

F O U N D A T I O N

®

O

P
C

 U
A

 C
o

m
p

a
n

io
n

-S
p

e
c

ific
a

tio
n

OPC 40100-1

OPC UA for Machine Vision

Part 1: Control, configuration management, recipe
management, result management

Release 1.0

2019-08

OPC 40100-1 (Edition 1.0, 2019-08) is identical with VDMA 40100-1:2019-08

F O U N D A T I O N

®

OPC UA Companion Specification for Robotics (OPC Robotics) –
Part 1: Vertical integration

OPC UA Companion Specification for Robotics (OPC Robotics) –
Teil 1: Vertikale Integration

VDMA

VDMA Specification August 2019

VDMA 40100-1

ICS 25.040.30

OPC UA for Machine Vision (OPC Machine Vision) –
Part 1: Control, configuration management, recipe management,
result management

OPC UA for Machine Vision (OPC Machine Vision) –
Teil 1: Steuerung, Konfigurationsverwaltung, Rezeptverwaltung,
Ergebnisverwaltung

Document comprises 182 pages

VDMA

© All rights reserved to VDMA e.V., Frankfurt/Main – Modification, amendment, editing, translation, copying and/or circulation
only with permission in writing from VDMA e.V.

VDMA 40100-1:2019-08

OPC 40100-1: Control, configuration management, recipe management, result management

 4 Release 1.0

Contents

Page

Contents ... 4

Foreword ... 14

1 Scope ... 16

2 Normative references ... 16

3 Terms, definitions and conventions ... 17

3.1 Terms ... 17

3.2 Abbreviations ... 19

3.3 Conventions used in this document ... 19

3.3.1 Conventions for Node descriptions .. 19

3.3.2 NodeIds and BrowseNames .. 21

3.3.3 Common Attributes .. 21

4 General information on Machine Vision and OPC UA .. 24

4.1 Introduction to Machine Vision systems .. 24

4.2 Introduction to OPC Unified Architecture ... 26

4.2.1 What is OPC UA? .. 26

4.2.2 Basics of OPC UA .. 26

4.2.3 Information modelling in OPC UA .. 27

5 Use cases .. 32

6 OPC Machine Vision information model overview .. 33

7 ObjectTypes for the Vision System in General .. 34

7.1 VisionSystemType ... 34

7.2 ConfigurationManagementType .. 35

7.2.1 Overview .. 35

7.2.2 ConfigurationManagementType methods .. 37

7.3 ConfigurationFolderType ... 44

7.4 ConfigurationTransferType .. 44

7.4.1 Overview .. 44

7.4.2 ConfigurationTransferType methods ... 45

7.5 RecipeManagementType ... 47

7.5.1 Overview .. 47

7.5.2 RecipeManagementType Methods .. 49

7.6 RecipeTransferType .. 60

7.6.1 Overview .. 60

7.6.2 RecipeTransferType Methods.. 60

7.7 RecipeType .. 62

7.7.1 Overview .. 62

7.7.2 RecipeType Methods ... 63

7.8 RecipeFolderType .. 66

Release 1.0 5

OPC 40100-1: Control, configuration management, recipe management, result management

7.9 ProductFolderType ... 67

7.10 ResultManagementType .. 68

7.10.1 Overview ... 68

7.10.2 ResultManagementType methods.. 70

7.11 ResultFolderType ... 76

7.12 ResultTransferType .. 76

7.12.1 Overview ... 76

7.12.2 ResultTransferType methods ... 77

7.13 SafetyStateManagementType .. 78

7.13.1 Overview ... 78

7.13.2 SafetyStateManagementType methods ... 79

8 ObjectTypes for Vision System State Handling ... 80

8.1 State Machine overview ... 80

8.1.1 Introduction ... 80

8.1.2 Hierarchical state machines ... 80

8.1.3 Automatic and triggered transitions and events ... 81

8.1.4 Preventing transitions ... 81

8.2 VisionStateMachineType .. 81

8.2.1 Introduction ... 81

8.2.2 Operation of the VisionStateMachineType ... 82

8.2.3 VisionStateMachineType Overview .. 85

8.2.4 Modes of operation ... 85

8.2.5 VisionStateMachineType Definition .. 86

8.2.6 VisionStateMachineType States... 87

8.2.7 VisionStateMachineType Transitions ... 90

8.2.8 VisionStateMachineType Methods ... 93

8.2.9 VisionStateMachineType EventTypes .. 95

8.3 VisionAutomaticModeStateMachineType ... 96

8.3.1 Introduction ... 96

8.3.2 Operation of the “AutomaticMode” state machine. ... 98

8.3.3 VisionAutomaticModeStateMachineType Overview... 101

8.3.4 VisionAutomaticModeStateMachineType Definition... 102

8.3.5 VisionAutomaticModeStateMachineType States ... 103

8.3.6 VisionAutomaticModeStateMachineType Transitions .. 107

8.3.7 VisionAutomaticModeStateMachineType Methods .. 109

8.3.8 VisionAutomaticModeStateMachineType Events ... 113

8.3.9 Adding an operation mode ... 119

8.4 VisionStepModelStateMachineType .. 119

8.4.1 Operation of the VisionStepModelStateMachine .. 119

8.4.2 VisionStepModelStateMachineType Overview .. 121

8.4.3 VisionStepModelStateMachineType Definition .. 121

OPC 40100-1: Control, configuration management, recipe management, result management

 6 Release 1.0

8.4.4 VisionStepModelStateMachineType States ... 122

8.4.5 VisionStepModelStateMachineType Transitions ... 123

8.4.6 VisionStepModelStateMachineType Methods ... 124

8.4.7 VisionStepModelStateMachine Events .. 124

9 VariableTypes for the Vision System.. 127

9.1 ResultType ... 127

10 EventTypes for the Vision System .. 130

10.1 VisionStateMachineType EventTypes ... 130

10.2 VisionAutomaticModeStateMachineType EventTypes .. 130

10.3 VisionStepModelStateMachineType EventTypes .. 130

10.4 Vision System State EventTypes and ConditionTypes ... 130

11 System States and Conditions for the Vision System .. 132

11.1 Introduction .. 132

11.2 Client interaction .. 132

11.2.1 Introduction .. 132

11.2.2 No Interaction ... 132

11.2.3 Acknowledgement .. 132

11.2.4 Confirmation ... 132

11.2.5 Confirm All.. 133

11.3 Classes of Informational Elements .. 133

11.3.1 Overview .. 133

11.3.2 Diagnostic Information ... 133

11.3.3 Information ... 133

11.3.4 Warning .. 133

11.3.5 Error ... 133

11.3.6 Persistent Error .. 133

11.4 EventTypes for Informational Elements ... 133

11.4.1 VisionEventType .. 133

11.4.2 VisionDiagnosticInfoEventType ... 136

11.4.3 VisionInformationEventType .. 136

11.4.4 VisionConditionType .. 136

11.4.5 VisionWarningConditionType... 139

11.4.6 VisionErrorConditionType .. 139

11.4.7 VisionPersistentErrorConditionType .. 140

11.4.8 VisionSafetyEventType .. 140

11.5 Interaction between Messages, State Machine, and Vision System ... 141

11.6 Structuring of Vision System State information ... 143

11.6.1 Overview .. 143

11.6.2 Production (PRD) ... 143

11.6.3 Standby (SBY) ... 143

11.6.4 Engineering (ENG) ... 143

Release 1.0 7

OPC 40100-1: Control, configuration management, recipe management, result management

11.6.5 Scheduled Downtime (SDT) ... 143

11.6.6 Unscheduled Downtime (UDT) ... 143

11.6.7 Nonscheduled Time (NST) ... 143

12 DataTypes for the Vision System .. 146

12.1 Handle .. 146

12.2 TrimmedString .. 146

12.3 TriStateBooleanDataType .. 146

12.4 ProcessingTimesDataType .. 146

12.5 MeasIdDataType .. 146

12.6 PartIdDataType .. 147

12.7 JobIdDataType ... 147

12.8 BinaryIdBaseDataType ... 148

12.9 RecipeIdExternalDataType ... 148

12.10 RecipeIdInternalDataType .. 148

12.11 RecipeTransferOptions ... 148

12.12 ConfigurationDataType ... 149

12.13 ConfigurationIdDataType .. 149

12.14 ConfigurationTransferOptions .. 149

12.15 ProductDataType .. 149

12.16 ProductIdDataType ... 150

12.17 ResultDataType .. 150

12.18 ResultIdDataType ... 151

12.19 ResultStateDataType ... 152

12.20 ResultTransferOptions .. 152

12.21 SystemStateDataType .. 153

12.22 SystemStateDescriptionDataType ... 153

13 Profiles and Namespaces ... 154

13.1 Namespace Metadata .. 154

13.2 Conformance Units ... 154

13.2.1 Overview ... 154

13.2.2 Server ... 154

13.2.3 Client ... 157

13.3 Facets and Profiles ... 160

13.3.1 Overview ... 160

13.3.2 Server ... 160

13.3.3 Client ... 167

13.4 Handling of OPC UA Namespaces .. 174

A.1 Namespace and identifiers for Machine Vision Information Model .. 175

A.2 Profile URIs for Machine Vision Information Model .. 175

B.1 Recipe management .. 177

B.1.1 Terms used in recipe management .. 177

OPC 40100-1: Control, configuration management, recipe management, result management

 8 Release 1.0

B.1.2 Recipes in general ... 177

B.1.3 Recipes on the vision system .. 178

B.1.4 Example for a recipe life cycle ... 181

B.1.5 Recipes and the state of the vision system ... 181

B.1.6 Recipe-product relation .. 183

B.1.7 Recipe transfer ... 183

Figures

Figure 1 – System model for OPC Machine Vision ... 26
Figure 2 – The Scope of OPC UA within an Enterprise ... 27
Figure 3 – A Basic Object in an OPC UA Address Space ... 28
Figure 4 – The Relationship between Type Definitions and Instances ... 29
Figure 5 – Examples of References between Objects .. 30
Figure 6 – The OPC UA Information Model Notation .. 30
Figure 7 – Overview of the OPC Machine Vision information model .. 33
Figure 8 – Overview VisionSystemType .. 34
Figure 9 – Overview ConfigurationManagementType ... 36
Figure 10 – Overview ConfigurationFolderType .. 44
Figure 11 – Overview ConfigurationTransferType ... 45
Figure 12 – Overview RecipeManagementType ... 48
Figure 13 – RecipeTransferType ... 60
Figure 14 – Overview RecipeType .. 62
Figure 15 – Overview RecipeFolderType .. 67
Figure 16 – Overview ProductFolderType ... 68
Figure 17 – Overview ResultManagementType .. 69
Figure 18 – Overview ResultFolderType ... 76
Figure 19 – Overview ResultTransferType .. 77
Figure 20 – Overview SafetyStateManagementType .. 78
Figure 21 – Vision system state machine type hierarchy .. 81
Figure 22 – States and transitions of the VisionStateMachineType .. 82
Figure 23 – Overview VisionStateMachineType .. 85
Figure 24 – States and transitions of the VisionAutomaticModeStateMachineType ... 97
Figure 25 – Entering the VisionAutomaticModeStateMachine SubStateMachine .. 100
Figure 26 – Overview VisionAutomaticModeStateMachineType .. 101
Figure 27 – Overview RecipePreparedEventType .. 113
Figure 28 – Overview JobStartedEventType ... 114
Figure 29 – Overview ReadyEventType .. 115
Figure 30 – Overview ResultReadyEventType .. 116
Figure 31 – Overview AcquisitionDoneEventType .. 118
Figure 32 – States and transitions of the VisionStepModelStateMachineType... 120
Figure 33 – Overview VisionStepModelStateMachineType .. 121
Figure 34 – Overview EnterStepSequenceEvent .. 125
Figure 35 – Overview NextStepEvent.. 125
Figure 36 – Overview LeaveStepSequenceEventType ... 126
Figure 37 – Overview ResultType ... 127
Figure 38 – Overview VisionEventType... 134
Figure 39 – Overview VisionDiagnosticInfoEventType .. 136
Figure 40 – Overview VisionInformationEventType .. 136
Figure 41 – Overview VisionConditionType .. 137
Figure 42 – Overview VisionWarningConditionType ... 139
Figure 43 – Overview VisionErrorConditionType .. 139
Figure 44 – Overview VisionPersistentErrorConditionType .. 140
Figure 45 – Overview VisionSafetyEventType .. 141

