
CSC110 Fall 2022 Assignment 4: Number Theory, Cryptography, and

Algorithm Running Time Analysis

Yehyun Lee

November 23, 2022

Part 1: Proofs

1. Statement to prove: ∀a, b, n ∈ Z,
(
n ̸= 0 ∧ a ≡ b (mod n)

)
⇒

(
∀m ∈ Z, a ≡ b+mn (mod n)

)
Proof. (I will first show how I expanded the statement and then prove the statement.)

Let a, b, n ∈ Z. Assume
(
n ̸= 0 ∧ a ≡ b (mod n)

)
is true.

By the definition of modular equivalence in course note 7.4,
we say that “a is equivalent to b modulo n” or a ≡ b (mod n), when n | a - b.
So we know that n | a - b is true.
And by using the definition of divisibility, we know that ∃k1 ∈ Z, a - b = k1n is true.

We want to show that ∀m ∈ Z, a ≡ b+mn (mod n).

By the definition of modular equivalence, we can express this as n | a - (b + mn).
And by using the definition of divisibility, we know this is ∃k2 ∈ Z, a - b - mn = k2n.
So ∀m ∈ Z, ∃k2 ∈ Z, a - b - mn = k2n is what we need to prove.

When we fully expand the statement:
∀a, b, n ∈ Z,

(
n ̸= 0 ∧ ∃k1 ∈ Z, a− b = k1n

)
⇒

(
∀m ∈ Z, ∃k2 ∈ Z, a - b - mn = k2n)

Now, let’s finish proof:
Let a, b, n ∈ Z
By the assumption, we know

(
n ̸= 0 ∧ ∃k1 ∈ Z, a− b = k1n

)
is true.

We want to prove ∀m ∈ Z, ∃k2 ∈ Z, a - b - mn = k2n.

Let m ∈ Z
Take k2 = k1 −m.

Take out k2 and substitute k1 −m into a - b - mn = k2n.
a - b - mn = (k1 −m)n, thus, a - b - mn = k1n−mn.

Since we know that ∃k1 ∈ Z, a - b = k1n,
take out a - b and substitute k1n into a - b - mn = k1n−mn.
(k1n)−mn = k1n−mn.

Since we get both sides equal, ∀m ∈ Z, ∃k2 ∈ Z, a - b - mn = k2n holds true. Thus, the state-
ment: ∀a, b, n ∈ Z,

(
n ̸= 0 ∧ a ≡ b (mod n)

)
⇒

(
∀m ∈ Z, a ≡ b+mn (mod n)

)
is true.

1

2. Statement to prove: ∀f, g : N → R≥0,
(
g ∈ O(f) ∧

(
∀m ∈ N, f(m) ≥ 1)

)
⇒ g ∈ O(⌊f⌋)

Proof. First, let’s expand the statement using the definition of Big-O (From course note 9.3):

∀f, g : N → R≥0,
(
(∃c1, n1 ∈ R+,∀n ∈ N, n ≥ n1 ⇒ g(n) ≤ c1 · f(n)) ∧

(
∀m ∈ N, f(m) ≥ 1)

)
⇒

(∃c2, n2 ∈ R+,∀n ∈ N, n ≥ n2 ⇒ g(n) ≤ c2 · ⌊f(n)⌋).

Let f, g: N → R≥0.
Assume (∃c1, n1 ∈ R+,∀n ∈ N, n ≥ n1 ⇒ g(n) ≤ c1 · f(n)) ∧

(
∀m ∈ N, f(m) ≥ 1) is true.

We want to prove ∃c2, n2 ∈ R+, ∀n ∈ N, n ≥ n2 ⇒ g(n) ≤ c2 · ⌊f(n)⌋.
Take c2 = 2 · c1
Take n2 = n1

Let n ∈ N
Since we assumed n ≥ n1, this implies n ≥ n2, so assume n ≥ n2.
We want to show that g(n) ≤ c2 · ⌊f(n)⌋.

