"""Implementation of mLSTM architecture as described in the xLSTM paper.
xLSTM: Extended Long Short-Term Memory
https://arxiv.org/abs/2405.04517
This module provides an implementation of the sLSTMCell model, a variant of LSTM cells proposed in the xLSTM paper.
Attributes:
input_size (int): The size of the input features.
hidden_size (int): The size of the hidden state.
bias (bool): Indicates whether bias is included in the calculations.
Methods:
forward(x, internal_state): Performs a forward pass of the sLSTMCell model.
init_hidden(batch_size): Initializes the hidden state of the model.
References:
"xLSTM: Extended Long Short-Term Memory" - https://arxiv.org/abs/2405.04517
"""
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
class mLSTMCell(nn.Module):
"""Implements the mLSTMCell model as described in the xLSTM paper.
Attributes:
input_size (int): The size of the input features.
hidden_size (int): The size of the hidden state.
bias (bool): Indicates whether bias is included in the calculations.
Methods:
forward(x, internal_state): Performs a forward pass of the mLSTMCell model.
init_hidden(batch_size): Initializes the hidden state of the model.
References:
- xLSTM: Extended Long Short-Term Memory
https://arxiv.org/abs/2405.04517
"""
def __init__(self, input_size: int, hidden_size: int, bias: bool = True) -> None:
"""Initializes the mLSTMCell model.
Args:
input_size (int): The size of the input features.
hidden_size (int): The size of the hidden state.
bias (bool, optional): Indicates whether bias is included in the calculations. Defaults to True.
"""
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
# Initialize weights and biases
self.W_i = nn.Parameter(
nn.init.xavier_uniform_(torch.zeros(input_size, hidden_size)),
requires_grad=True,
)
self.W_f = nn.Parameter(
nn.init.xavier_uniform_(torch.zeros(input_size, hidden_size)),
requires_grad=True,
)
self.W_o = nn.Parameter(
nn.init.xavier_uniform_(torch.zeros(input_size, hidden_size)),
requires_grad=True,
)
self.W_q = nn.Parameter(
nn.init.xavier_uniform_(torch.zeros(input_size, hidden_size)),
requires_grad=True,
)
self.W_k = nn.Parameter(
nn.init.xavier_uniform_(torch.zeros(input_size, hidden_size)),
requires_grad=True,
)
self.W_v = nn.Parameter(
nn.init.xavier_uniform_(torch.zeros(input_size, hidden_size)),
requires_grad=True,
)
if self.bias:
self.B_i = nn.Parameter(torch.zeros(hidden_size), requires_grad=True)
self.B_f = nn.Parameter(torch.zeros(hidden_size), requires_grad=True)
self.B_o = nn.Parameter(torch.zeros(hidden_size), requires_grad=True)
self.B_q = nn.Parameter(torch.zeros(hidden_size), requires_grad=True)
self.B_k = nn.Parameter(torch.zeros(hidden_size), requires_grad=True)
self.B_v = nn.Parameter(torch.zeros(hidden_size), requires_grad=True)
def forward(
self,
x: torch.Tensor,
internal_state: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""Forward pass of the mLSTMCell model.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, input_size).
internal_state (tuple[torch.Tensor, torch.Tensor]): Tuple containing the covariance matrix, normalization state, and stabilization state.
Returns:
Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: Output tensor and updated internal state.
"""
# Get the internal state
C, n, m = internal_state
# Calculate the input, forget, output, query, key and value gates
i_tilda = (
torch.matmul(x, self.W_i) + self.B_i
if self.bias
else torch.matmul(x, self.W_i)
)
f_tilda = (
torch.matmul(x, self.W_f) + self.B_f
if self.bias
else torch.matmul(x, self.W_f)
)
o_tilda = (
torch.matmul(x, self.W_o) + self.B_o
if self.bias
else torch.matmul(x, self.W_o)
)
q_t = (
torch.matmul(x, self.W_q) + self.B_q
if self.bias
else torch.matmul(x, self.W_q)
)
k_t = (
torch.matmul(x, self.W_k) / torch.sqrt(torch.tensor(self.hidden_size))
+ self.B_k
if self.bias
else torch.matmul(x, self.W_k) / torch.sqrt(torch.tensor(self.hidden_size))
)
v_t = (
torch.matmul(x, self.W_v) + self.B_v
if self.bias
else torch.matmul(x, self.W_v)
)
# Exponential activation of the input gate
i_t = torch.exp(i_tilda)
f_t = torch.sigmoid(f_tilda)
o_t = torch.sigmoid(o_tilda)
# Stabilization state
m_t = torch.max(torch.log(f_t) + m, torch.log(i_t))
i_prime = torch.exp(i_tilda - m_t)
C_t = f_t.unsqueeze(-1) * C + i_prime.unsqueeze(-1) * torch.einsum(
"bi, bk -> bik", v_t, k_t
)
n_t = f_t * n + i_prime * k_t
normalize_inner = torch.diagonal(torch.matmul(n_t, q_t.T))
divisor = torch.max(
torch.abs(normalize_inner), torch.ones_like(normalize_inner)
)
h_tilda = torch.einsum("bkj,bj -> bk", C_t, q_t) / divisor.view(-1, 1)
h_t = o_t * h_tilda
return h_t, (C_t, n_t, m_t)
def init_hidden(self, batch_size: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""Initializes the hidden state of the model.