Release 1.0 9

OPC 40100-1: Control, configuration management, recipe management, result management

Tables

Table 1 – Terms ... 17
Table 2 – Abbreviations .. 19
Table 3 – Examples of DataTypes ... 20
Table 4 – Type Definition Table ... 21
Table 5 – Common Node Attributes ... 22
Table 6 – Common Object Attributes ... 22
Table 7 – Common Variable Attributes .. 22
Table 8 – Common VariableType Attributes .. 23
Table 9 – Common Method Attributes .. 23
Table 10 – Definition of VisionSystemType.. 35
Table 11 – Definition of ConfigurationManagementType ... 37
Table 12 – AddConfiguration Method Arguments .. 38
Table 13 – AddConfiguration Method AddressSpace Definition .. 38
Table 14 – GetConfigurationById Method Arguments ... 40
Table 15 – GetConfigurationById Method AddressSpace Definition ... 40
Table 16 – GetConfigurationList Method Arguments ... 41
Table 17 – GetConfigurationList Method AddressSpace Definition ... 41
Table 18 – ReleaseConfigurationHandle Method Arguments .. 42
Table 19 – ReleaseConfigurationHandle Method AddressSpace Definition .. 42
Table 20 – RemoveConfiguration Method Arguments ... 43
Table 21 – RemoveConfiguration Method AddressSpace Definition ... 43
Table 22 – ActivateConfiguration Method Arguments .. 43
Table 23 – ActivateConfiguration Method AddressSpace Definition ... 44
Table 24 – Definition of ConfigurationFolderType .. 44
Table 25 – Definition of ConfigurationTransferType .. 45
Table 26 – GenerateFileForRead Method Arguments ... 46
Table 27 – GenerateFileForRead Method AddressSpace Definition ... 46
Table 28 – GenerateFileForWrite Method Arguments ... 47
Table 29 – GenerateFileForWrite Method AddressSpace Definition ... 47
Table 30 – Definition of RecipeManagementType ... 49
Table 31 – AddRecipe Method Arguments .. 50
Table 32 – AddRecipe Method AddressSpace Definition .. 50
Table 33 – PrepareRecipe Method Arguments .. 52
Table 34 – PrepareRecipe Method AddressSpace Definition .. 52
Table 35 – UnprepareRecipe Method Arguments .. 53
Table 36 – UnprepareRecipe Method AddressSpace Definition .. 54
Table 37 – GetRecipeListFiltered Method Arguments ... 55
Table 38 – GetRecipeListFiltered Method AddressSpace Definition ... 55
Table 39 – ReleaseRecipeHandle Method Arguments .. 56
Table 40 – ReleaseRecipeHandle Method AddressSpace Definition .. 56
Table 41 – RemoveRecipe Method Arguments ... 57
Table 42 – RemoveRecipe Method AddressSpace Definition ... 57
Table 43 – PrepareProduct Method Arguments ... 58
Table 44 – PrepareProduct Method AddressSpace Definition... 58
Table 45 – UnprepareProduct Method Arguments .. 58
Table 46 – UnprepareProduct Method AddressSpace Definition .. 59
Table 47 – UnlinkProduct Method Arguments.. 59
Table 48 – UnlinkProduct Method AddressSpace Definition ... 59
Table 49 – Definition of RecipeTransferType ... 60
Table 50 – GenerateFileForRead Method Arguments ... 61
Table 51 – GenerateFileForRead Method AddressSpace Definition ... 61
Table 52 – GenerateFileForWrite Method Arguments ... 61
Table 53 – GenerateFileForWrite Method AddressSpace Definition ... 62
Table 54 – Definition of RecipeType .. 63
Table 55 – LinkProduct Method Arguments ... 64
Table 56 – LinkProduct Method AddressSpace Definition ... 64
Table 57 – UnlinkProduct Method Arguments.. 65
Table 58 – UnlinkProduct Method AddressSpace Definition ... 65

OPC 40100-1: Control, configuration management, recipe management, result management

 10 Release 1.0

Table 59 – Prepare Method Arguments... 65
Table 60 – Prepare Method AddressSpace Definition .. 65
Table 61 – Unprepare Method Arguments .. 66
Table 62 – Unprepare Method AddressSpace Definition .. 66
Table 63 – Definition of RecipeFolderType ... 67
Table 64 – Definition of ProductFolderType .. 68
Table 65 – Definition of ResultManagementType ... 69
Table 66 – GetResultById Method Arguments .. 70
Table 67 – GetResultById Method AddressSpace Definition .. 70
Table 68 – GetResultComponentsById Method Arguments ... 72
Table 69 – GetResultComponentsById Method AddressSpace Definition ... 73
Table 70 – GetResultListFiltered Method Arguments .. 74
Table 71 – GetResultListFiltered Method AddressSpace Definition ... 75
Table 72 – ReleaseResultHandle Method Arguments .. 75
Table 73 – ReleaseResultHandle Method AddressSpace Definition .. 75
Table 74 – Definition of ResultFolderType .. 76
Table 75 – Definition of ResultTransferType ... 77
Table 76 – GenerateFileForRead Method Arguments .. 77
Table 77 – GenerateFileForRead Method AddressSpace Definition .. 78
Table 78 – Definition of SafetyStateManagementType ... 78
Table 79 – ReportSafetyState Method Arguments .. 79
Table 80 – ReportSafetyState Method AddressSpace Definition .. 79
Table 81 – VisionStateMachineType Address Space Definition ... 87
Table 82 – VisionStateMachineType States .. 88
Table 83 – VisionStateMachineType State Descriptions... 89
Table 84 – VisionStateMachineType Transitions .. 91
Table 85 – Halt Method Arguments ... 93
Table 86 – Halt Method AddressSpace Definition ... 93
Table 87 – Reset Method Arguments .. 94
Table 88 – Reset Method AddressSpace Definition .. 94
Table 89 – SelectModeAutomatic Method Arguments .. 94
Table 90 – SelectModeAutomatic Method AddressSpace Definition .. 94
Table 91 – ConfirmAll Method Arguments ... 95
Table 92 – ConfirmAll Method AddressSpace Definition ... 95
Table 93 – StateChangedEventType AddressSpace Definition .. 95
Table 94 – ErrorEventType AddressSpace Definition ... 95
Table 95 – ErrorResolvedEventType AddressSpace Definition .. 96
Table 96 – VisionAutomaticModeStateMachineType definition .. 102
Table 97 – VisionAutomaticModeStateMachineType States .. 103
Table 98 – VisionAutomaticModeStateMachineType State Descriptions ... 104
Table 99 – VisionAutomaticModeStateMachineType transitions .. 107
Table 100 – StartSingleJob Method Arguments .. 109
Table 101 – StartSingleJob Method AddressSpace Definition .. 109
Table 102 – StartContinuous Method AddressSpace Definition ... 110
Table 103 – Abort Method Arguments ... 111
Table 104 – Abort Method AddressSpace Definition ... 111
Table 105 – Stop Method Arguments .. 111
Table 106 – Stop Method AddressSpace Definition .. 112
Table 107 – SimulationMode Method Arguments ... 112
Table 108 – SimulationMode Method AddressSpace Definition ... 112
Table 109 – Definition of RecipePreparedEventType ... 113
Table 110 – Definition of JobStartedEventType .. 114
Table 111 – Definition of ReadyEventType ... 115
Table 112 – Definition of ResultReadyEventType ... 116
Table 113 – Definition of AcquisitionDoneEventType ... 118
Table 114 – VisionStepModelStateMachineType definition .. 122
Table 115 – VisionStepModelStateMachineType states ... 122
Table 116 – VisionStepModelStateMachineType state descriptions .. 123
Table 117 – VisionStepModelStateMachineType transitions .. 123

Release 1.0 11

OPC 40100-1: Control, configuration management, recipe management, result management

Table 118 – Sync Method Arguments .. 124
Table 119 – Sync Method AddressSpace Definition .. 124
Table 120 – EnterStepSequenceEventType definition .. 125
Table 121 – NextStepEventType definition .. 126
Table 122 – LeaveStepSequenceEventType definition ... 126
Table 123 – ResultType VariableType ... 128
Table 124 – VisionStateMachineType EventTypes ... 130
Table 125 – VisionAutomaticModeStateMachineType EventTypes .. 130
Table 126 – VisionStepModelStateMachineType EventTypes .. 130
Table 127 – Vision System State EventTypes and ConditionTypes .. 131
Table 128 – Information Elements ... 133
Table 129 – VisionEventType Definition .. 135
Table 130 – VisionDiagnosticInfoEventType.. 136
Table 131 – VisionInformationEventType .. 136
Table 132 – VisionConditionType .. 138
Table 133 – VisionWarningConditionType ... 139
Table 134 – VisionErrorConditionType .. 140
Table 135 – VisionPersistentErrorConditionType .. 140
Table 136 – VisionSafetyEventType Definition .. 141
Table 137 – E10 system states .. 143
Table 138 – Basic error paths .. 144
Table 139 – Values of TriStateBooleanDataType .. 146
Table 140 – Definition of ProcessingTimesDataType .. 146
Table 141 – Definition of MeasIdDataType .. 147
Table 142 – Definition of PartIdDataType .. 147
Table 143 – Definition of JobIdDataType ... 147
Table 144 – Definition of BinaryIdBaseDataType .. 148
Table 145 – RecipeTransferOptions structure ... 148
Table 146 – Definition of ConfigurationDataType .. 149
Table 147 – Definition of ConfigurationTransferOptions .. 149
Table 148 – Definition of ProductDataType ... 149
Table 149 – Definition of ProductIdDataType .. 150
Table 150 – Definition of ResultDataType .. 151
Table 151 – Definition of ResultIdDataType... 152
Table 152 – Definition of ResultStateDataType ... 152
Table 153 – Values of ResultStateDataType ... 152
Table 154 – Definition of ResultTransferOptions ... 152
Table 155 – Values of SystemStateDataType ... 153
Table 156 – Definition of SystemStateDescriptionDataType ... 153
Table 157 – NamespaceMetadata Object for this Specification .. 154
Table 158 – Definition of Server Conformance Units ... 154
Table 159 – Definition of Client Conformance Units .. 157
Table 160 – Server Facets ... 160
Table 161 – Definition of Basic Vision System Server Facet ... 161
Table 162 – Definition of Inline Vision System Server Facet ... 162
Table 163 – Definition of Automatic Mode Server Facet .. 162
Table 164 – Definition of Processing Times Server Facet ... 162
Table 165 – Definition of File Transfer Server Facet ... 163
Table 166 – Definition of Basic Result Handling Server Facet .. 163
Table 167 – Definition of Inline Result Handling Server Facet ... 163
Table 168 – Definition of Full Result Handling Server Facet ... 163
Table 169 – Definition of Standard Configuration Handling Server Facet ... 164
Table 170 – Definition of Full Configuration Handling Server Facet .. 164
Table 171 – Definition of Standard Recipe Handling Server Facet.. 164
Table 172 – Definition of Full Recipe Handling Server Facet .. 164
Table 173 – Definition of Basic Vision System Server Profile .. 165
Table 174 – Definition of Basic Vision System Server Profile without OPC UA Security 165
Table 175 – Definition of Simple Inline Vision System Server Profile .. 165
Table 176 – Definition of Simple Inline Vision System with File Transfer Server Profile 166

