
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Science

EECS151/251A - LB, Fall 2020

Project Specification: RISCV151

Version 1.0

Contents

1 Introduction 4
1.1 Tentative Deadlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 General Project Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Checkpoints 1 & 2 - 3-stage Pipelined RISC-V CPU 5
2.1 Setting up your Code Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Integrate Designs from Labs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Project Skeleton Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 RISC-V 151 ISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 CSR Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Hazards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 RAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8.2 Endianness + Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8.3 Reading from RAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8.4 Writing to RAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.9 Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9.1 Summary of Memory Access Patterns . . . . . . . . . . . . . . . . . . . . . . 11
2.9.2 Unaligned Memory Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.9.3 Address Space Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.9.4 Memory Mapped I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.10 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10.1 Integration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.11 Software Toolchain - Writing RISC-V Programs . . . . . . . . . . . . . . . . . . . . . 14
2.12 Assembly Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.13 RISC-V ISA Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.14 BIOS and Programming your CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.15 Target Clock Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.16 Matrix Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.17 How to Survive This Checkpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.17.1 How To Get Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.18 Checkoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



2.18.1 Checkpoint 1: Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.18.2 Non-Checkpoint Weeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.18.3 Checkpoint 2: Base RISCV151 System . . . . . . . . . . . . . . . . . . . . . . 20
2.18.4 Checkpoints 1 & 2 Deliverables Summary . . . . . . . . . . . . . . . . . . . . 21

3 Checkpoint 3 - I/O Integration, PWM Controller, Subtractive Synthesizer 22
3.1 I/O Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Hookup User I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 User I/O Test Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 PWM DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 RISC-V Core Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Piano Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Subtractive Synth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Numerically Controlled Oscillator (NCO) - Required . . . . . . . . . . . . . . 28
3.3.2 Sample Buffer and CDC - Required . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Synth Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 FPGA Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.5 State Variable Filter (SVF) - Optional . . . . . . . . . . . . . . . . . . . . . . 32
3.3.6 Amplitude Envelope (ADSR) - Optional . . . . . . . . . . . . . . . . . . . . . 33
3.3.7 Polyphonic Synthesis - 251A Only . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Checkpoint 3 Deliverables Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Final Checkpoint - Optimization 35
4.1 Grading on Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Clock Generation Info + Changing Clock Frequency . . . . . . . . . . . . . . . . . . 35
4.3 Critical Path Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Schematic View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Finding Actual Critical Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Optimization Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Grading and Extra Credit 38
5.1 Checkpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Style: Organization, Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Final Project Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Report Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Extra Credit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Project Grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Project Timeline 40

A Local Development 41
A.1 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 OSX, Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B BIOS 42

2



B.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.2 Loading the BIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.3 Loading Your Own Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.4 The BIOS Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.5 The UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.6 Command List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.7 Adding Your Own Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3



1 Introduction

The goal of this project is to familiarize EECS151/251A students with the methods and tools of
digital design. In teams of 2, you will design and implement a 3-stage pipelined RISC-V CPU with
a UART for tethering. Afterwards, you will attach the IO circuits you built in the lab to the CPU
and design a subtractive audio synthesizer. Finally, you will optimize your CPU for performance
(maximizing the Iron Law) and cost (FPGA resource utilization).

You will use Verilog to implement this system, targeting the Xilinx Pynq platform (a Pynq-Z1
development board with a Zynq 7000-series FPGA, the same board we have been using for our
labs). The project will give you experience designing with RTL descriptions, resolving hazards in
a simple pipeline, building interfaces, and teach you how to approach system-level optimization.

In tackling these challenges, your first step will be to map the high level specification to a design
which can be translated into a hardware implementation. After that, you will produce and debug
that implementation. These first steps can take significant time if you have not thought out your
design prior to trying implementation.

As in previous semesters, your EECS151/251A project is probably the largest project you have
faced so far here at Berkeley. Good time management and good design organization is critical to
your success.

1.1 Tentative Deadlines

The following is a brief description of each checkpoint and approximately how many weeks will be
allotted to each one. This schedule may change as the semester progresses. The current schedule
is summarised at the end of the document in Section 6.

• November 2 - Checkpoint 1 (1 week) - Draw a schematic of your processor’s datapath
and pipeline stages.

• November 23 - Checkpoint 2 (3 weeks) - Implement your RISC-V processor core in
Verilog and write tests to verify your implementation.

• December 7 - Checkpoint 3 (2 weeks) - Attach I/O components from lab to your
processor (FIFOs, buttons, switches), general PWM controller, basic subtractive synthesizer

• December 11 (by appointment) - Final Checkoff - Final processor optimization and
checkoff

• December 14 - Project Report - Final report due

1.2 General Project Tips

Document your project as you go. You should comment your Verilog and keep your diagrams up
to date. Aside from the final project report (you will need to turn in a report documenting your
project), you can use your design documents to help the debugging process.

Finish the required features first. Attempt extra features after everything works well. If your
submitted project does not work by the final deadline, you will not get any credit for
any extra credit features you have implemented.

4



This project, as has been done in past semesters, will be divided into checkpoints. The following
sections will specify the objectives for each checkpoint.

2 Checkpoints 1 & 2 - 3-stage Pipelined RISC-V CPU

The first checkpoint in this project is designed to guide the development of a three-stage pipelined
RISC-V CPU that will be used as a base system in subsequent checkpoints.

Pynq-Z1 Board
ZYNQ FPGA (z1top)
Riscv151

IMEM

DMEM

BIOS

reg_file

Datapath
+

Control

UART

PWM
Controller

To/From
Host PC

Audio
Synthesizer

BUTTONS
SWITCHES

Button
Parser

125MHz
Clock

Fast PLL

Slow PLL

cpu_clk

PMU
I2C Controller

XADC (Temp)

Power Mgmt Algo clk_ctrl

aud_pwm

Figure 1: High-level overview of the full system

The green (RISC-V core) block on the diagram is the focus of the first and second checkpoints.
The third checkpoint will add audio and IO components in blue.

2.1 Setting up your Code Repository

The project skeleton files are available on Github. This semester, we will be creating the team
repositories using Github Classroom. Go to the following link to create a team, or join if your
partner has already created one: https://classroom.github.com/g/JUbaAtcP

Once you create a team, your repository will be created automatically. Add the skeleton code
repository as a remote, so you can receive any updates to the staff pushes.

git clone git@github.com:EECS150/fpga_project_fa20-<team>.git

cd fpga_project_fa20-<team>

5

https://classroom.github.com/g/JUbaAtcP


git remote add staff git@github.com:EECS150/fpga_project_skeleton_fa20.git

git pull staff master

git push origin master

To pull project updates from the skeleton repo, run git pull staff master.

Fill out this form with your team info so we know who each Github account belongs to: https:

//forms.gle/Zoe1kd8GK2DmpPuTA

You should check frequently for updates to the skeleton files. Update announcements will be posted
to Piazza.

2.2 Integrate Designs from Labs

You should copy some modules you designed from the labs. We suggest you keep these with the
provided source files in hardware/src (overwriting any provided skeletons).

cd fpga_project_fa20-<team>

cp fpga_project_skeleton_fa20/lab6/debouncer.v

fpga_project_fa20-<team>/hardware/src/io_circuits/

Copy these files from the labs:

lab6/debouncer.v

lab6/synchronizer.v

lab6/edge_detector.v

lab6/fifo.v

lab6/uart_transmitter.v

2.3 Project Skeleton Overview

• hardware

– src

∗ z1top.v: Top level module. The RISC-V CPU is instantiated here.

∗ PYNQ-Z1.xdc: Constraints file. You can modify this to change pin assignments for
peripherals when connecting I/O.

∗ riscv core/Riscv151.v: All of your CPU datapath and control should be con-
tained in this file.

∗ riscv core/reg file.v: Your register file implementation.

∗ memories/{imem, dmem, bios_mem}.v: Synthesizable RAMs for the instruction,
data, and BIOS memories.

∗ io_circuits/uart.v, uart_transmitter.v, uart_receiver.v: Your working UART
from Labs 5 and 6

– sim

6

https://forms.gle/Zoe1kd8GK2DmpPuTA
https://forms.gle/Zoe1kd8GK2DmpPuTA


∗ assembly_testbench.v: Starting point for testing your CPU. Works with the soft-
ware in assembly tests.

∗ echo_testbench.v: Runs the software in echo on your CPU. The software imple-
ments the echo FSM from lab 5, and the testbench controls an off-chip UART to
test it.

• software

– bios151v3: The BIOS program, which allows us to interact with our CPU via the
UART. You need to compile it before creating a bitstream or running a simulation.

– echo: The echo program, which emulates the FSM from Lab 5 in software.

– assembly_tests: Use this as a template to write assembly tests for your processor
designed to run in simulation.

– c_example: Use this as an example to write C programs.

– mmult: This is a program to be run on the FPGA for Checkpoint 2. It generates 2
matrices and multiplies them. Then it returns a checksum to verify the correct result.

To compile software go into a program directory and run make. To build a bitstream run make

impl in hardware.

2.4 RISC-V 151 ISA

Table 1 contains all of the instructions your processor is responsible for supporting. It contains
most of the instructions specified in the RV32I Base Instruction set, and allows us to maintain a
relatively simple design while still being able to have a C compiler and write interesting programs
to run on the processor. For the specific details of each instruction, refer to sections 2.2 through
2.6 in the RISC-V Instruction Set Manual.

2.4.1 CSR Instructions

You will have to implement 2 CSR instructions to support running the standard RISC-V ISA test
suite. A CSR (or control status register) is some state that is stored independent of the register file
and the memory. While there are 212 possible CSR addresses, you will only use one of them (tohost
= 0x51E). The tohost register is monitored by the RISC-V ISA testbench (isa_testbench.v), and
simulation ends when a non-zero value is written to this register. A CSR value of 1 indicates success,
and a value greater than 1 indicates which test failed.

There are 2 CSR related instructions that you will need to implement:

1. csrw tohost,x2 (short for csrrw x0,csr,rs1 where csr = 0x51E)

2. csrwi tohost,1 (short for csrrwi x0,csr,uimm where csr = 0x51E)

csrw will write the value from rs1 into the addressed CSR. csrwi will write the immediate (stored
in the rs1 field in the instruction) into the addressed CSR. Note that you do not need to write to
rd (writing to x0 does nothing), since the CSR instructions are only used in simulation.