Since we know that (according to instruction) for all m ∈ N, ⌊f(m)⌋ ≥ 1 and for all x ∈ R, ⌊f(n)⌋ ≤
f(n) < ⌊f(n)⌋+ 1, we also know that ⌊f(n)⌋ ≤ f(n) < ⌊f(n)⌋+ 1 ≤ 2 · ⌊f(n)⌋.

And since c1 · ⌊f(n)⌋ ≤ c1 · f(n) < c1 · ⌊f(n)⌋+ c1 ≤ c1 · 2 · ⌊f(n)⌋, if we take c2 = 2 · c1, it makes g(n)
≤ c1 · f(n) < c2 · ⌊f(n)⌋ possible because we know c2 · ⌊f(n)⌋ is greater than c1 · f(n), and since g(n)
≤ c1 ·f(n), we know this makes g(n) < c2 ·⌊f(n)⌋, and also we know this makes g(n) ≤ c2 ·⌊f(n)⌋ true.

Therefore, ∃c2, n2 ∈ R+, ∀n ∈ N, n ≥ n2 ⇒ g(n) ≤ c2 · ⌊f(n)⌋ is true.

Thus, the statement is true.

2

Part 2: Running-Time Analysis

1. Function to analyse:

def f1(n: int) -> int:

"""Precondition: n >= 0"""

total = 0

for i in range(0, n): # Loop 1

total += i ** 2

for j in range(0, total): # Loop 2

print(j)

return total

RTf1(n) = 1 + n+ 2n3−3n2+n
6 + 1 = n+ 2n3−3n2+n

6 + 2, which is Θ(n3).

“total = 0” takes 1 step, since it’s constant time. Loop 1 takes n times because it takes n iterations
and each iteration takes 1 step, thus n * 1 = n. We first want to find what total is to determine
the Loop 2. Equation, 2n3−3n2+n

6 , is derived from using given equation “sum of consecutive squares”

from instruction:
∑n

i=0 i = n(n+1)(2n+1)
6 , from here I substitute n - 1 (since this is Python, index

starts at 0 and does not include n for “range(0, n)”). Thus:∑n−1
i=0 i = (n−1)(n)(2(n−1)+1)

6 = 2n3−3n2+n
6 . We now know how many times Loop 2 iterates! print(j)

is 1 constant time, so multiplying that to equation, we get 2n3−3n2+n
6 as a step. Next, since “return

total” takes 1 step (constant time), that’s 1. Theta in this case is n3 since it dominates the rest.

Thus, RTf1(n) = n+ 2n3−3n2+n
6 + 2, which is Θ(n3).

3

2. Function to analyse:

def f2(n: int) -> int:

"""Precondition: n >= 0"""

sum_so_far = 0

for i in range(0, n): # Loop 1

sum_so_far += i

if sum_so_far >= n:

return sum_so_far

return 0

RTf2(n) = 1 + ⌈1+
√
1+8n
2 ⌉+ 1 = 2 + ⌈1+

√
1+8n
2 ⌉, which is Θ(

√
n).

“sum so far = 0” takes 1 step (constant time), thus 1.
Next, let’s determine Loop 1. This is very similar to what we did in lecture. Except, instead of while
loop, this is if statement. Thus, when ik ≥ n, it will stop function by return statement. ik in this case
is sum so far. How can we find sum so far? Well since for loop iterates n times and sum so far += 1
every time it iterates, we can use “sum of consecutive numbers”, i.e.,

∑n
i=0 i =

n(n+1)
2 . Let’s use this

to find equation of ik. Substituting k-1, we get ik = k2−k
2 . Since ik ≥ n, so, k2−k

2 ≥ n. Now, we can
move n to left side and apply quadratic formula to solve for k! (Since we’re looking for smallest value

of k, I had to add ceil into equation.) Thus, I get ⌈1+
√
1+8n
2 ⌉. Now, we know how many times Loop 1

iterates! sum so far += i is 1 constant time, so multiplying that to how many times Loop 1 iterates,

we get ⌈1+
√
1+8n
2 ⌉ as step! Lastly, I have additional 1, because we will either return 0 or sum so far

(inside Loop 1, if condition is satisfied). We cannot return both(As we return, function will stop).