OPC 40100-1: Control, configuration management, recipe management, result management

 12 Release 1.0

Table 177 – Definition of Simple Inline Vision System with File Revisioning Server Profile 166
Table 178 – Definition of Inline Vision System with File Transfer Server Profile... 166
Table 179 – Definition of Inline Vision System with File Revisioning Server Profile 166
Table 180 – Definition of Full Vision System Server Profile .. 167
Table 181 – Definition of Client Facets .. 167
Table 182 – Definition of Basic Control Client Facet ... 168
Table 183 – Definition of Full Control Client Facet .. 168
Table 184 – Definition of Basic Result Content Client Facet ... 169
Table 185 – Definition of Simple Result Content Client Facet... 169
Table 186 – Definition of Full Result Content Client Facet .. 169
Table 187 – Definition of Result Meta Data Client Facet... 169
Table 188 – Definition of Configuration Handling Client Facet .. 170
Table 189 – Definition of Recipe Handling Client Facet .. 170
Table 190 – Definition of Vision State Monitoring Client Facet ... 171
Table 191 – Definition of Production Quality Monitoring Client Facet ... 171
Table 192 – Definition of Data Backup Client Facet .. 171
Table 193 – Definition of Basic Control Client Profile .. 172
Table 194 – Definition of Simple Control Client Profile .. 172
Table 195 – Definition of Full Control Client Profile ... 173
Table 196 – Definition of Result Content Client Profile ... 173
Table 197 – Definition of Monitoring Client Profile .. 173
Table 198 – Definition of Configuration Management Client Profile .. 173
Table 199 – Namespaces used in a MachineVision Server .. 174
Table 200 – Namespaces used in this specification .. 174
Table A.1 – Profile URIs……………………………………………………………………………………………….175

Release 1.0 13

OPC 40100-1: Control, configuration management, recipe management, result management

OPC FOUNDATION, VDMA

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

 This document is provided "as is" by the OPC Foundation and the VDMA

 Right of use for this specification is restricted to this specification and does not grant rights of use for referred
documents.

 Right of use for this specification will be granted without cost.

 This document may be distributed through computer systems, printed or copied as long as the content remains
unchanged and the document is not modified.

 OPC Foundation and VDMA do not guarantee usability for any purpose and shall not be made liable for any case
using the content of this document.

 The user of the document agrees to indemnify OPC Foundation and VDMA and their officers, directors and agents
harmless from all demands, claims, actions, losses, damages (including damages from personal injuries), costs
and expenses (including attorneys' fees) which are in any way related to activities associated with its use of
content from this specification.

 The document shall not be used in conjunction with company advertising, shall not be sold or licensed to any
party.

 The intellectual property and copyright is solely owned by the OPC Foundation and the VDMA.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adop tion of OPC or VDMA specifications may
require use of an invention covered by patent rights. OPC Foundation or VDMA shall not be responsible for identifying
patents for which a license may be required by any OPC or VDMA specification, or for conducting leg al inquiries into the
legal validity or scope of those patents that are brought to its attention. OPC or VDMA specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement o f patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION NOR VDMA MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED,
WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OPC FOUNDATION NOR VDMA BE LIABLE FOR ERRORS CONTAINED
HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by the user of this
specification.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202 -3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software
Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC
Foundation, 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260 -1830

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of Germany.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

OPC 40100-1: Control, configuration management, recipe management, result management

 14 Release 1.0

Foreword

The following document OPC UA Companion Specification for Machine Vision, part 1 (short: OPC Machine
Vision, part 1) is a joined document from VDMA and OPC Foundation.

It summarizes the results of the VDMA OPC Machine Vision Initiative, containing contributions from all its
members.

Carsten Born VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH

Matthias Damm ascolab GmbH

Bernd Fiebiger KUKA Deutschland GmbH

Thomas Freundlich VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH

Gerhard Helfrich STEMMER IMAGING AG

Reinhard Heister VDMA Robotics + Automation

Christian Hoffmann PEER Group GmbH

Karlheinz Hohm ISRA VISION AG

Ricardo Juárez Acuña MVTec Software GmbH

Ralf Lay Silicon Software GmbH

Christopher Leroi VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH

Wolfgang Mahnke ascolab GmbH

Axel Schröder ASENTICS GmbH & Co. KG

Thomas Schüttler ASENTICS GmbH & Co. KG

Jure Skvarc Kolektor Group d.o.o.

Mirko Tänzler SAC Sirius Advanced Cybernetics GmbH

Peter Waszkewitz Robert Bosch Manufacturing Solutions GmbH

Under the oversight of the Steering Committee of

Horst Heinol-Heikkinen (Chairman) ASENTICS GmbH & Co. KG

Heiko Frohn VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH

Klaus-Henning Noffz Silicon Software GmbH

Christian Ripperda ISRA VISION AG

Technological outline

Today’s integration of machine vision systems into production control and IT systems is characterized by the
development of proprietary (case by case / company by company) interfaces. In many cases, this means an
interface development for every single machine vision project, which results in very time-consuming, costly
and error-prone efforts.

Currently, no generic interface for machine vision systems on the application / solution level exists that might
be used as basis for the companion specification. Therefore, an OPC UA Companion Specification for
Machine Vision shall be developed as a standardization project with global reach under the G3 agreement.

OPC Unified Architecture is an industrial M2M communication technology for interoperability, providing
secure, reliable and manufacturer-neutral transport of data and pre-processed information from the
manufacturing level into IT, production planning or ERP systems. Domain groups are asked to develop
companion specifications: i.e. to decide which domain specific services and information are offered, which
information and data are to be transferred.

Release 1.0 15

OPC 40100-1: Control, configuration management, recipe management, result management

Benefits for the machine vision industry

Through the OPC UA interface, relevant data achieves a broader reach on all levels, e.g. Control Device,
Station and Enterprise levels, as well as a managed data flow. In connection with the industry 4.0 movement
the relevance of machine vision systems will increase in all their roles due to the rich data they can provide on
products – for quality assurance, track and trace, etc. – as well as processes – for process guidance,
optimization, digital twinning, data analytics and other applications which we may not even foresee yet. The
OPC UA interface will also enable a plug and play integration of a machine vision system into its process
environment. These benefits will significantly advance the growth and use of machine vision systems.

Benefits for machine vision users

Easy and widespread accessibility of relevant data and a managed data flow will benefit users of machine
vision through new application abilities and business models. In addition, a commonly accepted interface with
global reach will reduce implementation times and reduce development costs for system integrators and users
of machine vision systems.

VDMA Machine Vision

The VDMA (Verband Deutscher Maschinen- und Anlagenbau, Mechanical Engineering Industry Association)
represents over 3,200 mainly small and medium size member companies in the engineering industry, making
it one of the largest and most important industrial associations in Europe. As part of the VDMA Robotics +
Automation association, VDMA Machine Vision unites more than 115 members: companies offering machine
vision systems and components (cameras, optics, illumination, software, etc.). The objective of this industry-
driven platform is to support the machine vision industry through a wide spectrum of activities and services
such as standardization, statistics, marketing, public relations, trade fair policy, networking events and
representation of interests. As member of the G3 agreement, VDMA Machine Vision cooperates in the field of
standardization with other international machine vision associations, such as AIA (USA), CMVU (China),
EMVA (Europe), and JIIA (Japan).

OPC Foundation

Originally derived from the Windows technology OLE for Process Control, the acronym OPC today stands for
Open Platform Communication.

The OPC Foundation was established in 1998 to manage a global organization in which users, vendors and
consortia collaborate to create data transfer standards for interoperability in industrial automation.

To support this mission, the OPC Foundation:

– Creates and maintains specifications

– Ensures compliance with OPC specifications via certification testing

– Collaborates with industry-leading standards organizations

The OPC Foundation has more than 450 OPC members, from small system integrators to the world’s largest
automation and industrial suppliers.

See https://opcfoundation.org/ for more information on the OPC Foundation and OPC UA; last visited May 4th,
2018)

https://opcfoundation.org/

OPC 40100-1: Control, configuration management, recipe management, result management

 16 Release 1.0

1 Scope

This document specifies an OPC UA Information Model for the representation of a machine vision system.
OPC Machine Vision, part 1 aims at straightforward integration of a machine vision system into production
control and IT systems. The scope is not only to complement or substitute existing interfaces between a
machine vision system and its process environment by OPC UA, but also to create non-existent horizontal
and vertical integration abilities to communicate relevant data to other authorized process participants, e.g. up
to the IT enterprise level. To this end, the OPC Machine Vision interface allows for the exchange of
information between a machine vision system and another machine vision system, a station PLC, a line
controller, or any other software system in areas like MES, SCADA, ERP or data analytics systems.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts.

– http://www.opcfoundation.org/UA/Part1/

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model.

– http://www.opcfoundation.org/UA/Part2/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model.

– http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services.

– http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model.

– http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings.

– http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles.

– http://www.opcfoundation.org/UA/Part7/

OPC 10000-9, OPC Unified Architecture - Part 9: Alarms & Conditions.

– http://www.opcfoundation.org/UA/Part9/

SEMI E10-0312: SEMI E10 Standard: Specification for Definition and Measurement of Equipment Reliability,
Availability, and Maintainability (RAM) and Utilization).

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part2/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part9/
http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=1948&DownloadID=2515
http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=1948&DownloadID=2515

Release 1.0 17

OPC 40100-1: Control, configuration management, recipe management, result management

3 Terms, definitions and conventions

3.1 Terms

Table 1 – Terms

Term Definition of Term

Camera Vision sensor that is capable of extracting information from electro-magnetic
waves.

