
Jayden Sansom, jksanso2

Homework 3: Game Object Model

Introduction
This assignment allowed for additional functionality to be added to the engine

using the SFML and ZeroMQ libraries. The following sections explore the design
decisions made in each of the assignment parts.

Game Object Model
The design of my game object model primarily stems from the Component

model where I have a GameObject class fromwhich all objects in the game are used
within. The GameObject has an id string that is similar to the name that would usually
be shown in a hierarchy of an engine, each with an individual name that corresponds
to the object. Due to the use of the Component model, I created a has-a relationship
where a GameObject will have a collisionable object attached to it. The Collider class is
a virtual class fromwhich the object types extend. This is because each of the current
objects requires testing on whether or not a player or other object has collided with it.
There exists no such objects that do not extend this behavior and therefore, no
non-collider class was created as of this time. In the future, this will change to cover
objects that only render but have no actions relating to collision within them.
Ultimately I chose to utilize the Component model such that my engine could be built
and easily extended upon in the future, following the structure laid out in many
popular game engines.

There currently exist three files that contain the functionality of the required
game objects and inherit from the Collider class, “Player.cpp”, “Platforms.cpp”, and
“HiddenObjects.cpp”. The Platforms file contains both of the classes for the static and
moving platforms, simply to condense them under their shared category. Similarly,
the HiddenObjects file contains the SpawnPoint, DeathZone, and SideScrollArea
classes but could easily be separated into different files if desired. These objects can be
added to the scene within the main file and then a GameObject can be created and
added to the list of models sent and received by the server.

There are also separate lists such as the spawnPoints, playerClients, and
deathZoneBounds which each contain pointers to objects in relation to their
namesake. The playerClients list will contain all references to the player characters
and is dynamically added with each new connection and subsequent message from the
server. The spawnPoints and deathZoneBounds lists are checked in the main function
rather than the Player class itself as these lists can remain simple rather than
convoluting how it is passed in and out of the player.

The sideScrollAreas are not created in a list and are instead checked for
collision individually as they control the SFML’s View class as a camera which is
created and updated in attachment to the window. This was implemented by creating
bounds and when the player collides with them, it will move in the direction of
movement by the player’s movement so it canmove at the same speed. Currently, only



Jayden Sansom, jksanso2

two areas are created, on the left and right sides. In the game loop, when the player
collides with it, the view and both bounds will move in the direction specified in the
if-statement. If an upper or lower scroll area is needed, it can be added by initializing
it before the update loop, checking for collision, andmoving in the direction of the
player’s movement.

Ultimately, my game object model is extendable and will allow for future
objects to be added as well as additional components to be given to the GameObject
class. A user of my engine would be able to add objects by creating a reference to a new
object of that type with the desired parameters, explained within the documentation.
If they would like to enable collision on their object, they can set that value to true
because of the Collider-inherited method. A GameObject should be created with a
given object name and added to the objects list if they desire to share the object
amongst clients rather than keep it locally. If the object should be drawn, then it
should be inserted into the list of drawObjects. Even the hiddenObjects that shouldn’t
be drawn have colors set to them for debugging purposes and can be added to that list
to test where they are. Lastly, the object should be added to any lists that are specific
to their object such as the spawnPoints or deathZoneBounds such that they can be
seen and used with other objects of that type.

I believe that my implementation of my Game Object Model is efficient, proven
by its ability to run on limited-resourced machines. Also, it is easily extendable and
user-friendly due to its use of the component model. Future work would include
improving these facts, addingmore objects, and decreasing the dependency between
client and server files that are the same but not shared.

Multithreaded and Networked Scene
For this portion of the assignment, I had already completed most of the

requirements in the previous assignment. My clients could connect to the server at
arbitrary times and send data to each other via strings passed with a
publisher-subscriber connection to send game object data and a requester-replier to
send client information, creating a pseudo-pipe. This did not have to change on this
iteration of the assignment as I only needed to handle sending new object information
and handling client disconnection.

The disconnection, shown in Figures A.1 and A.2, was handled by adding a
boolean value to my Client struct, representing whether the client was currently active
or not. When the game window closes, the value will be changed to false and sent
across the requester socket to the server. This would be read in and deleted from all
object lists, sending that information to all other clients and removing them from
their client lists as well.

Something that could be improved frommy current implementation is my
client-server reliance as not only are the object C++ files duplicated and independent
of each other, but when initializing the scene, all objects are created within the client
and server independently. If the ID strings are not matching or the parameters given
to them are not matching, it can cause errors or not perform as intended. This may be
fixed in a later iteration, but for now, running independently works and can be
paralleled to a client download that would update to change with the server.



Jayden Sansom, jksanso2

Appendix A
Multithreaded and Networked Scene

Figure B.1: Clients 1, 2, and 3 connected, receiving platform data and sending player data to and from the Server.

Figure B.2: Client 1 disconnected, no longer showing their player Sprite on other Clients.


