#############################################################################################################################
##################################### STn correlation with the other biomarkers analysed ####################################
#############################################################################################################################
##Libraries used
#install.packages(corrplot)
#install.packages(openxlsx)
##Load libraries
#library(openxlsx)
#library(corrplot)
##Select the Directory where you can find the Table S2 with the information regarding the HSJ-TNBC cohort
TNBC_Data <- as.data.frame(read.xlsx("data/HSJ-TNBC_Data.xlsx"))
#Create subset tables with the clinical informationa and the biomarkers information
ClinicalInfo <- TNBC_Data[,2:23]
rownames(ClinicalInfo) <- TNBC_Data$ID
Biomarkers <- TNBC_Data[,24:37]
rownames(Biomarkers) <- TNBC_Data$ID
#Testing for normality
Test <- colnames(Biomarkers)[1:14]
normality <- matrix(data=0, nrow=length(Test), ncol=2)
rownames(normality) <- Test
colnames(normality) <- c("StatisticW", "pValue")
for(i in 1:length(Test)){
normality_result <- shapiro.test(Biomarkers[,i])
normality [i,] <- c(normality_result$statistic, normality_result$p.value)
}
#data is not normal so apply the nonparametric Spearman corelation
#Correlation of all markers with the STn
Test <- colnames(Biomarkers)[1:13]
Cor <- matrix(data=0, nrow=length(Test), ncol=2)
rownames(Cor) <- Test
colnames(Cor) <- c("CorValue", "pValue")
for(i in 1:length(Test)){
cur_result <- cor.test(as.numeric(Biomarkers[,14]), as.numeric(Biomarkers[,Test[i]]), method="spearman", exact = FALSE)
Cor[i,] <- c(cur_result$estimate, cur_result$p.value)
}
adj.pValues <- p.adjust(Cor[,"pValue"], method="fdr")
Cor <- cbind(Cor, adj.pValues)
Cor<- as.data.frame(Cor)
Cor$CorValue <- as.numeric(as.character(Cor$CorValue))
Cor$pValue <- as.numeric(as.character(Cor$pValue))
Cor$adj.pValues <- as.numeric(as.character(Cor$adj.pValues))
CohortCor <- Cor
write.xlsx(CohortCor, file = "HSJCor.xlsx", rownames=T)
#prepare data to make a hetmap
rownames(CohortCor) <- c("CD44 CMT", "CD44 CMS", "N-Cad CMT", "N-Cad NT", "β-Cat CMT", "MMP9 CT", "MMP9 CS", "Oct4 NT", "Oct4 CT", "Sox2 NT", "Ki67 NT", "c-Myc NT", "Sall4 NT")
#vertical plot
M <- as.matrix(CohortCor$CorValue)
colnames(M) <- "STn CMT"
rownames(M) <- rownames(CohortCor)
p.mat <- as.matrix(CohortCor$adj.pValues)
colnames(p.mat) <- "STn CMT"
rownames(p.mat) <- rownames(CohortCor)
M <- t(M)
p.mat <- t(p.mat)
png("Heatmap STn.png", res=600, width=10100, height=3500)
corrplot(M,
method="color",
type="full",
cl.pos = "n",
tl.srt=65,
order="original",
p.mat = p.mat,
insig = "label_sig",
sig.level = c(0.001, 0.01, 0.05),
pch.cex = 2,
diag=TRUE,
tl.col="black",
tl.cex =2,
col=colorRampPalette(c("#2166AC","white","#D6604D"))(10),
addgrid.col="black",
mar = c(0, 2.8, 0, 3)
)
colorlegend(
colorRampPalette(c("#2166AC","white","#D6604D"))(10),
c(seq(-1,1,0.20)),
xlim=c(0.5,13.5),
ylim=c(-0.2,0.4),
align="l",
vertical=FALSE,
addlabels=TRUE,
cex=2
)
text(2, -0.5, "Spearman Correlation", col = "black", cex = 2)
dev.off()
############################################################## END ##########################################################