import logging import sys from typing import cast from rt_search_based.datasets.datasets import DatasetItem, MiniGtsrbDataset from rt_search_based.fitness_functions.fitness_functions import ( PenalizationFitnessFunction, ) from rt_search_based.models.classifiers import Classifier2Test_1 from rt_search_based.transformations.stickers import Color def run_example() -> None: """ This is an example on how to run the FitnessFunction visualization """ classifier2test = Classifier2Test_1() # classifier to be used dataset = MiniGtsrbDataset(1) # first image from dataset sticker_colors = [Color.BLACK, Color.WHITE] # colors to be used by strategy for FitnessFunction in [PenalizationFitnessFunction]: dataset_item = cast(DatasetItem, dataset[0]) FitnessFunction(classifier2test).visualize_fitness_function_for_image( dataset_item, sticker_colors ) if __name__ == "__main__": logging.basicConfig( level=logging.INFO, handlers=[ logging.FileHandler("info.log"), logging.StreamHandler(sys.stdout), ], ) run_example()