7

http://riscv.org/specifications/


Table 1: RISC-V ISA

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

RV32I Base Instruction Set
imm[31:12] rd 0110111 LUI
imm[31:12] rd 0010111 AUIPC

imm[20|10:1|11|19:12] rd 1101111 JAL
imm[11:0] rs1 000 rd 1100111 JALR

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

imm[11:0] rs1 000 rd 0000011 LB
imm[11:0] rs1 001 rd 0000011 LH
imm[11:0] rs1 010 rd 0000011 LW
imm[11:0] rs1 100 rd 0000011 LBU
imm[11:0] rs1 101 rd 0000011 LHU

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

imm[11:0] rs1 000 rd 0010011 ADDI
imm[11:0] rs1 010 rd 0010011 SLTI
imm[11:0] rs1 011 rd 0010011 SLTIU
imm[11:0] rs1 100 rd 0010011 XORI
imm[11:0] rs1 110 rd 0010011 ORI
imm[11:0] rs1 111 rd 0010011 ANDI

0000000 shamt rs1 001 rd 0010011 SLLI
0000000 shamt rs1 101 rd 0010011 SRLI
0100000 shamt rs1 101 rd 0010011 SRAI
0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0100000 rs2 rs1 101 rd 0110011 SRA
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND

RV32/RV64 Zicsr Standard Extension
csr rs1 001 rd 1110011 CSRRW
csr uimm 101 rd 1110011 CSRRWI

8



2.5 Pipelining

Your CPU must implement this instruction set using a 3-stage pipeline. The division of the datapath
into three stages is left unspecified as it is an important design decision with significant performance
implications. We recommend that you begin the design process by considering which elements of
the datapath are synchronous and in what order they need to be placed. After determining the
design blocks that require a clock edge, consider where to place asynchronous blocks to minimise
the critical path. The RAMs we are using for the data, instruction, and BIOS memories are both
synchronous read and write.

2.6 Hazards

As you have learned in lecture, pipelines create hazards. Your design will have to resolve both
control and data hazards. You must resolve data hazards by implementing forwarding whenever
possible. This means that you must forward data from your data memory instead of stalling your
pipeline or injecting NOPs. All data hazards can be resolved by forwarding in a three-stage pipeline.

You’ll have to deal with the following types of hazards:

1. Read-after-write data hazards Consider carefully how to handle instructions that de-
pend on a preceding load instruction, as well as those that depend on a previous arithmetic
instruction.

2. Control hazards What do you do when you encounter a branch instruction, a jal (jump
and link), or jalr (jump from register and link)? You will have to choose whether to predict
branches as taken or not taken by default and kill instructions that weren’t supposed to
execute if needed. You can begin by resolving branches by stalling the pipeline, and when
your processor is functional, move to naive branch prediction.

2.7 Register File

Your register file should have two asynchronous-read ports and one synchronous-write port (positive
edge).

To test your register file, you should write a testbench to verify the following:

• Register 0 is not writable, i.e. reading from register 0 always returns 0

• Registers are updated on the same cycle that a write occurs (i.e. the value read on the cycle
following the rising edge of the write should be the value written).

• The write enable signal to the register file controls whether a write occurs (we is active high,
meaning you only write when we is high)

• Reads should be asynchronous (the value at the output one simulation timestep (#1) after
feeding in an input address should be the value stored in that register)

2.8 RAMs

In this project, we will be using inferred block RAMs to implement memories for the processor.

9



2.8.1 Initialization

The Verilog $readmemb(filename, path to 2D reg, start addr, end addr) and $readmemh()

system tasks can be used to initialize a 2D reg with a text file containing the desired contents of
the memory (in binary or hex respectively). These system tasks are placed inside an initial block
and point to a particular 2D reg instance to initialize. If a 2D reg isn’t initialized it is filled with
Xs.

For synthesis, the BIOS memory is initialized with the contents of the BIOS program, and the
other memories are left uninitialized (zeroed out)
(see src/memories/{imem, dmem, bios_mem}.v).

For simulation, the provided testbenches initialize the BIOS memory with a program specified by
the testbench (see sim/assembly_testbench.v).

2.8.2 Endianness + Addressing

The instruction and data RAMs have 16384 32-bit rows, as such, they accept 14 bit addresses. The
RAMs are word-addressed; this means that every unique 14 bit address refers to one 32-bit row
(word) of memory.

However, the memory addressing scheme of RISC-V is byte-addressed. This means that every
unique 32 bit address the processor computes (in the ALU) points to one 8-bit byte of memory.

We consider the bottom 16 bits of the computed address (from the ALU) when accessing the RAMs.
The top 14 bits are the word address (for indexing into one row of the block RAM), and the bottom
two are the byte offset (for indexing to a particular byte in a 32 bit row).

Figure 2: Block RAM organization. The labels for row address should read 14’h0 and 14’h1.

Figure 2 illustrates the 14-bit word addresses and the two bit byte offsets. Observe that the RAM
organization is little-endian, i.e. the most significant byte is at the most significant memory
address (offset ’11’).

10



2.8.3 Reading from RAMs

Since the RAMs have 32-bit rows, you can only read data out of the RAM 32-bits at a time. This
is an issue when executing an lh or lb instruction, as there is no way to indicate which 8 or 16 of
the 32 bits you want to read out.

Therefore, you will have to shift and mask the output of the RAM to select the appropriate portion
of the 32-bits you read out. For example, if you want to execute a lbu on a byte address ending in
2'b10, you will only want bits [23:16] of the 32 bits that you read out of the RAM (thus storing
{24'b0, output[23:16]} to a register).

2.8.4 Writing to RAMs

To take care of sb and sh, note that the we input to the instruction and data memories is 4 bits
wide. These 4 bits are a byte mask telling the RAM which of the 4 bytes to actually write to. If
we={4’b1111}, then all 32 bits passed into the RAM would be written to the address given.

Here’s an example of storing a single byte:

• Write the byte 0xa4 to address 0x10000002 (byte offset = 2)

• Set we = {4'b0100}

• Set din = {32'hxx_a4_xx_xx} (x means don’t care)

2.9 Memory Architecture

The standard RISC pipeline is usually depicted with separate instruction and data memories.
Although this is an intuitive representation, it does not let us modify the instruction memory to
run new programs. Your CPU, by the end of this checkpoint, will be able to receive compiled RISC-
V binaries though the UART, store them into instruction memory, then jump to the downloaded
program. To facilitate this, we will adopt a modified memory architecture shown in Figure 3.

2.9.1 Summary of Memory Access Patterns

The memory architecture will consist of three RAMs (instruction, data, and BIOS). The RAMs
are memory resources (block RAMs) contained within the FPGA chip, and no external (off-chip,
DRAM) memory will be used for this project.

The processor will begin execution from the BIOS memory, which will be initialized with the
BIOS program (in software/bios151v3). The BIOS program should be able to read from the
BIOS memory (to fetch static data and instructions), and read and write the instruction and data
memories. This allows the BIOS program to receive user programs over the UART from the host
PC and load them into instruction memory.

You can then instruct the BIOS program to jump to an instruction memory address, which begins
execution of the program that you loaded. At any time, you can press the reset button on the
board to return your processor to the BIOS program.

11



IMEM
addrb[13:0]

doutb[31:0]

BIOS
PC

douta[31:0]

addra[11:0]

PC

inst

PC[30]

DMEM
addra[13:0]

douta[31:0]

BIOS
ALU

doutb[31:0]

addrb[11:0]

ALU

data
out
from
memory

addr

IMEM

dina[31:0]
wea[3:0]

rs2
b/h/w

addra[13:0]ALU
dina[31:0]
wea[3:0]

rs2
b/h/w

Figure 3: The Riscv151 memory architecture. There is only 1 IMEM and DMEM instance in
Riscv151 but their ports are shown separately in this figure for clarity. The left half of the figure
shows the instruction fetch logic and the right half shows the memory load/store logic.

2.9.2 Unaligned Memory Accesses

In the official RISC-V specification, unaligned loads and stores are supported. However, in your
project, you can ignore instructions that request an unaligned access. Assume that the compiler
will never generate unaligned accesses.

2.9.3 Address Space Partitioning

Your CPU will need to be able to access multiple sources for data as well as control the destination of
store instructions. In order to do this, we will partition the 32-bit address space into four regions:
data memory read and writes, instruction memory writes, BIOS memory reads, and memory-
mapped I/O. This will be encoded in the top nibble (4 bits) of the memory address generated in
load and store operations, as shown in Table 2. In other words, the target memory/device of a load
or store instruction is dependent on the address. The reset signal should reset the PC to the value
defined by the parameter RESET_PC which is by default the base of BIOS memory (0x40000000).

Table 2: Memory Address Partitions

Address[31:28] Address Type Device Access Notes

4’b00x1 Data Data Memory Read/Write
4’b0001 PC Instruction Memory Read-only
4’b001x Data Instruction Memory Write-Only Only if PC[30] == 1’b1
4’b0100 PC BIOS Memory Read-only
4’b0100 Data BIOS Memory Read-only
4’b1000 Data I/O Read/Write

12



Each partition specified in Table 2 should be enabled based on its associated bit in the address
encoding. This allows operations to be applied to multiple devices simultaneously, which will be
used to maintain memory consistency between the data and instruction memory.

For example, a store to an address beginning with 0x3 will write to both the instruction memory
and data memory, while storing to addresses beginning with 0x2 or 0x1 will write to only the
instruction or data memory, respectively. For details about the BIOS and how to run programs on
your CPU, see Section 2.14.

Please note that a given address could refer to a different memory depending on which address type
it is. For example the address 0x10000000 refers to the data memory when it is a data address
while a program counter value of 0x10000000 refers to the instruction memory.

The note in the table above (referencing PC[30]), specifies that you can only write to instruction
memory if you are currently executing in BIOS memory. This prevents programs from being self-
modifying, which would drastically complicate your processor.