Thus, that takes another 1 step! Now, we have RTf2(n) = 1+⌈1+
√
1+8n
2 ⌉+1 = 2+⌈1+

√
1+8n
2 ⌉, which

is Θ(
√
n).

4

Part 3: Extending RSA

Complete this part in the provided a4 part3.py starter file. Do not include your solutions in this file.

Part 4: Digital Signatures

Part (a): Introduction

Complete this part in the provided a4 part4.py starter file. Do not include your solutions in this file.

Part (b): Generalizing the message digests

Complete most of this part in the provided a4 part4.py starter file. Do not include your solutions in this
file, except for the following two questions:

3b. def find_collision_len_times_sum(message: str) -> str:

"""Return a new message, not equal to the given message,

that can be verified using the same signature

when using the RSA digital signature scheme with the len_times_sum message digest.

Preconditions:

- len(message) >= 2

- any({ord(c) < 1114111 for c in message})

"""

change_to_ord = [ord(c) for c in message]

if sum(change_to_ord) == 0:

return message + chr(0)

smallest, biggest = min(change_to_ord), max(change_to_ord)

smallest_position, biggest_position = 0, 0 # To avoid PythonTA

for find_smallest_position in range(0, len(change_to_ord)):

if smallest == change_to_ord[find_smallest_position]:

smallest_position = find_smallest_position

change_to_ord[smallest_position] += 1

for find_biggest_position in range(0, len(change_to_ord)):

if biggest == change_to_ord[find_biggest_position]:

biggest_position = find_biggest_position

change_to_ord[biggest_position] -= 1

final = ‘’.join([chr(o) for o in change_to_ord])

if final == message:

list.reverse(change_to_ord)

return ‘’.join([chr(o) for o in change_to_ord])

return final

First we know that—as Professor Liu stated in instruction—1114111 is the maximum possible ord
value for Python character, and also—according to lecture note—we know that smallest ord value
for Python is 0. Any negative ord value or ord value greater than 1114111 does not exist in Python.

Since the precondition is

any({ord(c) < 1114111 for c in message})

5

meaning every each character’s ord value is LESS than 1114111, this makes sure that it is always
possible to add 1 to the ord value of at least one character in the message to obtain a valid character.

Now, the goal is to come up with different message that result same value when we compute
len times sum function. Since changing the length of the message can make big changes to the
value, we should focus on maintaining sum of all ord values. We should have same length, while
keeping sum of all ord values same. We can replace position of character(possibly can cause error),
however, better and simplified way is to add 1 and subtract 1 to each biggest and smallest ord values.
This will result different message while keeping the same length, and same sum of all ord values, in
which, will result same value of len times sum function when computed.

Now, using this code,

change_to_ord = [ord(c) for c in message]

I converted all the characters in message to ord values. By using max() and min(), I could find max
value and min value. From here, we can add 1 to min value and subtract 1 to the max value.

for find_smallest_position in range(0, len(change_to_ord)):

if smallest == change_to_ord[find_smallest_position]:

smallest_position = find_smallest_position

change_to_ord[smallest_position] += 1

for find_biggest_position in range(0, len(change_to_ord)):

if biggest == change_to_ord[find_biggest_position]:

biggest_position = find_biggest_position

change_to_ord[biggest_position] -= 1

This code does what I’ve said. First, it look for position of where min is located in change to ord
and add 1. Then, it look for position of where max is located in change to ord and subtract 1. For
example, if change to ord is [0, 1], we make it such that [1, 0]. We add 1 to 0, and subtract 1 to 1.

Since we add 1 to smallest ord value first, then find position of max value and subtract 1, even if we
have same character, function works fine. For example, if message is ‘\x01\x01’, where change to ord
is [1, 1], we will first add 1, to make [1, 2], then subtract 1 to get [0, 2], which is ‘\x00\x02’. Now all
the length is same, as well as, sum of all ord values are same while having different message!

The problem with this is when we have both min and max to be 0, this is when all the integers
in change to ord is all 0. This is serious problem since we cannot subtract 1 to 0 because as I stated
early in above, smallest ord value is 0, we cannot have negative. Thus, I implemented code for this
special case(at the very top above for loop):

if sum(change_to_ord) == 0:

return message + chr(0)

Since this is all ord value of 0, when len times sum is computed it will still return 0 (Since for any
length multiplied by sum of zero is just 0). While we won’t have same length, it will still return same
len times sum!