Client Receiver of information. Requests services from a server, usually OPC Machine
Vision system.

Configuration Information stored in a configuration ensures that different vision systems
generate equal results if same recipe is used.

Environment The set of external entities working with the vision system in one way or another,
e.g. PLC, MES, etc.

External Not part of the vision system or the OPC UA server; may refer to the automation
system, the manufacturing execution system or other entities

Job The main purpose of a machine vision system is to execute jobs. Job may be a
simple task such as measurement of a part’s diameter, or much more complex,
like surface inspection of a long, continuous roll of a printing paper.

Machine Vision System A system for machine vision is any complex information processing system /
smart camera / vision sensor / other component which, in the production context,
is capable of extracting information from electro-magnetic waves in accordance
with a given image processing task.

Inline Machine Vision
System

Denotes a machine vision system which is used in the manner of a system
working continuously within a production line (hence the name). This can mean
100% quality inspection, as well as providing poses for robot-guidance for all
parts or inspection of the entire area of a continuous material stream and other
similar use cases.

Product In an industrial environment a machine vision system is usually used to check
products that are manufactured. The name of such a product is often used
outside the machine vision system to reference recipes of the devices used to
manufacture the product. This eliminates the need for the external production
control systems to know the IDs of local recipes of each device.

Recipe Properties, procedures and parameters that describe a machine vision job for the
vision system are stored in a recipe. The actual content of the data structure is
out of the scope of this specification.

Server Information provider classified by the services it provides. Vision system
commonly acts as OPC UA server.

State Machine A finite-state machine (FSM) or simply a state machine, is a mathematical model
of computation. It is an abstract machine that can be in exactly one of a finite
number of states at any given time. The state machine can change from one state
to another in response to some external inputs. The change from one state to
another is called a transition. A state machine is defined by a list of its states, its
initial state, and the conditions for each transition.

System-wide unique Used in conjunction with identifiers and handles to denote that at any given time
no other entity of the same type and meaning shall exist in the OPC UA server
with the same value. No further assumptions about global or historical
uniqueness are made; especially in the case of identifiers, however, globally
unique identifiers are recommended.

Vision System The underlying machine vision system for which the OPC UA server provides an

OPC 40100-1: Control, configuration management, recipe management, result management

 18 Release 1.0

abstracted view.

WebSocket WebSocket is a computer communications protocol, providing full-duplex
communication channels over a single TCP connection.

Release 1.0 19

OPC 40100-1: Control, configuration management, recipe management, result management

3.2 Abbreviations

Table 2 – Abbreviations

Abbreviation Definition of Abbreviation

AC Alarm and Condition

BLOB BLOB, a Binary Large Object is a collection of binary data stored as a single entity
in a database management system.

DCS DCS, a distributed control system is a computerised control system for a process
or plant usually with a large number of control loops, in which autonomous
controllers are distributed throughout the system, but there is central operator
supervisory control. The DCS concept increases reliability and reduces installation
costs by localising control functions near the process plant, with remote monitoring
and supervision.

ERP ERP, the Enterprise resource planning is the integrated management of core
business processes, often in real-time and mediated by software and technology.

HMI The user interface or human–machine interface is the part of the machine that
handles the human–machine interaction.

HTTP The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,
collaborative, and hypermedia information systems.

ID Identifer

MES MES, manufacturing execution systems are computerized systems used in
manufacturing, to track and document the transformation of raw materials to
finished goods. MES provides information that helps manufacturing decision
makers understand how current conditions on the plant floor can be optimized to
improve production output.

PLC PLC, a programmable logic controller, or programmable controller is an industrial
digital computer which has been ruggedized and adapted for the control of
manufacturing processes, such as assembly lines, or robotic devices, or any
activity that requires high reliability control and ease of programming and process
fault diagnosis.

PMS PMS, the Product Manufacturing System is generally a non-critical system for
manufacturing activities, as it establishes a communication with the board line
systems that directly and physically handle production progress.

TCP/IP The Internet protocol suite is the conceptual model and set of communications
protocols used on the Internet and similar computer networks. It is commonly
known as TCP/IP because the foundational protocols in the suite are the
Transmission Control Protocol (TCP) and the Internet Protocol (IP).

3.3 Conventions used in this document

3.3.1 Conventions for Node descriptions

Node definitions are specified using tables (see Table 4).

Attributes are defined by providing the Attribute name and a value, or a description of the value.

References are defined by providing the ReferenceType name, the BrowseName of the TargetNode and its
NodeClass.

– If the TargetNode is a component of the Node being defined in the table, the Attributes of the composed
Node are defined in the same row of the table.

OPC 40100-1: Control, configuration management, recipe management, result management

 20 Release 1.0

– The DataType is only specified for Variables; “[number>]” indicates a single-dimensional array, for multi-
dimensional arrays the expression is repeated for each dimension (e.g. [2][3] for a two-dimensional array).
For all arrays the ArrayDimensions is set as identified by <number> values. If no <number> is set, the
corresponding dimension is set to 0, indicating an unknown size. If no number is provided at all the
ArrayDimensions can be omitted. If no brackets are provided, it identifies a scalar DataType and the
ValueRank is set to the corresponding value (see OPC 10000-3). In addition, ArrayDimensions is set to
null or is omitted. If it can be Any or ScalarOrOneDimension, the value is put into “{<value>}”, so either
“{Any}” or “{ScalarOrOneDimension}” and the ValueRank is set to the corresponding value (see OPC
10000-3) and the ArrayDimensions is set to null or is omitted. Examples are given in Table 3.

Table 3 – Examples of DataTypes

Notation Data-
Type

Value-
Rank

Array-
Dimensions

Description

Int32 Int32 -1 omitted or null A scalar Int32.

Int32[] Int32 1 omitted or {0} Single-dimensional array of Int32 with an unknown size.

Int32[][] Int32 2 omitted or {0,0} Two-dimensional array of Int32 with unknown sizes for
both dimensions.

Int32[3][] Int32 2 {3,0} Two-dimensional array of Int32 with a size of 3 for the
first dimension and an unknown size for the second
dimension.

Int32[5][3] Int32 2 {5,3} Two-dimensional array of Int32 with a size of 5 for the
first dimension and a size of 3 for the second dimension.

Int32{Any} Int32 -2 omitted or null An Int32 where it is unknown if it is scalar or array with
any number of dimensions.

Int32{ScalarOrOneDimension} Int32 -3 omitted or null An Int32 where it is either a single-dimensional array or
a scalar.

– The TypeDefinition is specified for Objects and Variables.

– The TypeDefinition column specifies a symbolic name for a NodeId, i.e. the specified Node points with a
HasTypeDefinitionReference to the corresponding Node.

– The ModellingRule of the referenced component is provided by specifying the symbolic name of the rule
in the ModellingRule column. In the AddressSpace, the Node shall use a HasModellingRuleReference to
point to the corresponding ModellingRuleObject.

If the NodeId of a DataType is provided, the symbolic name of the Node representing the DataType shall be
used.

Nodes of all other NodeClasses cannot be defined in the same table; therefore only the used ReferenceType,
their NodeClass and their BrowseName are specified. A reference to another part of this document points to
their definition.

Table 4 illustrates the table. If no components are provided, the DataType, TypeDefinition and ModellingRule
columns may be omitted and only a Comment column is introduced to point to the Node definition.

Release 1.0 21

OPC 40100-1: Control, configuration management, recipe management, result management

Table 4 – Type Definition Table

Attribute Value

Attribute name Attribute value. If it is an optional Attribute that is not set “--“ will be used.

References NodeClass BrowseName DataType TypeDefinition ModellingRule

ReferenceType
name

NodeClass of
the target Node.

BrowseName of the
target Node. If the
Reference is to be
instantiated by the

server, then the value
of the target Node’s
BrowseName is “--“.

DataType of
the

referenced
Node, only

applicable for
Variables.

TypeDefinition of the
referenced Node, only

applicable for Variables and
Objects.

Referenced
ModellingRule of
the referenced

Object.

NOTE Notes referencing footnotes of the table content.

Components of Nodes can be complex that is containing components by themselves. The TypeDefinition,
NodeClass, DataType and ModellingRule can be derived from the type definitions, and the symbolic name
can be created as defined in Section 3.3.3.1. Therefore, those containing components are not explicitly
specified; they are implicitly specified by the type definitions.

3.3.2 NodeIds and BrowseNames

3.3.2.1 NodeIds

The NodeIds of all Nodes described in this standard are only symbolic names. Annex B defines the actual
NodeIds.

The symbolic name of each Node defined in this specification is its BrowseName, or, when it is part of another
Node, the BrowseName of the other Node, a “.”, and the BrowseName of itself. In this case “part of” means
that the whole has a HasProperty or HasComponentReference to its part. Since all Nodes not being part of
another Node have a unique name in this specification, the symbolic name is unique.

The namespace for all NodeIds defined in this specification is defined in Table 200. The namespace for this
NamespaceIndex is Server-specific and depends on the position of the namespace URI in the server
namespace table.

Note that this specification not only defines concrete Nodes, but also requires that some Nodes shall be
generated, for example one for each Session running on the Server. The NodeIds of those Nodes are Server-
specific, including the namespace. But the NamespaceIndex of those Nodes cannot be the NamespaceIndex
used for the Nodes defined in this specification, because they are not defined by this specification but
generated by the Server.

3.3.2.2 BrowseNames

The text part of the BrowseNames for all Nodes defined in this specification is specified in the tables defining
the Nodes. The NamespaceIndex for all BrowseNames defined in this specification is defined in Annex A.

If the BrowseName is not defined by this specification, a namespace index prefix like ‘0:EngineeringUnits’ or
‘2:DeviceRevision’ is added to the BrowseName. This is typically necessary if a Property of another
specification is overwritten or used in the OPC UA types defined in this specification. Table 200 provides a list
of namespaces and their indexes as used in this specification.

3.3.3 Common Attributes

3.3.3.1 General

The Attributes of Nodes, their DataTypes and descriptions are defined in OPC 10000-3. Attributes not marked
as optional are mandatory and shall be provided by a Server. The following tables define if the Attribute value
is defined by this specification or if it is server-specific.

OPC 40100-1: Control, configuration management, recipe management, result management

 22 Release 1.0

For all Nodes specified in this specification, the Attributes named in Table 5 shall be set as specified in the
table.

Table 5 – Common Node Attributes

Attribute Value

DisplayName The DisplayName is a LocalizedText. Each server shall provide the DisplayName identical to the
BrowseName of the Node for the LocaleId “en”. Whether the server provides translated names for
other LocaleIds is server-specific.

Description Optionally a server-specific description is provided.

NodeClass Shall reflect the NodeClass of the Node.

NodeId The NodeId is described by BrowseNames as defined in 3.3.2.1.

WriteMask Optionally the WriteMaskAttribute can be provided. If the WriteMaskAttribute is provided, it shall set all
non-server-specific Attributes to not writable. For example, the DescriptionAttribute may be set to
writable since a Server may provide a server-specific description for the Node. The NodeId shall not be
writable, because it is defined for each Node in this specification.

