to SFML and set the base window

and object structure for the continuing project. There were many decisions involved
with implementation choices due to planning for future functionality. The three
categories below represent parts two through four of the assignment, the first being
excluded as it only was used to set up the base window, for which there were no design
decisions to debate. The following sections will cover the decisions made and their
results as well as how they were implemented with future functionality in mind.

Drawing Objects
Drawing objects in SFML is already a built-in feature, allowingme to add a

window clear, draw objects, and display the new frame with the drawn objects in each
loop while the window is open. While this is standard, the way that I chose to
implement the object classes was more complex.

For the static platform, I had it extend the RectangleShape class and had its full
constructor get a desired position, size, and texture path. The user can control these
aspects of the object and in my demonstration, I chose to add it as a floor within the
window.

Themoving platform shared a similar constructor to its static counterpart,
however, it also could get a destination position, a speed, and a pause length. This
could allow the user to set a desired end location, how fast it will take to get there, and
how long it will pause before reversing back to the original position. The movement all
took place in the update function, using a direction vector to get howmuch the
platform should move in consideration of time and speed towards the destination.
This method resulted in a consistent directionmovement and provided the user with
more customization in how they would like their moving platform to operate.

The most important of the objects implemented was the Player class. It extends
from the Sprite class to allow for more future capabilities when it comes to animation
and other functions that are restricted to use by a Sprite object. At this time the player
does not move as that will be added with the addition of user input.

Handling Inputs
Due to the restriction placed on the class, events were not an option while

handling input from the user. Therefore, once designing this system, I chose to utilize
the isKeyPressed function within the player update function. This allowed for
movement to take place while a user is pressing the button rather than after the fact. I
utilized this to create three input types, ‘A’ or Left to move the player left, ‘D’ or Right
to move the player right, and ‘W’, Space, or Up to make the player jump.



Jayden Sansom, jksanso2

Moving vertically was simple as it only required linear movement in the x or -x
direction. I created a totalMovement private variable to hold a vector of floats that
would be howmuch the player moves by. When the user aims to go left or right, the x
of totalMovement is added or subtracted by the time times the speed of the player,
reset every update frame back to zero.

Jumping was what caused some trouble as it was tricky to plan for gravity
weighing the player back down. First, I had to make it so that the player can only jump
once, then I set a new variable called jumpVelocity to be equal to the inverse of the
player’s jumpSpeed. Incidentally, this is because the x and y plane of the window work
inversely to a common graph, therefore to move up, youmust subtract rather than
add when jumping, something that became a common error across my code. If the
player is currently jumping, gravity will affect them bymaking the y of total
movement be the set jumpVelocity times time then adding to jumpVelocity by gravity
times the square root of time for effect in future loops. If the player has reached the
floor, they will no longer be jumping and gravity will no longer affect the player.
Finally, once all totalMovement has been calculated, the player will be moved by that
amount.

Handling Collisions
Handling a collision was tricky to think about, especially when trying to

emphasize efficiency and quality of appearance. My design initially began with
creating a global list of all objects that have collision enabled, however, as I quickly
learned, pointers to Sprites and Shapes could not be a part of the same vector list, even
if abstracted. Therefore, I made an interface that would be inherited by my object
classes, where it would act as the collider box and handle all collisions. This worked
with much tweaking and I was able to add it within my Player update function to check
for collisions, stoppingmovement if detected on that frame.

Once this was completed I noticed that if my player were to jump on the moving
platform, once it would move, the player would remain static and unable to move
while the platformmoved within its bounding box. Additionally, once I jumped and hit
the floor, it would not let memove vertically. This was solved by adding a
resolveCollision function which would find the overlap between the colliding objects
and set it to a position where it would no longer collide in the direction of the initial
collision. This allowedmy player to move with the platformwhile also allowing for
movement on the floor.

Finally, I hadmany troubles with getting a player to move along with a moving
platform. By adding references to the movement of what the player was colliding with
I was able to get a semblance of what it should look like. However, whenmoving
downward with a platform, it would no longer see collision as the platform updated to
be outside of the player’s bounds. This was solved by checking if it was previously on a
platform, still above it, and isn’t jumping. This allowedme to do an additional move
function that solved this problem and got the movement to be smooth along with the
platform.