2.9.4 Memory Mapped I/O

At this stage in the project the only way to interact with your CPU is through the UART. The
UART from Lab 5 accomplishes the low-level task of sending and receiving bits from the serial
lines, but you will need a way for your CPU to send and receive bytes to and from the UART. To
accomplish this, we will use memory-mapped I/O, a technique in which registers of I/O devices are
assigned memory addresses. This enables load and store instructions to access the I/O devices as
if they were memory.

To determine CPI (cycles per instruction) for a given program, the I/O memory map is also used
to include instruction and cycle counters.

Table 3 shows the memory map for this stage of the project.

Table 3: I/O Memory Map

Address Function Access Data Encoding

32'h80000000 UART control Read {30'b0, data_out_valid, data_in_ready}

32'h80000004 UART receiver data Read {24'b0, data_out}

32'h80000008 UART transmitter data Write {24'b0, data_in}

32'h80000010 Cycle counter Read Clock cycles elapsed
32'h80000014 Instruction counter Read Number of instructions executed
32'h80000018 Reset counters to 0 Write N/A

You will need to determine how to translate the memory map into the proper ready-valid handshake
signals for the UART. Your UART should respond to sw, sh, and sb for the transmitter data
address, and should also respond to lw, lh, lb, lhu, and lbu for the receiver data and control
addresses.

You should treat I/O such as the UART just as you would treat the data memory. This means
that you should assert the equivalent write enable (i.e. valid) and data signals at the end of the

13



execute stage, and read in data during the memory stage. The CPU itself should not check the
data_out_valid and data_in_ready signals; this check is handled in software. The CPU needs
to drive data_out_ready and data_in_valid correctly.

The cycle counter should be incremented every cycle, and the instruction counter should be in-
cremented for every instruction that is committed (you should not count bubbles injected into
the pipeline or instructions run during a branch mispredict). From these counts, the CPI of the
processor can be determined for a given benchmark program.

2.10 Testing

The design specified for this project is a complex system and debugging can be very difficult without
tests that increase visibility of certain areas of the design. In assigning partial credit at the end
for incomplete projects, we will look at testing as an indicator of progress. A reasonable order in
which to complete your testing is as follows:

1. Test that your modules work in isolation via Verilog testbenches

2. Test the entire CPU one instruction at a time with hand-written assembly — see assembly_testbench.v

3. Test the CPU’s memory mapped I/O — see echo_testbench.v

4. Run the riscv-tests ISA test suite

2.10.1 Integration Testing

Once you are confident that the individual components of your processor are working in isolation,
you will want to test the entire processor as a whole. The easiest way to do this is to write an
assembly program that tests all of the instructions in your ISA. A skeleton is provided for you in
software/assembly_tests. See Section 2.12 for details.

Once you have verified that all the instructions in the ISA are working correctly, you may also want
to verify that the memory mapped I/O and instruction/data memory reading/writing work with a
similar assembly program.

2.11 Software Toolchain - Writing RISC-V Programs

A GCC RISC-V toolchain has been built and installed in the eecs151 home directory; these binaries
will run on any of the c125m machines in the 125 Cory lab. The most relevant programs in the
toolchain are:

• riscv64-unknown-elf-gcc: GCC for RISC-V, compiles C code to RISC-V binaries.

• riscv64-unknown-elf-as: RISC-V assembler, compiles assembly code to RISC-V binaries.

• riscv64-unknown-elf-objdump: Dumps RISC-V binaries as readable assembly code.

Look at the software/c_example folder for an example of a C program.

There are several files:

14



• start.s: This is an assembly file that contains the start of the program. It initialises the
stack pointer then jumps to the main label. Edit this file to move the top of the stack.
Typically your stack pointer is set to the top of the data memory address space, so that the
stack has enough room to grow downwards.

• c_example.ld: This linker script sets the base address of the program. For Checkpoint 2,
this address should be in the format 0x1000xxxx The .text segment offset is typically set to
the base of the instruction memory address space.

• c_example.elf: Binary produced after running make.
Use riscv64-unknown-elf-objdump -Mnumeric -D c_example.elf to view the assembly
code.

• c_example.dump: Assembly dump of the binary.

2.12 Assembly Tests

Hand written assembly tests are in software/assembly_tests/start.s and the corresponding
testbench is in hardware/sim/assembly_testbench.v. To run the test, run:
make sim/assembly_testbench.fst (iverilog) or make sim/assembly_testbench.vpd (VCS).

If you want to forcibly re-run the test even though you didn’t change the Verilog, run:
make -B sim/assembly_testbench.fst

start.s contains assembly that’s compiled and loaded into the BIOS RAM by the testbench.

_start:

# Test ADD

li x10, 100 # Load argument 1 (rs1)

li x11, 200 # Load argument 2 (rs2)

add x1, x10, x11 # Execute the instruction being tested

li x20, 1 # Set the flag register to stop execution and inspect the

result register↪→

# Now we check that x1 contains 300 in the testbench

Done: j Done

The assembly_testbench toggles the clock one cycle at time and waits for register x20 to be
written with a particular value (in the above example: 1). Once x20 contains 1, the testbench
inspects the value in x1 and checks it is 300, which indicates your processor correctly executed the
add instruction.

If the testbench times out it means x20 never became 1, so the processor got stuck somewhere or
x20 was written with another value.

2.13 RISC-V ISA Tests

You will need the CSR instructions to work before you can use this test suite, and you should have
confidence in your hand-written assembly tests. Test the CSR instructions using hand assembly

15



tests.

To run the ISA tests, first pull the latest skeleton changes:

git pull staff master

git submodule update --init --recursive

Modify line 4 of sim/isa_testbench.v to point to the tohost CSR register in your CPU. Then
run:

cd software/riscv-isa-tests

make

cd hardware

make isa-tests

The output of each test (a .log file and a .fst waveform) is stored in hardware/sim/isa. To re-run
a particular ISA test (e.g. add) run make sim/isa/add.fst.

To check what tests passed run cat sim/isa/*.log | grep -i pass. To check for failures run
cat sim/isa/*.log | grep -i fail.

You can expect the fence_i test to fail, but the rest should pass. If you’re failing other tests,
debug using the test assembly file in
software/riscv-isa-tests/riscv-tests/isa/rv32ui or the generated assembly dump.

The RESET_PC parameter is used in isa_testbench to start the test in the IMEM instead of the
BIOS. Make sure you have used it in Riscv151.v.

2.14 BIOS and Programming your CPU

We have provided a BIOS program in software/bios151v3 that allows you to interact with your
CPU and download other programs over UART. The BIOS is just an infinite loop that reads from
the UART, checks if the input string matches a known control sequence, and then performs an
associated action. For detailed information on the BIOS, see Appendix B.

To run the BIOS:

1. Verify that the stack pointer and .text segment offset are set properly in start.s and
bios151v3.ld

2. Compile the program with make in the software/bios151v3 directory

3. Verify the bios_mem.v module is initialized with the BIOS hex file

4. Build a bitstream and program the FPGA

5. Use screen to access the serial port:

sudo screen /dev/ttyUSB0 115200

6. Press the reset button to make the CPU PC go to the start of BIOS memory

Close screen using Ctrl-a Shift-k, or other students won’t be able to use the serial port! If you
can’t access the serial port you can run killscreen to kill all screen sessions.

16



If all goes well, you should see a 151 > prompt after pressing return. The following commands are
available:

• jal <address>: Jump to address (hex).

• sw, sb, sh <data> <address>: Store data (hex) to address (hex).

• lw, lbu, lhu <address>: Prints the data at the address (hex).

As an example, running sw cafef00d 10000000 should write to the data memory and running
lw 10000000 should print the output 10000000: cafef00d. Please also pay attention that writes
to the instruction memory (sw ffffffff 20000000) do not write to the data memory, i.e. lw 10000000

still should yield cafef00d.

In addition to the command interface, the BIOS allows you to load programs to the CPU. With
screen closed, run:

hex_to_serial <hex_file> <address>

This stores the .hex file at the specified hex address. In order to write into both the data and in-
struction memories, remember to set the top nibble to 0x3 (i.e. hex_to_serial echo.hex 30000000,
assuming the .ld file sets the base address to 0x10000000).

You also need to ensure that the stack and base address are set properly (See Section 2.11). For
example, before making the mmult program you should set the set the base address to 0x10000000

(see 2.16). Therefore, when loading the mmult program you should load it at the base address:
hex_to_serial mmult.hex 30000000. Then, you can jump to the loaded mmult program in in
your screen session by using jal 10000000.

2.15 Target Clock Frequency

By default, the CPU clock frequency is set at 50MHz. It should be easy to meet timing at
50 MHz. Look at the reports in hardware/build/synth/post_synth_timing_summary.rpt and
impl/post_route_timing_summary.rpt to see if timing is met. If you failed, the timing reports
specify the critical path you should optimize.

For this checkpoint, we will allow you to demonstrate the CPU working at 50 MHz, but for the final
checkoff at the end of the semester, you will need to optimize for a higher clock speed (≥ 100MHz)
for full credit. Details on how to build your FPGA design with a different clock frequency will
come later.

2.16 Matrix Multiply

To check the correctness and performance of your processor we have provided a benchmark in
software/mmult/ which performs matrix multiplication. You should be able to load it into your
processor in the same way as loading the echo program.

This program computes S = AB, where A and B are 64×64 matrices. The program will print a
checksum and the counters discussed in Section 2.9.4. The correct checksum is 0001f800. If you
do not get this, there is likely a problem in your CPU with one of the instructions that is used by
the BIOS but not mmult.

17



The matrix multiply program requires that the stack pointer and the offset of the .text segment be
set properly, otherwise the program will not execute properly.

The stack pointer (set in start.s) should start near the top of DMEM to avoid corrupting the
program instructions and data. It should be set to 0x1000fff0 and the stack grows downwards.

The .text segment offset (set in mmult.ld) needs to accommodate the full set of instructions and
static data (three 64×64 matrices) in the mmult binary. It should be set to the base of DMEM:
0x10000000.

The program will also output the values of your instruction and cycle counters (in hex). These
can be used to calculate the CPI for this program. Your target CPI should be under 1.2. If your
CPI exceeds this value, you will need to modify your datapath and pipeline to reduce the number
of bubbles inserted for resolving control hazards (since they are the only source of extra latency in
our processor). This might involve performing naive branch prediction or moving the jalr address
calculation to an earlier stage.