UserWriteMask Optionally the UserWriteMaskAttribute can be provided. The same rules as for the WriteMaskAttribute
apply.

RolePermissions Optionally server-specific role permissions can be provided.

UserRolePermissions Optionally the role permissions of the current Session can be provided. The value is server-specifc and
depend on the RolePermissionsAttribute (if provided) and the current Session.

AccessRestrictions Optionally server-specific access restrictions can be provided.

3.3.3.2 Objects

For all Objects specified in this specification, the Attributes named in Table 6 shall be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

Table 6 – Common Object Attributes

Attribute Value

EventNotifier Whether the Node can be used to subscribe to Events or not is server-specific.

3.3.3.3 Variables

For all Variables specified in this specification, the Attributes named in Table 7 shall be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

Table 7 – Common Variable Attributes

Attribute Value

MinimumSamplingInterval Optionally, a server-specific minimum sampling interval is provided.

AccessLevel The access level for Variables used for type definitions is server-specific, for all other Variables defined
in this specification, the access level shall allow reading; other settings are server-specific.

UserAccessLevel The value for the UserAccessLevelAttribute is server-specific. It is assumed that all Variables can be
accessed by at least one user.

Value For Variables used as InstanceDeclarations, the value is server-specific; otherwise it shall represent
the value described in the text.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server-specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensionsAttribute shall be specified in the table defining the Variable.

Historizing The value for the HistorizingAttribute is server-specific.

AccessLevelEx If the AccessLevelExAttribute is provided, it shall have the bits 8, 9, and 10 set to 0, meaning that read
and write operations on an individual Variable are atomic, and arrays can be partly written.

3.3.3.4 VariableTypes

For all VariableTypes specified in this specification, the Attributes named in Table 8 shall be set as specified in
the table. The definitions for the Attributes can be found in OPC 10000-3.

Release 1.0 23

OPC 40100-1: Control, configuration management, recipe management, result management

Table 8 – Common VariableType Attributes

Attributes Value

Value Optionally a server-specific default value can be provided.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server-specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensionsAttribute shall be specified in the table defining the VariableType.

3.3.3.5 Methods

For all Methods specified in this specification, the Attributes named in Table 9 shall be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

Table 9 – Common Method Attributes

Attributes Value

Executable All Methods defined in this specification shall be executable (ExecutableAttribute set to “True”), unless it is
defined differently in the Method definition.

UserExecutable The value of the UserExecutableAttribute is server-specific. It is assumed that all Methods can be
executed by at least one user.

OPC 40100-1: Control, configuration management, recipe management, result management

 24 Release 1.0

4 General information on Machine Vision and OPC UA

4.1 Introduction to Machine Vision systems

Machine vision systems are immensely diverse. This specification is based on a conceptual model of what
constitutes a machine vision system’s functionality. Making good use of the specification requires an
understanding of this conceptual model. It will be touched only briefly in this section, more details can be
found in Annex B.

A machine vision system is any computer system, smart camera, vision sensor or even any other component
that has the capability to record and process digital images or videostreams for the shop floor or other
industrial markets, typically with the aim of extracting information from this data.
Digital images or video streams represent data in a general sense, comprising multiple spatial dimensions
(e.g. 1D scanner lines, 2D camera images, 3D point clouds, image sequences, etc.) acquired by any kind of
imaging technique (e.g. visible light, infrared, ultraviolet, x-ray, radar, ultrasonic, virtual imaging etc.).
With respect to a specific machine vision task, the output of a machine vision system can be raw or pre-
processed images or any image-based measurements, inspection results, process control data, robot
guidance data, etc.

Machine vision therefore covers a very broad range of systems as well as of applications.

System types range from small sensors and smart cameras to multi-computer setups with diverse sensoric
equipment.

Applications include identification (like DataMatrix code, bar code or character recognition), pose
determination (e.g. for robot guidance), assembly checks, gauging up to very high accuracy, surface
inspection, color identification, etc.

In industrial production, a machine vision system is typically acting under the control and supervision of a
machine control system, usually a PLC. There are many variations to this setup, depending on the type of
product to be processed, e.g. individual parts or reel material, the organization of production etc.

A common situation in the production of individual work pieces is that a PLC informs the machine vision
system about the arrival of a new part by sending a start signal, then waits until the machine vision system
has answered with a result of some kind, e.g. a quality information (passed/failed), a measurement value
(size), a position information (x- and y-coordinates, rotation, possibly z-coordinate, or full pose in the case of a
3D system), and then continues processing the work piece based on the information given by the vision
system. Traditionally, the interfaces used for communication between a PLC and a machine vision system are
digital I/O, the various types of field buses and industrial Ethernet systems on the market and also simply
Ethernet for the transmission of bulk data.

Figure 1 gives a generalized view on a machine vision system in the context of this companion specification. It
assumes that there is some machine vision framework responsible for the acquisition and processing of the
images. This framework is completely implementation specific to the system and is outside the scope of this
companion specification.

This underlying system is currently presented to the “outside world”, e.g. the PLC, by various interfaces like
digital I/O or field bus, typically using vendor specific protocol definitions. The interface described in this
specification may co-exist with these interfaces and offer an additional view on the system or it may be used
as the only interface to the system, depending on the requirements of the particular application.

The system may also be exposed through OPC UA interfaces according to other companion specifications, for
example, DataMatrix code readers are by their nature machine vision systems but can also be exposed as
systems adhering to the Auto ID specification. And system vendors can of course add their own OPC UA
interfaces.

This companion specification provides a particular abstraction of a system envisioned to be running in an
automated production environment where “automated” is meant in a very broad sense. A test bank for
analyzing individual parts can be viewed as automated in that the press of a button by the operator starts the
task of the machine vision system.

This abstraction may reflect the inner workings of the machine vision framework or it may be a layer on top of
the framework presenting a view of it which is only loosely related to its interior construction.

Release 1.0 25

OPC 40100-1: Control, configuration management, recipe management, result management

The basic assumption of the model is that a machine vision system in a production environment goes through
a sequence of states which are of interest to and may be influenced by the outside world.

Therefore, a core element of this companion specification is a state machine view of the machine vision
system.

Also, a machine vision system may require information from the outside world, in addition to the information it
gathers itself by image acquisition, e.g. information about the type of product to be processed. And it will
typically pass information to the outside world, e.g. results from the processing.

Therefore, in addition to the state machine, a set of methods and data types is required to allow for this flow of
information. Due to the diverse nature of machine vision systems and their applications, these data types will
have to allow for vendor- and application-specific extensions.

The intention of the state machine, the methods, as well as the data types, is to provide a framework allowing
for standardized integration of machine vision systems into automated production systems, and guidance for
filling in the application-specific areas.

Of course, vendors will always be able to extend this specification and provide additional services according to
the specific capabilities of their systems and the particular applications.

Managing Methods

Basic MV System Functions

Image
Processing

Image
ACQ

Recipe
Store

Result
Store

Fieldbus
Interface

Digital I/O

MV Framework

MV State Machine

Control Methods

Resource Scheduler

Config.
Store

Abstraction to external State Machine

HMI

{

Digital I/O

{

Other
Resources

Other relevant CS
(VDMA Type A)

OPC
Machine Vision CS

Vendor Specific Extension

Other
OPC UA

Interface

Other OPC
Companion

Spec

OPC UA Interface Other Interfaces
using the same

abstraction layer

Other Interfaces
to MV Framework

OPC 40100-1: Control, configuration management, recipe management, result management

 26 Release 1.0

Figure 1 – System model for OPC Machine Vision

4.2 Introduction to OPC Unified Architecture

4.2.1 What is OPC UA?

OPC UA is an open and royalty free set of standards designed as a universal communication protocol. While
there are numerous communication solutions available, OPC UA has key advantages:

– A state of art security model (see OPC 10000-2).

– A fault tolerant communication protocol.

– An information modelling framework that allows application developers to represent their data in a way
that makes sense to them.

OPC UA has a broad scope which delivers for economies of scale for application developers. This means that
a larger number of high quality applications at a reasonable cost are available. When combined with semantic
models such as OPC Machine Vision, OPC UA makes it easier for end users to access data via generic
commercial applications.

The OPC UA model is scalable from small devices to ERP systems. OPC UA Servers process information
locally and then provide that data in a consistent format to any application requesting data - ERP, MES, PMS,
Maintenance Systems, HMI, Smartphone or a standard Browser, for examples. For a more complete overview
see OPC 10000-1.

4.2.2 Basics of OPC UA

As an open standard, OPC UA is based on standard internet technologies, like TCP/IP, HTTP, Web Sockets.

As an extensible standard, OPC UA provides a set of Services (see OPC 10000-4) and a basic information
model framework. This framework provides an easy manner for creating and exposing vendor defined
information in a standard way. More importantly all OPC UA Clients are expected to be able to discover and
use vendor-defined information. This means OPC UA users can benefit from the economies of scale that
come with generic visualization and historian applications. This specification is an example of an OPC UA
Information Model designed to meet the needs of developers and users.

OPC UA Clients can be any consumer of data from another device on the network to browser based thin
clients and ERP systems. The full scope of OPC UA applications is shown in Figure 2.

Release 1.0 27

OPC 40100-1: Control, configuration management, recipe management, result management

Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Application

SCADA

MES

ERP

Device DeviceDevice

Secure

Communication

Across the

Internet

Fast, Non-

Proprietary

Device to

Device

Control to Device

Network

Integration

Integration

with

ERP and MES

OPC
UA
Clients

OPC
UA
Servers
&
Clients

Figure 2 – The Scope of OPC UA within an Enterprise

OPC UA provides a robust and reliable communication infrastructure having mechanisms for handling lost
messages, failover, heartbeat, etc. With its binary encoded data, it offers a high-performing data exchange
solution. Security is built into OPC UA as security requirements become more and more important especially
since environments are connected to the office network or the internet and attackers are starting to focus on
automation systems.

4.2.3 Information modelling in OPC UA

4.2.3.1 Concepts

OPC UA provides a framework that can be used to represent complex information as Objects in an
AddressSpace which can be accessed with standard services. These Objects consist of Nodes connected by
References. Different classes of Nodes convey different semantics. For example, a Variable Node represents
a value that can be read or written. The Variable Node has an associated DataType that can define the actual
value, such as a string, float, structure etc. It can also describe the Variable value as a variant. A Method
Node represents a function that can be called. Every Node has a number of Attributes including a unique
identifier called a NodeId and non-localized name called as BrowseName. An Object representing a
‘Reservation’ is shown in Figure 3.

OPC 40100-1: Control, configuration management, recipe management, result management

 28 Release 1.0

Reservation

Who

When

First Name
“John”

Last Name
“Smith”

Start
“2:00PM”

End
“4:00PM”

Cancel

Object Nodes
convey semantics

 and structure

Method Nodes
define complex

behaviors

Variable Nodes
provide access to data

Figure 3 – A Basic Object in an OPC UA Address Space

Object and Variable Nodes represent instances and they always reference a TypeDefinition (ObjectType or
VariableType) Node which describes their semantics and structure. Figure 4 illustrates the relationship
between an instance and its TypeDefinition.

