#############################################################################################################
######################### Correlations between ST6GALNAC1 and the TGF-B pathway genes #######################
#############################################################################################################
##Libraries used
#if (!require("BiocManager", quietly = TRUE))
#install.packages("BiocManager")
#BiocManager::install("EnsDb.Hsapiens.v86")
#install.packages(corrplot)
#install.packages("openxlsx")
#Load libraries
#library("EnsDb.Hsapiens.v86")
#library(corrplot)
#library(openxlsx)
##Select the Directory where you can find the RData with the information regarding the TCGA-TNBC cohort obtained from the "Select the TNBC.R" code
##Load Data
load("data/TNBC_data.RData")
#Normality of data
options(scipen = 999, digits = 3)
geneIDs <- c("SMAD2", "SMAD3", "SMAD4", "SMAD7", "TGFB1", "TGFB2", "TGFB3", "TGFBR1", "TGFBR2", "TGFBR3", "SMURF1", "SMURF2", "ZFYVE9", "ZFYVE16")
myGenes <- geneIDs
normality <- matrix(data=0, nrow=length(myGenes), ncol=2)
rownames(normality) <- myGenes
colnames(normality) <- c("StatisticW", "pValue")
for(i in 1:length(myGenes)){
normality_result <- shapiro.test(logTPMs[myGenes[i],])
normality [i,] <- c(normality_result$statistic, normality_result$p.value)
}
#not all are normal so I'll use the non-parametric spearman correlation test
#Correlation between ST6GALNAC1 and the biomarkers genes:
options(scipen = 999, digits = 3)
myGenes <- geneIDs
Cor <- matrix(data=0, nrow=length(myGenes), ncol=2)
rownames(Cor) <- myGenes
colnames(Cor) <- c("CorValue", "pValue")
for(i in 1:length(myGenes)){
cur_result <- cor.test(logTPMs["ST6GALNAC1",], logTPMs[myGenes[i],], method="spearman", exact=F)
Cor[i,] <- c(cur_result$estimate, cur_result$p.value)
}
adj.pValues <- p.adjust(Cor[,"pValue"], method="fdr")
Cor <- cbind(Cor, adj.pValues)
geneNames <- genes(EnsDb.Hsapiens.v86, return.type="data.frame");
Cor<- as.data.frame(Cor)
Cor$CorValue <- as.numeric(as.character(Cor$CorValue))
Cor$pValue <- as.numeric(as.character(Cor$pValue))
Cor$adj.pValues <- as.numeric(as.character(Cor$adj.pValues))
index_SignCorrelations <- which(Cor[,"adj.pValues"] < 0.05)
length(index_SignCorrelations)
signCorrelations_AllGenes <- Cor[index_SignCorrelations,]
Cor <- Cor[,-c(2)]
TCGACor <- Cor
write.xlsx(TCGACor, file = "TCGACor.xlsx", rownames = T)
#Prepare data to obtain the heatmap
M <- as.matrix(TCGACor$CorValue)
colnames(M) <- "ST6GALNAC1"
rownames(M) <- rownames(TCGACor)
p.mat <- as.matrix(TCGACor$adj.pValues)
colnames(p.mat) <- "ST6GALNAC1"
rownames(p.mat) <- rownames(TCGACor)
#horizontal heatmap
M <- t(M)
p.mat <- t(p.mat)
png("Heatmap ST6GALNAC1_TGFB.png",res=600, width=10500, height=3500)
corrplot(M,
method="color",
type="full",
cl.pos = "n",
tl.srt=65,
order="original",
p.mat = p.mat,
insig = "label_sig",
sig.level = c(0.001, 0.01, 0.05),
pch.cex = 2,
diag=TRUE,
tl.col="black",
tl.cex =2,
col=colorRampPalette(c("#2166AC","white","#D6604D"))(10),
addgrid.col="black"
)
colorlegend(
colorRampPalette(c("#2166AC","white","#D6604D"))(10),
c(seq(-1,1,0.2)),
xlim=c(0.5,14.5),
ylim=c(-0.2,0.4),
align="l",
vertical=FALSE,
addlabels=TRUE,
cex=2
)
text(2, -0.5, "Spearman Correlation", col = "black", cex = 2)
dev.off()
############################################################## END ##########################################