2.17 How to Survive This Checkpoint

Start early and work on your design incrementally. Draw up a very detailed and organised block
diagram and keep it up to date as you begin writing Verilog. Unit test independent modules such
as the control unit, ALU, and regfile. Write thorough and complex assembly tests by hand, and
don’t solely rely on the RISC-V ISA test suite. The final BIOS program is several 1000 lines of
assembly and will be nearly impossible to debug by just looking at the waveform.

The most valuable asset for this checkpoint will not be your GSIs but will be your fellow peers who
you can compare notes with and discuss design aspects with in detail. However, do NOT under
any circumstances share source code.

Once you’re tired, go home and sleep. When you come back you will know how to solve your
problem.

2.17.1 How To Get Started

It might seem overwhelming to implement all the functionality that your processor must support.
The best way to implement your processor is in small increments, checking the correctness of your
processor at each step along the way. Here is a guide that should help you plan out Checkpoint 1
and 2:

1. Design. You should start with a comprehensive and detailed design/schematic. Enumerate
all the control signals that you will need. Be careful when designing the memory fetch stage
since all the memories we use (BIOS, instruction, data, IO) are synchronous.

2. First steps. Implementing some modules that are easy to write and test. Write the reg_file.v
module. Create a Verilog testbench and test the cases in Section 2.7.

3. Control Unit + other small modules. Implement the control unit, ALU, and any other small
independent modules. Unit test them.

4. Memory. In the beginning, only use the BIOS memory in the instruction fetch stage and only
use the data memory in the memory stage. This is enough to run assembly tests.

18



5. Connect stages and pipeline. Connect your modules together and pipeline them. At this
point, you should be able to run integration tests using assembly tests for most R and I type
instructions.

6. Implement handling of control hazards. Insert bubbles into your pipeline to resolve control
hazards associated with JAL, JALR, and branch instructions. Don’t worry about data hazard
handling for now. Test that control instructions work properly with assembly tests.

7. Implement data forwarding for data hazards. Add forwarding muxes and forward the outputs
of the ALU and memory stage. Remember that you might have to forward to ALU input A,
ALU input B, and data to write to memory. Test forwarding aggressively; most of your bugs
will come from incomplete or faulty forwarding logic. Test forwarding from memory and from
the ALU, and with control instructions.

8. Add BIOS memory reads. Add the BIOS memory block RAM to the memory stage to be
able to load data from the BIOS memory. Write assembly tests that contain some static data
stored in the BIOS memory and verify that you can read that data.

9. Add Inst memory writes and reads. Add the instruction memory block RAM to the memory
stage to be able to write data to it when executing inside the BIOS memory. Also add the
instruction memory block RAM to the instruction fetch stage to be able to read instructions
from the inst memory. Write tests that first write instructions to the instruction memory, and
then jump (using jalr) to instruction memory to see that the right instructions are executed.

10. Add cycle counters. Begin to add the memory mapped IO components, by first adding the
cycle and instruction counters. These are just 2 32-bit registers that your CPU should update
on every cycle and every instruction respectively. Write tests to verify that your counters can
be reset with a sw instruction, and can be read from using a lw instruction.

11. Integrate UART. Add the UART to the memory stage, in parallel with the data, instruction,
and BIOS memories. Detect when an instruction is accessing the UART and route the data
to the UART accordingly. Make sure that you are setting the UART ready/valid control
signals properly as you are feeding or retrieving data from it. We have provided you with the
echo_testbench which performs a test of the UART.

12. Run the BIOS. If everything so far has gone well, program the FPGA. Verify that the BIOS
performs as expected. As a precursor to this step, you might try to build a bitstream with
the BIOS memory initialized with the echo program.

13. Run matrix multiply. Load the mmult program with the hex_to_serial utility, and run
mmult on the FPGA. Verify that it returns the correct checksum.

14. Check CPI. Compute the CPI when running the mmult program. If you achieve a CPI below
1.2, that is acceptable, but if your CPI is larger than that, you should think of ways to reduce
it.

2.18 Checkoff

The checkoff is divided into two stages: block diagram/design and implementation. The second
part will require significantly more time and effort than the first one. As such, completing the block

19



diagram in time for the design review is crucial to your success in this project.

2.18.1 Checkpoint 1: Block Diagram

The first checkpoint requires a detailed block diagram of your datapath. The diagram should
have a greater level of detail than a high level RISC datapath diagram. You may complete this
electronically or by hand.

If working by hand, we recommend working in pencil and combining several sheets of paper for a
larger workspace. If doing it electronically, you can use Inkscape, Google Drawings, draw.io or any
program you want.

You should be able to describe in detail any smaller sub-blocks in your diagram. Though the text-
book diagrams are a decent starting place, remember that they often use asynchronous-read RAMs
for the instruction and data memories, and we will be using synchronous-read block RAMs. Addi-
tionally, at this point we recommend that you have completely functional UART, ALU, instruction
decoder, and register file modules (see Section 2.7).

Checkpoint 1 is due in lab no later than November 2. You are required to go over your
design with a GSI during lab. Be prepared to talk generally about how you came up with your
design and defend your design decisions.

2.18.2 Non-Checkpoint Weeks

GSIs will be in lab during the regular times to help you. Come to lab every week even if there is
no checkoff deadline.

2.18.3 Checkpoint 2: Base RISCV151 System

This checkpoint requires a fully functioning three stage RISC-V CPU as described in this specifica-
tion. Checkoff will consist of a demonstration of the BIOS functionality, loading a program (echo
and mmult) over the UART, and successfully jumping to and executing the program.

Checkpoint 2 materials should be committed to your project repository by November
23.

20



2.18.4 Checkpoints 1 & 2 Deliverables Summary

Deliverable Due Date Description

Block Diagram November 2
Sit down with a GSI and go over your de-
sign in detail

RISC-V CPU
November 23
Check in code
to Github

Demonstrate that the BIOS works, you
can use hex_to_serial to load the echo

program, jal to it from the BIOS,
and have that program successfully ex-
ecute. Load the mmult program with
hex_to_serial, jal to it, and have it ex-
ecute successfully and return the bench-
marking results and correct checksum.
Your CPI should be under 1.2.

21



3 Checkpoint 3 - I/O Integration, PWM Controller, Subtractive
Synthesizer

In checkpoint 3 of this project you will implement a memory mapped I/O interface to user inputs
and outputs (buttons, LEDs, and switches). To buffer user inputs to your processor you will
integrate the FIFO you built in lab.

You will design a generic PWM controller that will function as a digital-to-analog converter (DAC)
that drives the audio output jack. Finally, you will implement a simple polyphonic subtractive
synthesizer with a numerically controlled oscillator, a digital filter, and an amplitude envelope.

3.1 I/O Integration

In lab, you built a synchronizer, debouncer and an edge detector that were used to take in various
user inputs. Now, we want our processor to have access to these inputs (and the switches) and also
to be able to drive outputs such as the LEDs. We will extend our memory map to give programs
access to these I/Os.

When a user pushes a button on the Pynq-Z1 board, the button’s signal travels through the
synchroniser → debouncer → edge detector chain. The result is a single clock cycle wide pulse
coming out of the edge detector that represents a single button press. If we just extended our
memory map to directly include the outputs from the edge detector, the processor would have to
read from those locations on every clock cycle to be sure it didn’t miss any user inputs.

To fix this, we will buffer user inputs with a FIFO and let the processor consume them when it has
time to do so.

3.1.1 Hookup User I/O

We want to give the processor access to these I/Os:

• Switches

• GPIO LEDs (the ones on the Pynq-Z1 board)

• Push-buttons

The I/O extension to the memory map is in Table 4.

Table 4: Memory Map for I/O Integration

Address Function Access Data Encoding

32'h80000020 GPIO FIFO Empty Read {31'd0, empty}

32'h80000024 GPIO FIFO Read Data Read {29'd0, buttons[2:0]}

32'h80000028 Switches Read {30'd0, SWITCHES[1:0]}

32'h80000030 GPIO LEDs Write {26'd0, LEDS[5:0]}

On any given clock cycle, when any of the button signals pulse high, the FIFO should be written
to with the status of all the button signals. The CPU should be able to read the empty signal of

22



the FIFO, and it should be able to read out data from the FIFO with the FIFO’s rd_en signal
controlled by your memory logic.

Modify z1top.v and Riscv151.v by instantiating your FIFO, hooking up its ports to the user I/O
signals, and connecting your FIFO’s read interface to the RISC-V core.

3.1.2 User I/O Test Program

The software/user_io_test tests the FIFO and user I/O integration. After programming the
FPGA, run make in the user_io_test folder, and run hex_to_serial user_io_test.hex 30000000.
Then screen and jal 10000000 from the BIOS to jump into the user I/O test program.

This program has several commands to help you debug and verify functionality:

• read_buttons - CPU reads from the GPIO FIFO until it is empty, decodes the button press
data, and prints it out.

• read_switches - CPU reads the slide switches’ address and prints out the state of the
switches.

• led <data> - Writes the <data> (32-bits in hex) that you specify to the GPIO LEDs address.
We only have 6 LEDs on the board so you can write values up to 0x3F.

• exit - Jump back into BIOS.

3.2 PWM DAC

In lab we built a tone_generator that took in a frequency and produced a square wave that drove
the audio jack. Now, we want to produce arbitrary waveforms so we can produce different types of
sound.

To do this, we will design a PWM controller to function like a Digital-Analog-Converter (DAC).
Rather than feeding the tone_generator a “tone switch” period that describes a specific audio
frequency, we will feed in a 12 bit number to a PWM controller that determines the duty cycle of
the PWM output signal. The 12 bit input to the PWM controller will determine the duty cycle
according to the following equation:

Duty Cycle =
Input[11:0]

212 − 1

The Pynq board has a low pass filter attached to the output of aud_pwm that will smooth the PWM
waveform to an analog voltage:

Note that there’s no more notion of volume in this block (that will be handled in software). We
just want this block to act as a DAC.

23



3.2.1 RISC-V Core Connection

You’ll have to memory map the input of this PWM block, but there’s a catch. In order to actually
use this block as a proper DAC (especially for the next part), it will need to run very fast (much
faster than your processor). This implies that your PWM block will be running inside a different
clock domain.