The type Nodes are templates that define all of the children that can be present in an instance of the type. In
the example in Figure 4 the PersonType ObjectType defines two children: First Name and Last Name. All
instances of PersonType are expected to have the same children with the same BrowseNames. Within a type
the BrowseNames uniquely identify the children. This means Client applications can be designed to search for
children based on the BrowseNames from the type instead of NodeIds. This eliminates the need for manual
reconfiguration of systems if a Client uses types that multiple Servers implement.

OPC UA also supports the concept of sub-typing. This allows a modeller to take an existing type and extend it.
There are rules regarding sub-typing defined in OPC 10000-3, but in general they allow the extension of a
given type or the restriction of a DataType. For example, the modeller may decide that the existing
ObjectType in some cases needs an additional Variable. The modeller can create a subtype of the
ObjectType and add the Variable. A Client that is expecting the parent type can treat the new type as if it was
of the parent type. Regarding DataTypes, subtypes can only restrict. If a Variable is defined to have a numeric
value, a sub type could restrict it to a float.

Release 1.0 29

OPC 40100-1: Control, configuration management, recipe management, result management

Who

First Name
“John”

Last Name
“Smith”

First Name
[String]

Last Name
[String]

Middle Name
“Jacob”

Instances can
be extended

Structure and
semantics can
be inherited

from other types

ObjectType Nodes
are templates that

describe the structure
of an instance

Every Instance Node
has a

TypeDefinition Node
which defines its structure

Semantics: An instance of PersonType represents a human
Structure: An instance of PersonType has a First Name and a Last Name

BaseObjectType

PersonType

Figure 4 – The Relationship between Type Definitions and Instances

References allow Nodes to be connected in ways that describe their relationships. All References have a
ReferenceType that specifies the semantics of the relationship. References can be hierarchical or non-
hierarchical. Hierarchical references are used to create the structure of Objects and Variables. Non-
hierarchical are used to create arbitrary associations. Applications can define their own ReferenceType by
creating subtypes of an existing ReferenceType. Subtypes inherit the semantics of the parent but may add
additional restrictions. Figure 5 depicts several References, connecting different Objects.

OPC 40100-1: Control, configuration management, recipe management, result management

 30 Release 1.0

Joe Sam Dogs Cats

Animals

OrganizesOrganizes HasClassification HasClassification

Kennel #2

Owns

PoodleBreeds

HasClassification

Farmers

Siamese

HasClassification

Fido HasBreedLivesIn

Organizes

Owns

Has

Classification

Non-

Hierarchical

Breeds

HasBreed

LivesIn

Reference Types
can be created

 from other reference types

They can be used to
show hierarchies

 or just relationships

Figure 5 – Examples of References between Objects

The figures above use a notation that was developed for the OPC UA specification. The notation is
summarized in Figure 6. UML representations can also be used; however, the OPC UA notation is less
ambiguous because there is a direct mapping from the elements in the figures to Nodes in the AddressSpace
of an OPC UA Server.

Object Variable Method View

<TypeName> <TypeName> <TypeName>

Instances

Types

Standard
References

VariableTypeObjectType DataType ReferenceType

Symmetric
Reference

Asymmetric
Reference

Hierarchical
Reference

HasEventSource
HasComponent

HasProperty

HasTypeDefinition

HasSubtype

Figure 6 – The OPC UA Information Model Notation

Release 1.0 31

OPC 40100-1: Control, configuration management, recipe management, result management

A complete description of the different types of Nodes and References can be found in OPC 10000-3 and the
base structure is described in OPC 10000-5.

OPC UA specification defines a very wide range of functionality in its basic information model. It is not
expected that all Clients or Servers support all functionality in the OPC UA specifications. OPC UA includes
the concept of Profiles, which segment the functionality into testable certifiable units. This allows the definition
of functional subsets (that are expected to be implemented) within a companion specification. The Profiles do
not restrict functionality, but generate requirements for a minimum set of functionality (see OPC 10000-7)

4.2.3.2 Namespaces

OPC UA allows information from many different sources to be combined into a single coherent AddressSpace.
Namespaces are used to make this possible by eliminating naming and id conflicts between information from
different sources. Namespaces in OPC UA have a globally unique string called a NamespaceUri and a locally
unique integer called a NamespaceIndex. The NamespaceIndex is only unique within the context of a Session
between an OPC UA Client and an OPC UA Server. The Services defined for OPC UA use the
NamespaceIndex to specify the Namespace for qualified values.

There are two types of values in OPC UA that are qualified with Namespaces: NodeIds and QualifiedNames.
NodeIds are globally unique identifiers for Nodes. This means the same Node with the same NodeId can
appear in many Servers. This, in turn, means Clients can have built in knowledge of some Nodes. OPC UA
Information Models generally define globally unique NodeIds for the TypeDefinitions defined by the
Information Model.

QualifiedNames are non-localized names qualified with a Namespace. They are used for the BrowseNames of
Nodes and allow the same names to be used by different information models without conflict. TypeDefinitions
are not allowed to have children with duplicate BrowseNames; however, instances do not have that restriction.

4.2.3.3 Companion Specifications

An OPC UA companion specification for an industry specific vertical market describes an Information Model
by defining ObjectTypes, VariableTypes, DataTypes and ReferenceTypes that represent the concepts used in
the vertical market, and potentially also well-defined Objects as entry points into the AddressSpace.

OPC 40100-1: Control, configuration management, recipe management, result management

 32 Release 1.0

5 Use cases

A vision system assesses situations automatically through machine vision and machine evaluation. This
document describes how a vision system is addressed via OPC UA and integrated in a superordinate or a
peer to peer structure. The description covers all aspects relevant for operation.

Interaction of the client with the vision system

A vision system usually has the role of an OPC UA server, i.e. its states are exposed via an OPC UA server.
This is what in this specification is described and defined.

The client system can control the vision system via OPC UA. The vision system may also be controlled by a
different entity through a different interface.

The vision system reports important events – such as evaluation results and error states – automatically to a
subscribed client.

However, the client can query data from the vision system at any time.

State Machine

The state machine model is an abstraction of a machine vision system, which maps the possible operational
states of the machine vision system to a state model with a fixed number of states.

Each interaction of the client system with the vision system depends on the current state of the model and
also the state and capabilities of the underlying vision system.

State changes are initiated by method calls from the client system or triggered by internal or external events.
They may also be triggered by a secondary interface. Each state change is communicated to the client
system.

The state machine is described in more detail in Section 8.

Recipe Management

The properties, procedures and parameters that describe a machine vision task for the vision system are
stored in a recipe.

Usually there are multiple usable recipes on a vision system.

This specification provides methods for activating, loading, and saving recipes.

Recipes are handled as binary objects. The interpretation of a recipe is not part of this specification.

For a detailed description of Recipe Management, please refer to B.1.

Result Transfer

The image processing results are transmitted to the client system asynchronously. This transmission includes
information on product assignment, times, and statuses.

The detailed data format of a result is not included in this specification.

Error Management

There is an interface for error notification and interactive error management.

Release 1.0 33

OPC 40100-1: Control, configuration management, recipe management, result management

6 OPC Machine Vision information model overview

Figure 7 shows the main objects types and the relations between them.

BaseObjectType

RecipeManagementType

Recipes

Products

RecipeTransfer

ResultManagementType

Results

ResultTransfer

ConfigurationManagementType

Configurations

ConfigurationTransfer

VisionSystemType

ConfigurationManagement

RecipeManagement

ResultManagement

SafetyStateManagement

StateMachine

SafetyStateManagementType

ConfigurationFolderType

ConfigurationTransferType

RecipeTransferType

RecipeType

Handle

RecipeFolderType

Recipe

ProductFolderType

FileType

ResultFolderType

ResultTransferType

VisionStateMachineType

Figure 7 – Overview of the OPC Machine Vision information model

OPC 40100-1: Control, configuration management, recipe management, result management

 34 Release 1.0

7 ObjectTypes for the Vision System in General

7.1 VisionSystemType

This ObjectType defines the representation of a machine vision system. Figure 8 shows the hierarchical
structure and details of the composition. It is formally defined in Table 10.

Instances of this ObjectType provide a general communication interface for a machine vision system. This
interface makes it possible to interact with this system independent of the knowledge of the internal structure
and the underlying processes of the machine vision system.

System behavior is modeled with a mandatory hierarchical finite state machine.

VisionSystemType contains four optional management objects, RecipeManagement,
ConfigurationManagement, ResultManagement, and SafetyStateManagement. All of these provide access to
the exposed functionality of the machine vision system.

VisionSystemType

ConfigurationManagement

RecipeManagement

ResultManagement

SafetyStateManagement

VisionStateMachine

DiagnosticLevel

SystemState

BaseObjectType

Figure 8 – Overview VisionSystemType

Release 1.0 35

OPC 40100-1: Control, configuration management, recipe management, result management

Table 10 – Definition of VisionSystemType

Attribute Value

BrowseName VisionSystemType

IsAbstract False

References
Node
Class BrowseName DataType TypeDefinition

Modelling
Rule

Subtype of the BaseObjectType defined in OPC 10000-5

HasComponent Object ConfigurationManagement -- ConfigurationManagementType Optional

HasComponent Object RecipeManagement -- RecipeManagementType Optional

HasComponent Object ResultManagement -- ResultManagementType Optional

HasComponent Object SafetyStateManagement -- SafetyStateManagementType Optional

HasComponent Object VisionStateMachine -- VisionStateMachineType Mandatory

HasComponent Variable DiagnosticLevel UInt16 BaseDataVariableType Optional

HasComponent Variable SystemState
SystemStateDescription
DataType

BaseDataVariableType Optional

ConfigurationManagement providesConfigurationManagement provides methods and properties required for
Section 7.2.

RecipeManagement provides functionality to add, remove, prepare, and retrieve vision system
recipes. RecipeManagementType is described in Section 7.5.

ResultManagement provides methods and properties necessary for managing the results.
ResultManagementType is described in Section 7.10.

SafetyStateManagement provides functionality to inform the vision system about the change of an external
safety state. SafetyStateManagementType is described in Section 7.13.

StateMachine provides information about the current state of the vision system and methods for controlling it.
VisionStateMachineType is defined in Section 8.2.

DiagnosticLevel specifies the threshold for the severity of diagnostic messages to be generated by the server.
More information can be found in Section 11.3.

SystemState represents the system state in terms of the SEMI E10 standard. More information can be found
in Section11.6.

7.2 ConfigurationManagementType

7.2.1 Overview

This ObjectType defines the representation of the machine vision system configuration management. Figure 9
shows the hierarchical structure and details of the composition. It is formally defined in Table 11.

Even supposedly identical vision systems will differ in some details. In order to produce the same results the
vision systems have to be adjusted individually e.g. calibrated. Within this document, the set of all parameters
that are needed to get the system working is called a configuration. Configurations can be used to align
different vision systems that have the same capabilities, so that these systems produce the same results for
the same recipes.

