import time import torch from torch import nn from torch.utils.data import DataLoader from torchvision import transforms import datasets import models batch_size = 24 device = ( "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" ) print(f"Using {device} device") training_data = datasets.DigiFaceDataset( path = "datasets/DigiFace/minitest", #subjects_0-1999_72_imgs" split='train' #transform=transforms.RandomRotatiion, #download=True ) testing_data = datasets.DigiFaceDataset( path = "datasets/DigiFace/minitest", #subjects_0-1999_72_imgs" split='test' #transform=transforms.RandomRotatiion, #download=True ) # Create data loaders. train_dataloader = DataLoader(training_data, batch_size=batch_size) test_dataloader = DataLoader(testing_data, batch_size=batch_size) for X, y in test_dataloader: print(f"Shape of X [N, C, H, W]: {X.shape}") print(f"Shape of y: {y.shape} {y.dtype}") break model = models.Backbone().to(device) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) print(model) print(count_parameters(model)) #model.forward(training_data[0][0]) loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9, nesterov=True) def train(dataloader, model, loss_fn, optimizer, isLastEpoch=False): size = len(dataloader.dataset) model.train() start = time.time() for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) # Compute prediction error pred = model(X)#, isNorm=False, isPrint=False, visualize=False) pred_loss = loss_fn(pred, y) loss = pred_loss # Backpropagation loss.backward() optimizer.step() optimizer.zero_grad() if batch % 50 == 0: loss, current = loss.item(), (batch + 1) * len(X) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") end = time.time() print("Epoch time: " + str((end - start))) def test(dataloader, model, loss_fn): size = len(dataloader.dataset) num_batches = len(dataloader) model.eval() test_loss, correct = 0, 0 with torch.no_grad(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred = model(X) test_loss += loss_fn(pred, y).item() correct += (pred.argmax(1) == y).type(torch.float).sum().item() test_loss /= num_batches correct /= size print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") epochs = 100 for t in range(epochs): print(f"Epoch {t+1}\n-------------------------------") train(train_dataloader, model, loss_fn, optimizer, t == epochs-1) test(test_dataloader, model, loss_fn) print("Done!") print("Printing layer representations") with torch.no_grad(): i = 0 for batch, (X, y) in enumerate(test_dataloader): X, y = X.to(device), y.to(device) # Compute prediction error pred = model(X)#, isNorm=False, isPrint=False, visualize=True) i += 1 if i >= 0 :break print("done.") torch.save(model.state_dict(), "model.pth") print("Saved PyTorch Model State to model.pth")