We dealt with clock domain crossings before (our synchronizer took an asynchronous signal and
brought it into a synchronous domain). However the single-bit synchronizer only works with 1-bit
signals and not a 12-bit bus like the duty cycle input to the PWM controller. We will implement
a 4 phase handshake to make sure we reliably pass data from the RISC-V core’s clock domain
(TX/Transmit domain) to the PWM block’s clock domain (RX/Receive domain).

A timing diagram is shown below:

The four phase handshake uses four signals (req_tx, req_rx, ack_rx, and ack_tx). req_rx is the
req_tx signal synchronized into the RX domain, and ack_tx is the ack_rx signal synchronized into
the TX domain. requires the generation of two new synchronous signals, request and acknowledge,
and the comparison of 4 edges.

1. Request is asserted at the same time that the data is registered in the TX domain

2. Acknowledge is asserted from the RX domain after the data has been captured in the RX
domain (this could require holding the data for two clock cycles to ensure data coherency)

3. Request is de-asserted in the TX domain

4. Acknowledge is de-asserted in the RX domain and is then de-asserted in the TX domain

Implement this with 2-flop synchronizers that synchronize the request and acknowledge signals
between the clock domains. A block diagram is shown below:

24



The numbers highlight the flow of data through the synchronizer circuit. Here is a detailed sequence
of steps to send data from the TX domain to the RX domain:

1. First, the RISC-V core stores the duty cycle to the TX data register and then sets the TX
request register high

2. The TX request bit is synchronized into the RX domain

3. Once the RX request bit is high, the RX data register takes in the value from the TX data
register (knowing that the TX data register has been stable for 2 cycles)

4. The RX request bit is synchronized back to the TX domain as an acknowledge bit

5. This concludes a data transfer. To prepare for the next transfer, the TX request bit is
de-asserted

6. This will cause the TX acknowledge bit to be de-asserted

7. The transmitting side is ready for a new data transfer

While this is slower than simply passing data through clock domains, it transmits data reliably.
For this first part, your RISC-V core will handle all of the requests and acknowledges in software
through a memory mapped interface detailed below.

Table 5: Memory Map for PWM Integration

Address Function Access Data Encoding

32'h80000034 Duty Cycle Write {20'b0, duty_cycle[11:0]}

32'h80000038 TX Request Write {31'b0, tx_req}

32'h80000040 TX Acknowledge Read {31'b0, tx_ack}

3.2.2 Implementation

You can create the PWM controller in its own file. You can instantiate the PWM controller where
you want.

25



Some code has been provided at the bottom z1top.v that declares a wire pwm_out which should
connect to the output of your PWM controller. A PLL has been instantiated in z1top.v which
produces a 150 Mhz clock (pwm_clk_g) used for the PWM controller. There’s also a pwm_rst signal
that can be used to reset the PWM controller.

You should first test the PWM controller using a block-level testbench. Next try creating a test-
bench similar to the echo_integration_testbench that uses the piano software from the next
section. You will have to load the program into the IMEM and DMEM in simulation and set the
RESET_PC accordingly (similar to isa_testbench).

3.2.3 Piano Program

Load the program in software/square_piano. After running jal 10000000, you can use the
keyboard rows from ‘c’ to ‘,’ and from ‘q’ to ‘i’ to play piano notes. You can hold down shift to
generate upper and lower octaves just like in Lab 6.

This program plays square waves for a fixed note length (1/3rd of a second). The note length can
be adjusted using the buttons:

• buttons[1] = double note length

• buttons[2] = halve note length

• buttons[3] = reset note length to 1/3rd of a second

If your processor is running at a frequency other than 50 MHz, regenerate the scale.h file. Example
below is for 100 MHz.

cd software/square_piano

./piano_scale_generator scale.h 100e6

3.3 Subtractive Synth

While the piano program works, it can only play a single note at a time (monophonic synthesis).
More importantly, it’s limited to the CPI of the processor and this in turn limits the waveforms we
can send to our DAC.

How could we improve our synthesizer’s throughput and implement a polyphonic synthesizer?
Hardware acceleration! We can implement most of the subtractive synthesis blocks in hardware
and lay the groundwork for building a rich sounding synthesizer. The main datapath that we’ll be
implementing is shown below:

26



The synthesizer is composed of three blocks:

1. Numerically controlled oscillator (NCO). Produces sampled sine, square, triangle, and saw-
tooth waveforms of programmable frequency. - Required

2. State variable filter (SVF). A 2nd order digital IIR filter. - Optional, Extra Credit

3. Amplitude envelope (ADSR - attack, decay, sustain, release) - Optional, Extra Credit

The RISC-V core controls the parameters for each of the blocks using registers that are memory
mapped. A collection of parameter values designed to mimic a particular instrument is called a
patch.

The RISC-V core also provides the frequency control word for the NCO, which represents the pitch
of a note to play. Once a note to play is sent to the synthesizer, it will select/sum the appropriate
waveforms (from the NCO), filter the samples through the SVF, and apply an ADSR envelope.
The synthesizer should feed samples at the sample rate (fsamp) to the PWM DAC until the note
is released.

This synthesizer is connected to the RISC-V core as shown below.

This implements a monophonic synth which can play one note at a time, but we would like to
play multiple notes at a time. To accomplish this, we can replicate the monophonic synth and sum
the output of the amplitude envelope blocks as shown in the figure below to produce a polyphonic
synth.

27



A polyphonic synth is required for 251A only.

3.3.1 Numerically Controlled Oscillator (NCO) - Required

We want to generate four waveform types: sine, square, triangle, and sawtooth. We’ll discuss the
sine wave generation and you can generalize it to the other waveform types.

NCO Overview A continuous time sine wave, with a frequency fsig, can be written as:

f(t) = sin (2πfsigt)

If this sine wave is sampled with sampling frequency fsamp, the resulting stream of discrete time
samples is:

f [n] = sin

(
2πfsig

n

fsamp

)
We want to generate this stream of samples in hardware. One way to do this is to use a lookup
table (LUT) and a phase accumulator (just a register and an adder). Say we have a LUT that
contains sampled points for one period of a sine wave with 2N entries. The entries i, 0 ≤ i < 2N of
this LUT are:

LUT [i] = sin

(
i
2π

2N

)
To find the mapping of the sample n to the LUT entry i, we can equate the expressions inside sin():

i
2π

2N
= 2πfsig

n

fsamp

i =

(
fsig
fsamp

2N
)

︸ ︷︷ ︸
phase increment

n

This means that to compute sample n + 1 we should take the LUT index used for sample n and
increment the index by the ‘phase increment’. The phase increment (also called the ‘frequency
control word’) is written by the RISC-V core into a MMIO register (24-bits wide).

To find the frequency resolution (the minimum frequency step) we can look at what change in fsig
causes the phase increment to increase by 1:

fsig + ∆f,min

fsamp
2N =

fsig
fsamp

2N + 1

∆f,min =
fsamp

2N

This means for a example sample frequency fsamp of 30 kHz and N = 24, the frequency resolution
is 0.001 Hz. We can have very precise frequency control using an NCO.

However, a 224 entry LUT is huge and wouldn’t fit on the FPGA. So, we will keep the phase
accumulator N (24-bits) wide, and only use the MSB M bits to index the sine wave LUT. This
means the LUT only contains 2M entries, where M is chosen based on the required phase error.
We will use M = 8.

28



Figure 4: NCO architecture from Wikipedia

Fixed Point Representation of LUT Values The values in the sine LUT will be signed
numbers representing one period of a sampled sine wave. They will be stored in a fixed point
representation (16 fractional bits, 4 integer bits inclusive of 1 sign bit). This number representation
will be used through the entire synthesizer.

Review this 61C handout for a quick overview of fixed point numbers.

NCO Non-Idealities There are three sources of inaccuracy when using an NCO:

1. Limited frequency resolution when converting a continuous frequency fsig to the integer fre-
quency control word

2. Using a smaller LUT (2M entries) than the phase accumulator width (2N possible values) can
accomodate

3. Fixed point quantization vs. arbitrary precision representation of the LUT values

The first source of inaccuracy can be handled by choosing a large phase accumulator bit width.
The second source can be alleviated using interpolation. The last source can be handled by using
more bits per LUT element at the cost of area.

Interpolation You can linearly interpolate between the i and i+ 1 LUT index using the residual
bits in the phase accumulator. While the MSB M bits are used to index into the LUT, the LSB
N −M bits can be used for interpolation as a residual error. You should get linear interpolation
working after building the basic NCO.

NCO Model We’ve provided a model of the NCO in scripts/synth/NCO.py. You can run these
commands. You can replace sine with square, triangle, or sawtooth.

1. ./NCO.py --analysis - Plot NCO samples vs ideal samples from a sine function (to play
with how to choose N and M and the effect of interpolation)

2. ./NCO.py --sine-lut - Dump the binary representation of the 4 types of LUTs (so they can
be used by $readmemb in Verilog)

3. ./NCO.py --sine-plot - Plot the sine LUT values

4. ./NCO.py --golden - Dump the golden sample values for fsamp = 30kHz and fsig = 880Hz

You can dump a LUT to a file like: ./NCO.py --triangle-lut > triangle.bin.

29

https://en.wikipedia.org/wiki/Numerically-controlled_oscillator
http://www-inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html


Waveform Summation The NCO produces all 4 waveform types per sample. Another module
(the Summer), following the NCO, sums them together after scaling each waveform’s sample. The
scaling is done with an arithmetic right shift amount assigned to each waveform type.

Implementation The NCO implementation details are up to you. Note that it is OK to use
several clock cycles to generate one sample value, so pipelining is useful for making sure your critical
paths are short. We recommend that the NCO uses a ready/valid interface to produce samples
(that are later consumed by the sample buffer).

You can read in a LUT binary using $readmemb():

reg [x:0] sine_lut [0:y];

`define STRINGIFY_SINELUT(x) `"x/src/audio/sine.bin`"

initial begin

$readmemb(`STRINGIFY_SINELUT(`ABS_TOP), sine_lut);

end

The NCO should be hooked up to the RISC-V core via MMIO (Table 6).