Instances of this ObjectType handle all configurations that are exposed by the system. Only one configuration
can be active at a time. This active configuration affects all recipes used in the machine vision system. The
configurations can optionally also be exposed in a folder, in order to provide access to the client.

Configurations are handled as files, meta data of configurations can be directly viewed but not changed by the
client. The interpretation of the configuration’s content is not part of this specification.

OPC 40100-1: Control, configuration management, recipe management, result management

 36 Release 1.0

ConfigurationManagementType

Configurations

ConfigurationTransfer

AddConfiguration

GetConfigurationList

GetConfigurationById

ActivateConfiguration

RemoveConfiguration

ReleaseConfigurationHandle

ActiveConfiguration

BaseObjectType

Figure 9 – Overview ConfigurationManagementType

Release 1.0 37

OPC 40100-1: Control, configuration management, recipe management, result management

Table 11 – Definition of ConfigurationManagementType

Attribute Value

BrowseName ConfigurationManagementType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasComponent Object ConfigurationTransfer -- ConfigurationTransferType Optional

HasComponent Object Configurations -- ConfigurationFolderType Optional

HasComponent Method AddConfiguration

-- -- Optional

HasComponent Method GetConfigurationList -- -- Mandatory

HasComponent Method GetConfigurationById -- -- Mandatory

HasComponent Method ReleaseConfigurationHandle -- -- Optional

HasComponent Method RemoveConfiguration

-- -- Optional

HasComponent Method ActivateConfiguration -- -- Mandatory

HasComponent Variable ActiveConfiguration ConfigurationDataType BaseDataVariableType Mandatory

ConfigurationTransfer is an instance of the ConfigurationTransferType defined in Section 7.4 and it is used to
transfer the contents of a configuration by the temporary file transfer method defined in OPC 10000-5, Annex
C.4.

Configurations is an instance of the ConfigurationFolderType and it is used to organize variables of DataType
ConfigurationDataType which is defined in Section 12.9. If the server chooses to expose configuration
information in the Address Space, the Object may contain the set of all configurations available on the system.
This is implementation-defined. If a server does not expose configuration information in the Address Space,
this Object is expected to be non-existent.

The DataTypes used in the ConfigurationManagementType are defined in OPC 10000-5 and in Section 11.6
of this specification.

7.2.2 ConfigurationManagementType methods

7.2.2.1 AddConfiguration

7.2.2.1.1 Overview

This method is used to add a configuration to the configuration management of the vision system. It concerns
itself only with the metadata of the configuration, the actual content is transferred by an object of
ConfigurationTransferType which is defined in Section 7.4.

The intended behavior of this method for different input arguments is described in the following subsections.

Signature

AddConfiguration (

[in] ConfigurationIdDataType externalId

[out] ConfigurationIdDataType internalId

[out] NodeId configuration

[out] Boolean transferRequired

[out] Int32 error);

OPC 40100-1: Control, configuration management, recipe management, result management

 38 Release 1.0

Table 12 – AddConfiguration Method Arguments

Argument Description

externalId Identification of the configuration used by the environment. This argument must
not be empty.

internalId System-wide unique ID for identifying a configuration. This ID is assigned by the
vision system.

configuration If the server chooses to represent the configuration in the Address Space, it shall
return the NodeId of the newly created entry in the Configurations variable here.

If the server uses only method-based configuration management, this shall be a
null NodeId as defined in OPC 10000-3.

transferRequired In this argument, the server returns whether the vision system assumes that a
transfer of the file content of the configuration is required.

Note that this is only a hint for the client. If the server returns TRUE, the client will
have to assume that the vision system needs the configuration content and shall
transfer it. If the server returns FALSE, the client may transfer the configuration
content anyway.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 13 – AddConfiguration Method AddressSpace Definition

Attribute Value

BrowseName AddConfiguration

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.2.2.1.2 New ExternalId

If AddConfiguration is called with an ExternalId not yet existing in the configuration management of the vision
system, it is expected that the vision system creates an appropriate management structure with an InternalId
which is unique on the system. The server then returns this InternalId.

If the server chooses to represent all or selected configurations in the Address Space and if the new
configuration matches the current selection criteria, the server shall create a new entry in the Configurations
folder in the Address Space.

The method will return TRUE in the TransferRequired argument. Since the ExternalId does not yet exist in the
configuration management of the vision system, it is expected the configuration does not yet exist either in the
local configuration storage of the vision system, and therefore needs to be transferred.

7.2.2.1.3 Identically Existing ExternalId with identical configuration

If AddConfiguration is called with an ExternalId already existing in the configuration management of the vision
system, it is expected that the vision system checks whether an identical version of the configuration already
exists, provided that the content of the ExternalId allows for such a check. (A way to perform this comparison
without having to download the binary content first is offered by the optional hash value in the ExternalId. The
idea is that the client computes a hash for the contents of the recipe and passes that hash in the ExternalId.
The server can then check this hash against a hash transmitted earlier, or it can compute a hash by itself over
the contents of the recipe currently stored on the vision system side. For this procedure, the server needs to
know the hash algorithm used by the client which can be transmitted in the hashAlgorithm member of the
ExternalId).

Release 1.0 39

OPC 40100-1: Control, configuration management, recipe management, result management

Note that the method has no way of checking this with the actual configuration content which is not yet known
to the vision system.

The method will return FALSE in the TransferRequired argument if the method comes to the conclusion that
the configuration already exists with identical content on the vision system. Note that the result is not binding
for the client who may decide to transfer the configuration content anyway.

If the server represents configurations in the Address Space, no new entry shall be created in the
configurations folder.

7.2.2.1.4 Identically Existing ExternalId with different configuration

If AddConfiguration comes to the conclusion that the content of the configuration to be transferred is different
from the content already existing for this ExternalId, it shall return TRUE in the TransferRequired argument.

The behavior with respect to the management of the configuration metadata and configuration content is
entirely application-defined. The vision system may decide to create a new management structure and add
the configuration content to the local configuration store, or it may decide to re-use the existing ExternalId and
overwrite the configuration content. In any case, the vision system shall create a new, system-wide unique
InternalId for this configuration.

If the server chooses to represent configurations in the Address Space, the behavior with respect to these
objects should mirror the behavior of the vision system in its internal configuration management.

7.2.2.1.5 Local creation or editing of configurations

This is not, strictly speaking, a use case of the method AddConfiguration, but results are comparable, and
therefore the use case is described here.

If a configuration is created locally on the vision system or is loaded onto the vision system by a different
interface than the OPC Machine Vision interface, i.e. the configuration is added without using method
AddConfiguration, then this configuration shall have a system-wide unique InternalId, just like a configuration
added through the method.

If an existing configuration which was uploaded to the vision system through the method AddConfiguration, is
locally changed, the ExternalId shall be removed from the changed version and it shall receive a new system-
wide unique InternalId so that the two configurations cannot be confused. The vision system may record the
history from which configuration it was derived.

If the server exposes configurations in the Address Space and if the locally created or edited configurations
match the current filter criteria, then they shall be represented as nodes in the Configurations folder, with their
system-wide unique InternalIds, but without ExternalIds.

7.2.2.2 GetConfigurationById

This method is used to get the metadata for one configuration from a number of configurations.

Signature

GetConfigurationById (

[in] ConfigurationIdDataType internalId

[in] Int32 timeout

[out] Handle configurationHandle

[out] ConfigurationDataType configuration

[out] Int32 error);

OPC 40100-1: Control, configuration management, recipe management, result management

 40 Release 1.0

Table 14 – GetConfigurationById Method Arguments

Argument Description

internalId Identification of the configuration used by the vision system. This argument
must not be empty.

Timeout With this argument the client can give a hint to the server how long it will
need access to the configuration data.

A value > 0 indicates an estimated maximum time for processing the data in
milliseconds.

A value = 0 indicates that the client will not need anything besides the data
returned by the method call.

A value < 0 indicates that the client cannot give an estimate.

The client cannot rely on the data being available during the indicated time
period. The argument is merely a hint allowing the server to optimize its
resource management.

configurationHandle The client can use the handle returned by the server to call the
ReleaseConfigurationHandle method to indicate to the server that it has
finished processing the configuration data, allowing the server to optimize its
resource management.

If the server does not support the ReleaseConfigurationHandle method, this
value shall be 0.

The client cannot rely on the data being available until
ReleaseConfigurationHandle is called.

configuration Requested configuration.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 15 – GetConfigurationById Method AddressSpace Definition

Attribute Value

BrowseName GetConfigurationById

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.2.2.3 GetConfigurationList

This method is used to get a list of all configurations. It concerns itself only with the metadata of the
configuration, the actual content is transferred by a ConfigurationTransferType object.

Signature

GetConfigurationList (

[in] UInt32 maxResults

[in] UInt32 startIndex

[in] Int32 timeout

[out] Boolean isComplete

[out] UInt32 resultCount

[out] Handle configurationHandle

[out] ConfigurationDataType[] configurationList

[out] Int32 error);

Release 1.0 41

OPC 40100-1: Control, configuration management, recipe management, result management

Table 16 – GetConfigurationList Method Arguments

Argument Description

maxResults Maximum number of configurations to return in one call; by passing 0, the client
indicates that it does not put a limit on the number of configurations.

startIndex Shall be 0 on the first call, multiples of maxResults on subsequent calls to retrieve
portions of the entire list, if necessary.

timeout With this argument the client can give a hint to the server how long it will need
access to the configuration data.

A value > 0 indicates an estimated maximum time for processing the data in
milliseconds.

A value = 0 indicates that the client will not need anything besides the data returned
by the method call.

A value < 0 indicates that the client cannot give an estimate.

The client cannot rely on the data being available during the indicated time period.
The argument is merely a hint allowing the server to optimize its resource
management.

isComplete Indicates whether there are more configurations in the entire list than retrieved
according to startIndex and resultCount.

resultCount Gives the number of valid results in configurationList.

configurationHandle The server shall return to each client requesting configuration data a system-wide
unique handle identifying the configuration set / client combination. The handle
spans continuation calls, so on every call by the same client where startIndex is not
0, the same handle shall be returned.

This handle canbe used by the client in a call to the ReleaseConfigurationHandle
method, thereby indicating to the server that it has finished processing the
configuration set, allowing the server to optimize its resource management.

The client cannot rely on the data being available until the
ReleaseConfigurationHandle method is called.

If the server does no support ReleaseConfigurationHandle, this value shall be 0.

configurationList List of configurations.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 17 – GetConfigurationList Method AddressSpace Definition

Attribute Value

BrowseName GetConfigurationList

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The following cases must be considered with the respect to the number of available configurations:

• The number of configurations to be returned is less or equal to maxResults; the first call, with
startIndex=0, returns isComplete=TRUE, so the client knows that no further calls are necessary.
resultCount gives the number of valid elements in the configurationList array.

OPC 40100-1: Control, configuration management, recipe management, result management

 42 Release 1.0

• The number of configurations to be returned is larger than maxResults; the first N calls (N > 0 with
N ≤ (number of configurations) divisor MaxResults), with startIndex=(N-1)*maxResults, return
isComplete=FALSE, so the client knows that further calls are necessary. The following call returns
isComplete=TRUE, so the client knows, no further calls are necessary. resultCount gives the
number of valid elements in the configurationList array (on each call, so on the first N calls, this
should be maxResults).