Args:
batch_size (int): Batch size of the input tensor.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Initialized covariance matrix and normalization state.
"""
return (
torch.zeros(batch_size, self.hidden_size, self.hidden_size),
torch.zeros(batch_size, self.hidden_size),
torch.zeros(batch_size, self.hidden_size),
)
class mLSTM(nn.Module):
"""Implements the mLSTM model as described in the xLSTM paper.
Attributes:
input_size (int): The size of the input features.
hidden_size (int): The size of the hidden state.
num_layers (int): The number of layers in the model.
bias (bool): Indicates whether bias is included in the calculations.
Methods:
forward(x, hidden_states): Performs a forward pass of the sLSTM model.
init_hidden(batch_size): Initializes the hidden state of the model.
References:
- xLSTM: Extended Long Short-Term Memory
https://arxiv.org/abs/2405.04517
"""
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int,
bias: bool = True,
batch_first: bool = False,
) -> None:
"""Initializes the sLSTM.
Args:
input_size (int): The size of the input features.
hidden_size (int): The size of the hidden state.
num_layers (int): The number of layers in the model.
bias (bool, optional): Indicates whether bias is included in the calculations. Default is True.
batch_first (bool, optional): Indicates whether the input tensor is batch first. Default is False.
"""
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bias = bias
self.batch_first = batch_first
self.cells = nn.ModuleList(
[
mLSTMCell(input_size if layer == 0 else hidden_size, hidden_size, bias)
for layer in range(num_layers)
]
)
def forward(
self,
x: torch.Tensor,
hidden_states: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""Performs a forward pass of the sLSTM.
Args:
x (torch.Tensor): Input tensor of shape (seq_len, batch_size, input_size) if batch_first is False,
or (batch_size, seq_len, input_size) if batch_first is True.
hidden_states (list, optional): List of hidden states for each layer of the model. If None, hidden states are initialized to zero.
Returns:
torch.Tensor: Output tensor of shape (batch_size, hidden_size)
tuple: Tuple containing the hidden states at each layer and each time step.
"""
# Permute the input tensor if batch_first is True
if self.batch_first:
x = x.permute(1, 0, 2)
if hidden_states is None:
hidden_states = self.init_hidden(x.size(1))
else:
# Check if the hidden states are of the correct length
if len(hidden_states) != self.num_layers:
raise ValueError(
f"Expected hidden states of length {self.num_layers}, but got {len(hidden_states)}"
)
if any(state[0].size(0) != x.size(1) for state in hidden_states):
raise ValueError(
f"Expected hidden states of batch size {x.size(1)}, but got {hidden_states[0][0].size(0)}"
)
H, C, N, M = [], [], [], []
for layer, cell in enumerate(self.cells):
lh, lc, ln, lm = [], [], [], []
for t in range(x.size(0)):
h_t, hidden_states[layer] = (
cell(x[t], hidden_states[layer])
if layer == 0
else cell(H[layer - 1][t], hidden_states[layer])
)
lh.append(h_t)
lc.append(hidden_states[layer][0])
ln.append(hidden_states[layer][1])
lm.append(hidden_states[layer][2])
H.append(torch.stack(lh, dim=0))
C.append(torch.stack(lc, dim=0))
N.append(torch.stack(ln, dim=0))
M.append(torch.stack(lm, dim=0))
H = torch.stack(H, dim=0)
C = torch.stack(C, dim=0)
N = torch.stack(N, dim=0)
M = torch.stack(M, dim=0)
return H[-1], (H, C, N, M)
def init_hidden(
self, batch_size: int
) -> List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""Initializes the hidden state of the model.
Args:
batch_size (int): Batch size of the input tensor.
Returns:
list: List containing the initialized hidden states for each layer.
"""
return [cell.init_hidden(batch_size) for cell in self.cells]