Table 6: Memory Map for NCO and Summer

Address Function Access Data Encoding

32'h80000200 Sine NCO Scale Write {27'd0, sine_shift[4:0]}

32'h80000204 Square NCO Scale Write {27'd0, square_shift[4:0]}

32'h80000208 Triangle NCO Scale Write {27'd0, triangle_shift[4:0]}

32'h8000020c Sawtooth NCO Scale Write {27'd0, sawtooth_shift[4:0]}

32'h80001000 Frequency Control Word (Voice 1) Write {8'd0, fcw[23:0]}

Testing You should generate golden samples from the NCO.py script for various signal frequencies
and use a unit-level testbench to verify the NCO produces identical samples.

3.3.2 Sample Buffer and CDC - Required

The signal chain we want to implement is below (with the data format of their outputs in paren-
theses, FixP = signed fixed point).

NCO (4x 16/4 FixP)→ Summer (16/4 FixP)→ Global Gain (16/4 FixP)

→ Truncator (12-bit unsigned int)→ Buffer + CDC→ PWM DAC

You implemented the NCO and summer in the previous section. Now we will implement 4 other
blocks:

1. Global gain: this is just another arithmetic right shift of the summer output

2. Truncator: converts a high precision signed fixed-point sample to a 12-bit unsigned integer
for the PWM DAC

30



3. Buffer: buffers a continuous stream of samples and emits them at a fixed rate of fsamp

4. CDC: sends samples from the buffer to the PWM clock domain using a 4-phase handshake

Global Gain and Truncator The global gain is an arithmetic right shifter on the output of the
Summer. It is used to limit the volume of the synth.

The global gain block outputs fixed point samples (with 16 fractional bits and 4 integer bits). But,
the PWM DAC takes 12-bit unsigned duty cycle values. The truncator should take the 12 MSB
bits from the global gain block and treat them as a signed number. Then that number should be
converted into the PWM duty cycle value:

• −211: duty cycle[11:0] = 0

• 0: duty cycle[11:0] = 2048

• 211 − 1: duty cycle[11:0] = 4095

The global gain comes from MMIO (Table 7).

Table 7: Memory Map for Gain/Truncator

Address Function Access Data Encoding

32'h80000104 Global Gain Shift Write {27'd0, global_gain[4:0]}

Sample Buffer + CDC The NCO continuously produces samples, but now we want to send
those samples to the PWM DAC at a fixed rate fsamp. Implement a block that rate limits samples
from the NCO and sends them to the PWM DAC using the 4-phase CDC handshake.

We’ve added a MMIO register (PWM DAC Source) (Table 8) that controls which duty cycle register
feeds the PWM block. This 1-bit register should be synchronized to the PWM clock domain and
controls which RX duty-cycle register is fed into the PWM block. (0 = CPU, 1 = synth)

Table 8: Memory Map for Synth CDC

Address Function Access Data Encoding

32'h80000044 PWM DAC Source Write {31'd0, source}

Synth Integration The synth top-level should stitch together the blocks above into a signal
chain. The top-level also contains control signals that the CPU can use to reset the synth (Table
9).

The CPU will play notes by performing the following sequence:

1. Configure the static parameters of the synth (sine/square/triangle/sawtooth NCO gain, global
gain, PWM DAC source)

2. Write to the global synth reset

31



3. To play a particular note:

(a) Write the note’s FCW to 0x8000_1000

(b) Write to 0x8000_1004 which should begin sending samples to the PWM DAC

(c) Once the note is released, the CPU writes to 0x8000_1008, and you should stop sending
samples to the PWM DAC

(d) The CPU then polls for 0x8000_100c to go high, indicating the synth has flushed out
all the samples to send

(e) The CPU writes to 0x8000_1010 to clear note_finished and any other synth state

Table 9: Memory Map for Synth Management

Address Function Access Data Encoding

32'h80000100 Global Synth Reset Write NA

32'h80001004 Note Start (Voice 1) Write NA

32'h80001008 Note Release (Voice 1) Write NA

32'h8000100c Note Finished (Voice 1) Read {31'd0, note_finished}

32'h80001010 Reset (Voice 1) Write NA

You should simulate this sequence in simulation.

3.3.3 Synth Model

We’ve provided a model of all the blocks above in several Python classes:

• scripts/synth/NCO.py - the NCO model, outputs all 4 waveform types

• scripts/synth/Blocks.py - models of the summer and truncator (with global gain)

• scripts/synth/Synth.py - model of the full mono and poly synths

You should use Synth.py to dump golden DAC samples for testing in simulation.

3.3.4 FPGA Testing

3.3.5 State Variable Filter (SVF) - Optional

The SVF is an infinite impulse response (IIR) filter with multiple outputs (as shown below). You
will need to define this block diagram in verilog and then put the outputs into a mux that the
parameters block will control. It’s important to note that Yh is a high pass filtered output, Yb is the
bandpass filtered output, Yn is the notch filtered output, and lastly Yl is the low pass filtered output.
For further information (such as how to pick the different values for different corner frequencies)
you can refer to this reference: SVF reference

32

https://karmafx.net/docs/karmafx_digitalfilters.pdf


In scripts/synthesizer.py, a software implementation of the synthesizer has been provided for you.
It is important to keep in mind that digital implementation of IIR filters is non-trivial. If not
done carefully, you may exceed the available number of bits and encounter overflow problems.
In addition, multiplications must be performed by values less than one to make sure the system
is bounded. Therefore, in the model provided for you, we implement ”fixed point operation”,
where fractions are represented by binary numbers. For instance, 0.5 is ”1”, and 0.625 is ”101”
(0.5 × 1 + 0.25 × 0 + 0.125 × 1). Because we do not have values larger than 1, we do not need to
separate integer from fraction (unless you decide to set Q to be larger than 1,in which case you
will have to handle this). Performing multiplication of fixed point numbers should be the same
as performing regular multiplication. However, the sign of the number (MSB) should be taken
out and computed separately. In total, you have 24 bits to spare in the SVF registers, Therefore,
budget your resolution wisely to not encounter overflow problems. You may change the values of F
to change the corner frequency of your filter. The filter should be able to adapt to different corner
frequencies at run time.

3.3.6 Amplitude Envelope (ADSR) - Optional

The ADSR block can be simplified to an ”ASR” block. Meaning, you just have an ”attack, sustain,
and release” process. This block will take the output of the SVF and modulate the amplitude such
that the resulting sound will get louder, hold, and get quiet after every key press. This is done by
multiplying the waveform out of the SVF filter with scalars. The ADSR should receive a ”press”
and a ”release” signal from the CPU. You can choose the time it takes for attack to go from silent
to the largest amplitude. Then the output would sustain its largest level until a ”release” signal is
received, and after that the sound start decaying to silence again. The python model provided for
you generates a reference behavior of the ADSR envelop. You may choose the envelop to mimic
any instrument you would like to.

3.3.7 Polyphonic Synthesis - 251A Only

To enable polyphony, instantiate multiple synths. We’ll use 4 voice polyphony. Parameters that
have MMIO addresses like 0x8000_01xx or 0x8000_02xx are shared among all synths.

Only the note-specific MMIO registers are distinct for each synth (Table 10). The 3rd nibble of
the address distinguishes each synth’s note registers.

A polyphonic synth model is in scripts/synth/Synth.py.

33



Table 10: Memory Map for Polyphony

Address Function Access Data Encoding

32'h80002000 Frequency Control Word (Voice 2) Write {8'd0, fcw[23:0]}

32'h80002004 Note Start (Voice 2) Write NA

32'h80002008 Note Release (Voice 2) Write NA

32'h8000200c Note Finished (Voice 2) Read {31'd0, note_finished}

32'h80002010 Reset (Voice 2) Write NA

3.4 Checkpoint 3 Deliverables Summary

Deliverable Due Date Description

User I/Os +
PWM Piano +
Synth

December 7

Demonstrate the working user IO test,
and PWM piano programs. Describe the
design of your synth and produce various
sounds.

34



4 Final Checkpoint - Optimization

This optimization checkpoint is lumped with the final checkoff. This part of the project is de-
signed to give students freedom to implement the optimizations of their choosing to improve the
performance of their processor.

The optimization goal for this project is to minimize the execution time on the mmult program,
as defined by the ’Iron Law’ of Processor Performance.

Time

Program
=

Instructions

Program
× Cycles

Instruction
× Time

Cycle

The number of instructions is fixed, but you have freedom to change the CPI and the CPU clock
frequency. Often you will find that you will have to sacrifice CPI to achieve a higher clock frequency,
but there also will exist opportunities to improve one or both of the variables without compromises.

4.1 Grading on Optimization

You will be primarily graded on trying several design points (tradeoffs between CPI and clock
frequency), documenting your results, and achieving the best mmult performance. You must demon-
strate a working CPU at an optimized clock frequency (above 50MHz) that has a working BIOS,
can load and execute programs (both echo and mmult), can receive, process, and send to user I/O,
and has a working audio synthesizer.

A very minor component of the optimization grade is based total FPGA resource utilization,
with the best designs using as few resources as possible. Credit for your area optimizations will be
calculated using a cost function. At a high level, the cost function will look like:

Cost = CLUT ×# of LUTs + CRAMB ×# of RAMBs + CREG ×# of Slice Registers

where CLUT, CRAMB, and CREG are constant value weights that will be decided upon based on
how much each resource that you use should cost. As part of your final grade we will evaluate the
cost of your design based on this metric. Keep in mind that cost is only one very small component
of your project grade. Correct functionality is far more important.

4.2 Clock Generation Info + Changing Clock Frequency

Open up z1top.v. There’s top level input called CLK_125MHZ_FPGA. It’s a 125 MHz clock signal,
which is used to derive the CPU clock.

Scrolling down, there’s an instantiation of PLLE2_ADV, which is a PLL (phase locked loop) primitive
on the FPGA. This is a circuit that can create a new clock from an existing clock with a user-
specified multiply-divide ratio.