Other problem we have is if message is ‘bbba’, since it has ord values of [98, 98, 98, 97]. Once
we add 1 to min, it will be [98, 98, 98, 98], then since max is 98, due to characteristic of my code,
it will subtract 1 to 98 at last index, making [98, 98, 98, 97], which is same message. Thus, I
implemented additional code:

6

final = ‘’.join([chr(o) for o in change_to_ord])

if final == message:

list.reverse(change_to_ord)

return ‘’.join([chr(o) for o in change_to_ord])

return final

What this does is, if our final message is same as message, then we will just reverse order of the
message and return it. If final message is not same as message, we will just return our final message
without reversing the message! For example, for ‘bbba’, it will now return ‘abbb’, since it reversed the
order of change to ord. Now, this function handles all possible cases(when precondition is satisfied)!

7

4b. def find_collision_ascii_to_int(public_key: tuple[int, int], message: str) -> str:

"""Return a new message, distinct from the given message, that can be

verified using the same signature, when using the RSA digital signature

scheme with the ascii_to_int message digest and the given public_key.

The returned message must contain only ASCII characters, and cannot

contain any leading chr(0) characters.

Preconditions:

- signature was generated from message using the algorithm in rsa_sign and

digest ascii_to_int, with a valid RSA private key

- len(message) >= 2

- ord(message[0]) > 0

"""

n = public_key[0]

a = ascii_to_int(message)

ascii_we_need = a + n

base_we_get = a4_part3.int_to_base128(ascii_we_need)

return ‘’.join([chr(ord_value) for ord_value in base_we_get])

Question is how can we find message that is different to given message, but generate the same digest
modulo n. This digest modulo n appear in rsa sign (also in rsa verify).

compute_digest(message) % n

I will assume this to be a % n where ‘a’ represent compute digest, or in this case, “ascii to ” function.
I can also express this as (a - b) % n, where ‘b’ is set to 0.

Now, in part 1 question 1, we’ve proven that ∀a, b, n ∈ Z,
(
n ̸= 0 ∧ a ≡ b (mod n)

)
⇒

(
∀m ∈

Z, a ≡ b+mn (mod n)
)
.

(Important condition for using this proved definiton is that we cannot have n as 0. However, for
my code, since n is p times q, and p, q are prime numbers, they’re not 0. Thus, we can use this
definition.) Thus, if I express this as Python expression: ∀a, b, n ∈ Z,

(
n ̸= 0 ∧ (a− b)%n ⇒

(
∀m ∈

Z, (a − (b + mn))%n
)
. From this expression, since we know (a - b) % n is true in our case if b is

0, we can also conclude that we can use (a - (b + mn)) % n, where b is 0. From here, if I make m
= -1, the equation becomes (a + n)%n since b is 0. (This m can by any number like 1 and change
the equation! However, we cannot have m as 0, if so, we will get same message. I took m to be -1,
because it simplifies the equation!)

Since when we’re digesting, we’re using ascii to int, compute digest(message) % n is basically
ascii to int(message) % n, we know that this ascii to int function takes message and uses base128 to int
to return one integer. And as we know that because of (a + n)%n, we’ve proven, this returned integer
can be a + n. Then, how can we find message that when we compute ascii to int(message), we get
integer that is a + n?

Well, in part 3, we’ve already reverse engineered base128 to int to make function ‘int to base128’.
We should use this function to get list of ord values, and then convert it to message.

Let’s use it!

ascii_we_need = a + n

8

base_we_get = a4_part3.int_to_base128(ascii_we_need)

Note how when we compute int to base128, we get list of ord values, so we need additional work to
convert this to new message.

return ‘’.join([chr(ord_value) for ord_value in base_we_get])

Thus, in this last line, I implemented comprehension that convert each ord values to character by
using chr(). When we compute this comprehension, we get list that contains each string. We will
combine all of them into one single string by using str.join(),

and finally... return it!

9

