from torchvision.utils import make_grid
from torchvision.io import read_image
from pathlib import Path
import torch
import numpy as np
import matplotlib.pyplot as plt
import torchvision.transforms.functional as F
plt.rcParams["savefig.bbox"] = 'tight'
def show(imgs, layer):
imgs = list(imgs)
if not isinstance(imgs, list):
imgs = [imgs]
fix, axs = plt.subplots(ncols=len(imgs), squeeze=False,figsize=(20,4.8))
fix.figsize = (20, 10)
for i, img in enumerate(imgs):
img = img.detach()
img = F.to_pil_image(img)
axs[0, i].imshow(np.asarray(img), cmap='gray', vmin=0, vmax=255)
axs[0, i].set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])
def display_images(images, i):
grid = make_grid(images, nrow=len(images))
show(grid, i)
def show_all_channels(output, i):
display_images(list(output), i)
#dog1_int = read_image(str(Path('assets') / 'dog1.jpg'))
#dog2_int = read_image(str(Path('assets') / 'dog2.jpg'))
#print("madde images")
#images = [read_image("datasets/DigiFace/subjects_0-1999_72_imgs/0/" + str(i) + ".png") for i in range(0,10)]
#print(len(images))
#display_images(images)
#print("displaed")