The CLKIN1 input clock of the PLL is driven by the 125 MHz CLK_125MHZ_FPGA. The frequency of
CLKOUT0 is calculated as:

CLKOUT0f = CLKIN1f ·
CLKFBOUT MULT

DIVCLK DIVIDE · CLKOUT0 DIVIDE

35



In our case we get:

CLKOUT0f = 125 MHz · 34

5 · 17
= 50 MHz

Table 11 specifies the ideal PLL parameters to get certain output frequencies.

Table 11: PLL Parameters

Frequency DIVCLK_DIVIDE CLKFBOUT_MULT CLKOUT0_DIVIDE

50 MHz 5 34 17
60 MHz 5 36 15
65 MHz 5 39 15
70 MHz 5 42 15
75 MHz 5 33 11
80 MHz 5 48 15
85 MHz 5 34 10
90 MHz 5 36 10
95 MHz 5 38 10
100 MHz 5 36 9

4.3 Critical Path Identification

After running make impl, timing analysis will be performed to determine the critical path(s) of
your design. The timing tools will automatically figure out the CPU’s clock timing constraint based
on the multiply-divide ratio you used in your PLL.

The critical path can be found by looking in build/impl/post_route_timing_summary.rpt. Look
for the paths within your CPU (From Clock: cpu_clk, To Clock: cpu_clk).

For each timing path look for the attribute called “slack”. Slack describes how much extra time the
combinational delay of the path has before the rising edge of the receiving clock. It is a setup time
attribute. Positive slack means that this timing path resolves and settles before the rising edge of
the clock, and negative slack indicates a setup time violation.

There are some common delay types that you will encounter. LUT delays are combinational delays
through a LUT. net delays are from wiring delays. They come with a fanout attribute which you
should aim to minimize. Notice that your logic paths are usually dominated by routing delay;
as you optimize, you should reach the point where the routing and LUT delays are about equal
portions of the total path delay.

4.3.1 Schematic View

To visualize the path, you can open Vivado (make vivado), and open a DCP (Design Checkpoint)
file (File → Checkpoint → Open). The DCP is in build/impl/z1top_routed.dcp.

Re-run timing analysis with Reports → Timing → Report Timing Summary. Use the default
options and click OK. Navigate (on the bottom left) to Intra-Clock Paths → cpu_clk → Setup.

36



You can double-click any path to see the logic elements along it, or you can right-click and select
Schematic to see a schematic view of the path. These post-PNR timing reports may be hard to
decipher, so it may help to look at the post-synth DCP in build/synth/z1top.dcp.

You can also use the keep hierarchy attribute to prevent Vivado from moving registers and logic
across module boundaries.

// in z1top.v

(* keep_hierarchy="yes" *) Riscv151 #( ) cpu ( );

4.3.2 Finding Actual Critical Paths

When you first check the timing report with a 50 MHz clock, you might not see your ’actual’ critical
path. 50 MHz is easy to meet and the tools will only attempt to optimize routing until timing is
met, and will then stop.

You should increase the clock frequency slowly and rerun make impl until you fail to meet timing.
At this point, the critical paths you see in the report are the ’actual’ ones you need to work on.

Don’t try to increase the clock speed up all the way to 100 MHz initially, since that will cause the
routing tool to give up even before it tried anything.

4.4 Optimization Tips

As you optimize your design, you will want to try running mmult on your newly optimized designs
as you go along. You don’t want to make a lot of changes to your processor, get a better clock
speed, and then find out you broke something along the way.

You will find that sacrificing CPI for a better clock speed is a good bet to make in some cases, but
will worsen performance in others. You should keep a record of all the different optimizations you
tried and the effect they had on CPI and minimum clock period; this will be useful for the final
report when you have to justify your optimization and architecture decisions.

There is no limit to what you can do in this section. The only restriction is that you have to run the
original, unmodified mmult program so that the number of instructions remain fixed. You can add
as many pipeline stages as you want, stall as much or as little as desired, add a branch predictor,
or perform any other optimizations. If you decide to do a more advanced optimization (like a 5
stage pipeline), ask the staff to see if you can use it as extra credit in addition to the optimization.

You will be graded based on the best mmult performance you were able to achieve, but more
critically on how many design points you explored. Keep notes of your architecture modifications
in the process of optimization. Consider, but don’t obsess, over area usage when optimizing (keep
records though).

37

https://www.xilinx.com/support/answers/54778.html


5 Grading and Extra Credit

All groups must complete the final checkoff by December 11 (by appointment). If
you are unable to make the deadline for any of the checkpoints, it is still in your best interest to
complete the design late, as you can still receive most of the credit if you get a working design by
the final checkoff.

5.1 Checkpoints

We have divided the project up into checkpoints so that you (and the staff) can pace your progress.
The due dates are indicated at the end of each checkpoint section, as well as in the Project
Timeline (Section 6) at the end of this document.

5.2 Style: Organization, Design

Your code should be modular, well documented, and consistently styled. Projects with incompre-
hensible code will upset the graders.

5.3 Final Project Report

Upon completing the project, you will be required to submit a report detailing the progress of your
EECS151/251A project. The report should document your final circuit at a high level, and describe
the design process that led you to your implementation. We expect you to document and justify
any tradeoffs you have made throughout the semester, as well as any pitfalls and lessons learned.
Additionally, you will document any optimizations made to your system, the system’s performance
in terms of area (resource use), clock period, and CPI, and other information that sets your project
apart from other submissions.

The staff emphasizes the importance of the project report because it is the product you are able
to take with you after completing the course. All of your hard work should reflect in the project
report. Employers may (and have) ask to examine your EECS151/251A project report during
interviews. Put effort into this document and be proud of the results. You may consider the report
to be your medal for surviving EECS151/251A.

5.3.1 Report Details

You will turn in your project report on Gradescope by the final checkoff date. The report should
be around 8 pages total with around 5 pages of text and 3 pages of figures (± a few pages on each).
Ideally you should mix the text and figures together.

Here is a suggested outline and page breakdown for your report. You do not need to strictly follow
this outline, it is here just to give you an idea of what we will be looking for.

• Project Functional Description and Design Requirements. Describe the design ob-
jectives of your project. You don’t need to go into details about the RISC-V ISA, but you
need to describe the high-level design parameters (pipeline structure, memory hierarchy, etc.)
for this version of the RISC-V. (≈ 0.5 page)

38



• High-level organization. How is your project broken down into pieces. Block diagram
level-description. We are most interested in how you broke the CPU datapath and control
down into submodules, since the code for the later checkpoints will be pretty consistent across
all groups. Please include an updated block diagram (≈ 1 page).

• Detailed Description of Sub-pieces. Describe how your circuits work. Concentrate here
on novel or non-standard circuits. Also, focus your attention on the parts of the design that
were not supplied to you by the teaching staff. For instance, describe the details of your
FIFOs, audio synthesizer, and any extra credit work. (≈ 2 pages).

• Status and Results. What is working and what is not? At what frequency (50MHz or
greater) does your design run? Do certain checkpoints work at a higher clock speed while
others only run at 50 MHz? Please also provide the number of LUTs and SLICE registers used
by your design (from the utilization report in build/impl/post_place_utilization.rpt).
Also include the CPI and minimum clock period of running mmult for the various optimiza-
tions you made to your processor. This section is particularly important for non-working
designs (to help us assign partial credit). (≈ 1-2 pages).

• Conclusions. What have you learned from this experience? How would you do it different
next time? (≈ 0.5 page).

• Division of Labor. This section is mandatory. Each team member will turn in
a separate document from this part only. The submission for this document will also
be on Gradescope. How did you organize yourselves as a team. Exactly who did what? Did
both partners contribute equally? Please note your team number next to your name at the
top. (≈ 0.5 page).

When we grade your report, we will grade for clarity, organization, and grammar. Submit your
report to the Gradescope assignment. Only one partner needs to submit the shared report, while
each individual will need to submit the division of labor report to a separate Gradescope assignment.

5.4 Extra Credit

Teams that have completed the base set of requirements are eligible to receive extra credit worth
up to 10% of the project grade by adding extra functionality and demonstrating it at the time of
the final checkoff.

The following are suggested projects that may or may not be feasible in one week.

• Branch Predictor: Implement a two bit (or more complicated) branch predictor with a branch
history table (BHT) to replace the naive ’always taken’ predictor used in the project

• 5-Stage Pipeline: Add more pipeline stages and push the clock frequency past 100MHz

• Audio Recording: Capture mic input from the Pynq’s microphone and wire it to the CPU
via MMIO

• RISC-V M Extension: Extend the processor with a hardware multiplier and divider

When the time is right, if you are interested in implementing any of these, see the staff for more
details.

39



5.5 Project Grading

80% Functionality at project due date. You will demonstrate the functionality of your processor
during the final interview.
The following provided programs and tests should run properly. (60%)

• BIOS

• mmult

• mmult completes within 0.15s for full credit (cycles / frequency = time)

• sq piano

• user io test

• synth tb

You should have created tests for the following blocks. These should be described (20%)

• Synth

• NCO

• CPU tests (custom assembly tests are fine)

5% Optimization at project due date. This score is contingent on implementing all the required
functionality. An incomplete project will receive a zero in this category. You must try at
least 3 different optimizations.

5% Checkpoint functionality. You are graded on functionality for each completed checkpoint.

10% Final report and style demonstrated throughout the project.

Not included in the above tabulations are point assignments for extra credit as discussed above.
Extra credit is discussed below:

Up to 10% Additional functionality. Credit based on additional functionality will be qualified
on a case by case basis. Students interested in expanding the functionality of their project
must meet with a GSI well ahead of time to be qualified for extra credit. Point value will be
decided by the course staff on a case by case basis, and will depend on the complexity of your
proposal, the creativity of your idea, and relevance to the material taught.

6 Project Timeline

40



Checkpoint Deliverable Due Date

1 & 2: RISCV151 Processor Design Review November 2
In-Lab Checkoff November 23

3: IOs, FIFOs, PWM Controller, Synth In-Lab Checkoff December 7
Project Interview

Final Checkoff, Extra Credit, In-Lab Checkoff December 11 (by appointment)
and Optimizations Github code submission

Final Report Gradescope submission December 14

Table 12: EECS151 Fall 2020 Project Timeline

A Local Development

You can build the project on your laptop but there are a few dependencies to install. In addition
to Vivado and Icarus Verilog, you need a RISC-V GCC cross compiler and an elf2hex utility.

