import logging import sys from rt_search_based.database.database import Database from rt_search_based.datasets.datasets import MiniGtsrbDataset from rt_search_based.fitness_functions.fitness_functions import ( FooledAreaFitnessFunction, PenalizationFitnessFunction, ) from rt_search_based.models.classifiers import Classifier2Test_1 from rt_search_based.strategies.jmetalpy_strategies import ( JMetalPyGeneticStrategy, JMetalPyLocalSearchStrategy, ) from rt_search_based.transformations.stickers import Color def run_example() -> None: """This is an example on how JMetalPy strategies can be evaluated""" classifier2test = Classifier2Test_1() # classifier to be used dataset = MiniGtsrbDataset(50) # first 50 images from dataset database = Database() sticker_colors = [Color.BLACK, Color.WHITE] # colors to be used by strategy for i in range(1, 3): for fitness_function_class in [ PenalizationFitnessFunction, FooledAreaFitnessFunction, ]: for Strategy in [ JMetalPyGeneticStrategy, JMetalPyLocalSearchStrategy, ]: fitness_function = fitness_function_class(classifier2test) jmetalpy_genetic_strategy = Strategy( fitness_function, classifier2test, sticker_colors, sticker_count=i, ) jmetalpy_genetic_strategy.evaluate(dataset, database) if __name__ == "__main__": logging.basicConfig( level=logging.INFO, handlers=[ logging.FileHandler("info.log"), logging.StreamHandler(sys.stdout), ], ) run_example()