A.1 Linux

A system package provides the RISC-V GCC toolchain (Ubuntu): sudo apt install gcc-riscv64-linux-gnu.
There are packages for other distros too.

To install elf2hex:

git clone git@github.com:sifive/elf2hex.git

cd elf2hex

autoreconf -i

./configure --target=riscv64-linux-gnu

make

vim elf2hex # Edit line 7 to remove 'unknown'

sudo make install

A.2 OSX, Windows

Download SiFive’s GNU Embedded Toolchain from here. See the ’Prebuilt RISC-V GCC Toolchain
and Emulator’ section.

After downloading and extracting the tarball, add the bin folder to your PATH. For Windows, make
sure you can execute riscv64-unknown-elf-gcc -v in a Cygwin terminal. Do the same for OSX,
using the regular terminal.

For Windows, re-run the Cygwin installer and install the packages
git, python3, python2, autoconf, automake, libtool. See this StackOverflow question if
you need help selecting the exact packages to install.

Clone the elf2hex repo git clone git@github.com:sifive/elf2hex. Follow the instructions in
the elf2hex repo README to build it from git. You should be able to run riscv64-unknown-elf-elf2hex

in a terminal.

41

https://www.sifive.com/boards
https://stackoverflow.com/questions/47168311/cygwin-and-failed-to-run-aclocal-no-such-file-or-directory
https://github.com/sifive/elf2hex


B BIOS

This section was written by Vincent Lee, Ian Juch, and Albert Magyar.

B.1 Background

For the first checkpoint we have provided you a BIOS written in C that your processor is instantiated
with. BIOS stands for Basic Input/Output System and forms the bare bones of the CPU system
on initial boot up. The primary function of the BIOS is to locate, and initialize the system and
peripheral devices essential to the PC operation such as memories, hard drives, and the CPU cores.

Once these systems are online, the BIOS locates a boot loader that initializes the operating system
loading process and passes control to it. For our project, we do not have to worry about loading the
BIOS since the FPGA eliminates that problem for us. Furthermore, we will not deal too much with
boot loaders, peripheral initialization, and device drivers as that is beyond the scope of this class.
The BIOS for our project will simply allow you to get a taste of how the software and hardware
layers come together.

The reason why we instantiate the memory with the BIOS is to avoid the problem of bootstrap-
ping the memory which is required on most computer systems today. Throughout the next few
checkpoints we will be adding new memory mapped hardware that our BIOS will interface with.
This document is intended to explain the BIOS for checkpoint 1 and how it interfaces with the
hardware. In addition, this document will provide you pointers if you wish to modify the BIOS at
any point in the project.

B.2 Loading the BIOS

For the first checkpoint, the BIOS is loaded into the Instruction memory when you first build it.
As shown in the Checkpoint 1 specification, this is made possible by instantiating your instruction
memory to the BIOS file by building the block RAM with the bios151v3.hex file. If you want to
instantiate a modified BIOS you will have to change this .hex file in your block RAM directory and
rebuild your design and the memory.

To do this, simply cd to the software/bios151v3 directory and make the .hex file by running
“make”. This should generate the .hex file using the compiler tailored to our ISA. The block RAM
will be instantiated with the contents of the .hex file. When you get your design to synthesize and
impact to the board, open up screen using the same command from Lab 5:

sudo screen /dev/ttyUSB0 115200

Once you are in screen, if you CPU design is working correctly you should be able to hit Enter
and a carrot prompt '>' will show up on the screen. If this doesn’t work, try hitting the reset
button on the FPGA which is the center compass switch and hit enter. If you can’t get the BIOS
carrot to come up, then your design is not working and you will have to fix it.

B.3 Loading Your Own Programs

The BIOS that we provide you is written so that you can actually load your own programs for testing
purposes and benchmarking. Once you instantiate your BIOS block RAM with the bios151v3.hex

42



file and synthesize your design, you can transfer your own program files over the serial line.

To load you own programs into the memory, you need to first have the .hex file for the program
compiled. You can do this by copying the software directory of one of our C programs folders in
/software directory and editing the files. You can write your own MIPS program by writing test
code to the .s file or write your own c code by modifying the .c file. Once you have the .hex file for
your program, impact your board with your design and run:

hex_to_serial <file name> <target address>

The <file name> field corresponds to the .hex file that you are to uploading to the instruction
memory. The <target address> field corresponds to the location in memory you want to write
your program to.

Once you have uploaded the file, you can fire up screen and run the command:

jal <target hex address>

Where the <target hex address> is where you stored the location of the hex file over serial. Note
that our design does not implement memory protection so try to avoid storing your program over
your BIOS memory. Also note that the instruction memory size for the first checkpoint is limited
in address size so large programs may fail to load. The jal command will change the PC to where
your program is stored in the instruction memory.

B.4 The BIOS Program

The BIOS itself is a fairly simple program and composes of a glorified infinite loop that waits for
user input. If you open the bios151v3.c file, you will see that the main method composes of a large
for loop that prints a prompt and gets user input by calling the read_token method. If at any time
your program execution or BIOS hangs or behaves unexpected, you can hit the reset button on your
board to reset the program execution to the main method. The read_token method continuously
polls the UART for user input from the keyboard until it sees the character specified by ds. In the
case of the BIOS, the termination character read_token is called with is the 0xd character which
corresponds to Enter. The read_token method will then return the values that it received from
the user. Note that there is no backspace option so if you make a mistake you will have to wait
until the next command to fix it.

43



Figure 5: BIOS Execution Flow

The buffer returned from the read_token method with the user input is then parsed by comparing
the returned buffer against commands that the BIOS recognizes. If the BIOS parses a command
successfully it will execute the appropriate subroutine or commands. Otherwise it will tell you that
the command you input is not recognized. If you want to add commands to the BIOS at any time
in the project, you will have to add to the comparisons that follow after the read_token subroutine
in the BIOS.

B.5 The UART

You will notice that some of the BIOS execution calls will call subroutines in the uart.c file which
takes care of the transmission and reception of byte over the serial line. The uart.c file contains
three subroutines. The first subroutine, uwrite_int8 executes a UART transmission for a single
byte by writing to the output data register. The second subroutine uwrite_int8s allows you to
process an array of type int8_t or chars and send them over the serial line. The third routine
uread_int8 polls the UART for valid data and reads a byte from the serial line.

In essence, these three routines are operating the UART on your design from a software view using
the memory mapped I/O. Therefore, in order for the software to operate the memory map correctly,
the uart.c module must store and load from the correct addresses as defined by out memory map.
You will find the necessary memory map addresses in the uart.h file that conforms to the design
specification.

44



B.6 Command List

The following commands are built into the BIOS that we provide for you. All values are interpreted
in hexadecimal and do not require any radix prefix (ex. “0x”). Note that there is not backspace
command.

jal <hexadecimal address> - Moves program execution to the specified address

lw <hexadecimal address> - Displays word at specified address to screen

lhu <hexadecimal address> - Displays half at specified address to screen

lbu <hexadecimal address> - Displays byte at specified address to screen

sw <value> <hexadecimal address> - Stores specified word to address in memory

sh <value> <hexadecimal address> - Stores specified half to address in memory

sb <value> <hexadecimal address> - Stores specified byte to address in memory

There is another command file in the main() method that is used only when you execute hex_to_serial.
When you execute hex_to_serial, your workstation will initiate a byte transfer by calling this
command in the BIOS. Therefore, don’t mess with this command too much as it is one of the more
critical components of your BIOS.

B.7 Adding Your Own Features

Feel free to modify the BIOS code if you want to add your own features during the project for fun
or to make your life easier. If you do choose to modify the BIOS, make sure to preserve essential
functionality such as the I/O and the ability to store programs. In order to add features, you can
either add to the code in the bios151v3.c file or create your own c source and header files. Note
that you do not have access to standard c libraries so you will have to add them yourself if you
need additional library functionality.

45


	Introduction
	Tentative Deadlines
	General Project Tips

	Checkpoints 1 & 2 - 3-stage Pipelined RISC-V CPU
	Setting up your Code Repository
	Integrate Designs from Labs
	Project Skeleton Overview
	RISC-V 151 ISA
	CSR Instructions

	Pipelining
	Hazards
	Register File
	RAMs
	Initialization
	Endianness + Addressing
	Reading from RAMs
	Writing to RAMs

	Memory Architecture
	Summary of Memory Access Patterns
	Unaligned Memory Accesses
	Address Space Partitioning
	Memory Mapped I/O

	Testing
	Integration Testing

	Software Toolchain - Writing RISC-V Programs
	Assembly Tests
	RISC-V ISA Tests
	BIOS and Programming your CPU
	Target Clock Frequency
	Matrix Multiply
	How to Survive This Checkpoint
	How To Get Started

	Checkoff
	Checkpoint 1: Block Diagram
	Non-Checkpoint Weeks
	Checkpoint 2: Base RISCV151 System
	Checkpoints 1 & 2 Deliverables Summary


	Checkpoint 3 - I/O Integration, PWM Controller, Subtractive Synthesizer
	I/O Integration
	Hookup User I/O
	User I/O Test Program

	PWM DAC
	RISC-V Core Connection
	Implementation
	Piano Program

	Subtractive Synth
	Numerically Controlled Oscillator (NCO) - Required
	Sample Buffer and CDC - Required
	Synth Model
	FPGA Testing
	State Variable Filter (SVF) - Optional
	Amplitude Envelope (ADSR) - Optional
	Polyphonic Synthesis - 251A Only

	Checkpoint 3 Deliverables Summary

	Final Checkpoint - Optimization
	Grading on Optimization
	Clock Generation Info + Changing Clock Frequency
	Critical Path Identification
	Schematic View
	Finding Actual Critical Paths

	Optimization Tips

	Grading and Extra Credit
	Checkpoints
	Style: Organization, Design
	Final Project Report
	Report Details

	Extra Credit
	Project Grading

	Project Timeline
	Local Development
	Linux
	OSX, Windows

	BIOS
	Background
	Loading the BIOS
	Loading Your Own Programs
	The BIOS Program
	The UART
	Command List
	Adding Your Own Features