7.2.2.4 ReleaseConfigurationHandle

This method is used to inform the server that the client has finished processing a given configuration set
allowing the server to free resources managing this configuration set.

The server should keep the data of the configuration set available for the client until the
ReleaseConfigurationHandle method is called or until a timeout given by the client has expired. However, the
server is free to release the data at any time, depending on its internal resource management, so the client
cannot rely on the data being available. ReleaseConfigurationHandle is merely a hint allowing the server to
optimize its internal resource management. For timeout usage, see the description in Section 7.2.2.2.

Signature

ReleaseConfigurationHandle (

[in] Handle configurationHandle

[out] Int32 error);

Table 18 – ReleaseConfigurationHandle Method Arguments

Argument Description

configurationHandle Handle returned by GetConfigurationById or GetConfigurationList, identifying the
configuration set/client combination.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 19 – ReleaseConfigurationHandle Method AddressSpace Definition

Attribute Value

BrowseName ReleaseConfigurationHandle

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.2.2.5 RemoveConfiguration

This method is used to remove a configuration from the configuration management of the vision system.

Application Note:
It may be required from a vision system – e.g. in pharmaceutical or other safety-critical
applications – to keep a record of the prior existence of a removed configuration. This may
be important in such systems for the meta information of results that were generated while
the removed configuration was active. It serves to keep it comprehensible which
configurations were available on the vision system

Release 1.0 43

OPC 40100-1: Control, configuration management, recipe management, result management

Signature

RemoveConfiguration (

[in] ConfigurationIdDataType internalId

[out] Int32 error);

Table 20 – RemoveConfiguration Method Arguments

Argument Description

internalId Identification of the configuration used by the vision system. This argument must
not be empty.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 21 – RemoveConfiguration Method AddressSpace Definition

Attribute Value

BrowseName RemoveConfiguration

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.2.2.6 ActivateConfiguration

This method is used to activate a configuration from the configuration management of the vision system.

Since only a single configuration can be active at any time, this method shall deactivate any other
configuration which may currently be active. From that point on until the next call to this method the vision
system will conduct its operation according to the settings of the activated configuration.

Note that there is no way to deactivate a configuration except by activating another one to avoid having no
active configuration on the system.

Signature

ActivateConfiguration (

[in] ConfigurationIdDataType internalId

[out] Int32 error);

Table 22 – ActivateConfiguration Method Arguments

Argument Description

internalId Identification of the configuration used by the vision system. This argument must not be
empty.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

OPC 40100-1: Control, configuration management, recipe management, result management

 44 Release 1.0

Table 23 – ActivateConfiguration Method AddressSpace Definition

Attribute Value

BrowseName ActivateConfiguration

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.3 ConfigurationFolderType

This ObjectType is a subtype of the FolderType and is used to organize the configurations of a vision system.
Figure 10 shows the hierarchical structure and details of the composition. It is formally defined in Table 24.

Instances of this ObjectType organize all available configurations of the vision system, which the server
decides to expose in the Address Space. It may contain no configuration if no configuration is available, if the
server does not expose configurations in the Address Space at all, or if no configuration matches the criteria
of the server for exposure in the Address Space.

Note that the folder contains only metadata of the configurations, not the actual configuration data of the vision
system.

ConfigurationFolderType

Configuration

FolderType

Figure 10 – Overview ConfigurationFolderType

Table 24 – Definition of ConfigurationFolderType

Attribute Value

BrowseName ConfigurationFolderType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FolderType defined in OPC 10000-5

HasComponent Variable <Configuration> ConfigurationDataType BaseDataVariableType OptionalPlaceholder

The ConfigurationDataType used in the ConfigurationFolderType is defined in Section 12.12.

7.4 ConfigurationTransferType

7.4.1 Overview

This ObjectType is a subtype of the TemporaryFileTransferType defined in OPC 10000-5 and is used to
transfer configuration data as a file.

The ConfigurationTransferType overwrites the Methods GenerateFileForRead and GenerateFileForWrite to
specify the concrete type of the generateOptions Parameter of the Methods.

Figure 11 shows the hierarchical structure and details of the composition. It is formally defined in Table 25.

Release 1.0 45

OPC 40100-1: Control, configuration management, recipe management, result management

ConfigurationTransferType

GenerateFileForRead

GenerateFileForWrite

TemporaryFileTransferType

Figure 11 – Overview ConfigurationTransferType

Table 25 – Definition of ConfigurationTransferType

Attribute Value

BrowseName ConfigurationTransferType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TemporaryFileTransferType defined in OPC 10000-5

HasComponent Method 0:GenerateFileForRead

-- -- Mandatory

HasComponent Method 0:GenerateFileForWrite

-- -- Mandatory

7.4.2 ConfigurationTransferType methods

7.4.2.1 GenerateFileForRead

This method is used to start the read file transaction. A successful call of this method creates a temporary
FileType Object with the file content and returns the NodeId of this Object and the file handle to access the
Object.

OPC 40100-1: Control, configuration management, recipe management, result management

 46 Release 1.0

Signature

GenerateFileForRead (

[in] ConfigurationTransferOptions generateOptions

[out] NodeId fileNodeId

[out] UInt32 fileHandle

[out] NodeId completionStateMachine);

Table 26 – GenerateFileForRead Method Arguments

Argument Description

generateOptions The structure used to define the generate options for the file.

fileNodeId NodeId of the temporary file

fileHandle The FileHandle of the opened TransferFile.

The FileHandle can be used to access the TransferFile methods Read and
Close.

completionStateMachine If the creation of the file is completed asynchronously, the parameter returns the
NodeId of the corresponding FileTransferStateMachineType Object.

If the creation of the file is already completed, the parameter is null.

If a FileTransferStateMachineType object NodeId is returned, the Read Method
of the file fails until the TransferState changed to ReadTransfer.

Table 27 – GenerateFileForRead Method AddressSpace Definition

Attribute Value

BrowseName GenerateFileForRead

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.4.2.2 GenerateFileForWrite

This method is used to start the write file transaction. A successful call of this method creates a temporary
FileType Object with the file content and returns the NodeId of this Object and the file handle to access the
Object.

Signature

GenerateFileForWrite (

[in] ConfigurationTransferOptions generateOptions

[out] NodeId fileNodeId

[out] UInt32 fileHandle);

Release 1.0 47

OPC 40100-1: Control, configuration management, recipe management, result management

Table 28 – GenerateFileForWrite Method Arguments

Argument Description

generateOptions The structure used to define the generate options for the file.

fileNodeId NodeId of the temporary file.

fileHandle The fileHandle of the opened TransferFile.

The fileHandle can be used to access the TransferFile methods Write and
CloseAndCommit.

Table 29 – GenerateFileForWrite Method AddressSpace Definition

Attribute Value

BrowseName GenerateFileForWrite

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.5 RecipeManagementType

7.5.1 Overview

This ObjectType defines the representation of the machine vision system recipe management (for a
conceptual overview of recipe management see Section B.1, for a definition of recipes itself, see Section
B.1.2.1). Figure 12 shows the hierarchical structure and details of the composition. It is formally defined in
Table 30.

For the actual data transfer, RecipeManagementType makes use of the RecipeTransferType, derived from the
TemporaryFileTransferType defined in OPC 10000-5, beginning with version 1.04.

If the server chooses to expose recipe data in the Address Space (see Section B.1.3.3) using the Recipes
folder of this type, the FileType object component of the RecipeType objects in this folder can also be used
directly for the data transfer.

OPC 40100-1: Control, configuration management, recipe management, result management

 48 Release 1.0

RecipeManagementType

Recipes

Products

RecipeTransfer

AddRecipe

RemoveRecipe

PrepareRecipe

UnprepareRecipe

PrepareProduct

UnprepareProduct

UnlinkProduct

GetRecipeListFiltered

ReleaseRecipeHandle

BaseObjectType

Figure 12 – Overview RecipeManagementType

Release 1.0 49

OPC 40100-1: Control, configuration management, recipe management, result management

Table 30 – Definition of RecipeManagementType

Attribute Value

BrowseName RecipeManagementType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasComponent Method AddRecipe -- -- Optional

HasComponent Method PrepareRecipe -- -- Mandatory

HasComponent Method UnprepareRecipe -- -- Mandatory

HasComponent Method GetRecipeListFiltered -- -- Mandatory

HasComponent Method ReleaseRecipeHandle -- -- Optional

HasComponent Method RemoveRecipe -- -- Optional

HasComponent Method PrepareProduct -- -- Optional

HasComponent Method UnprepareProduct -- -- Optional

HasComponent Method UnlinkProduct -- -- Optional

HasComponent Object RecipeTransfer -- RecipeTransferType Optional

HasComponent Object Recipes -- RecipeFolderType Optional

HasComponent Object Products -- ProductFolderType Optional

RecipeTransfer is an instance of the RecipeTransferType defined in Section 7.6 and it is used to transfer the
contents of a recipe by the temporary file transfer method defined in OPC 10000-5, Annex C.4.

Recipes is an instance of the RecipeFolderType that organizes RecipeType objects, if the server chooses to
expose recipe information in the Address Space. In this case, it may contain the set of all recipes available on
the system or a filtered subset, e.g. the set of all currently prepared recipes. This is implementation-defined. If
a server does not expose recipe information in the Address Space, this folder is expected to be non-existent.

Products is an instance of the ProductFolderType that organizes ProductDataType variables, if the server
chooses to expose product information in the Address Space. In this case, it may contain the set of all
products available on the system or a filtered subset, e.g. the set of all products for which recipes are currently
prepared. This is implementation-defined. If a server does not expose product information in the Address
Space, this folder is expected to be non-existent.

7.5.2 RecipeManagementType Methods

7.5.2.1 AddRecipe

7.5.2.1.1 Overview

This method is used to add a recipe to the recipe management of the vision system. It concerns itself only with
the metadata of the recipe, the actual content is transferred by a RecipeTransferType object.

The intended behavior of this method for different input arguments is described in the following subsections.

Signature

AddRecipe (

[in] RecipeIdExternalDataType externalId

[in] ProductIdDataType productId

[out] RecipeIdInternalDataType internalId

[out] NodeId recipe

[out] NodeId product

[out] Boolean transferRequired

[out] Int32 error);

OPC 40100-1: Control, configuration management, recipe management, result management

 50 Release 1.0

Table 31 – AddRecipe Method Arguments

Argument Description

externalId Identification of the recipe used by the environment. This argument must not be
empty.

productId Identification of a product the recipe is to be used for.

This argument may be empty.

internalId Internal identification of the recipe. This identification shall be system-wide unique
and must be returned.

recipe If the server chooses to represent the recipe in the Address Space, it shall return the
NodeId of the newly created entry in the Recipes folder here.

If the server uses only method-based recipe management, this shall be null.

Note that, even if the server uses the Recipes folder to expose recipe data in the
Address Space, this may be empty, if the newly created recipe does not fit the
selection criteria of the server for the entries in this folder.

product If the server chooses to represent product information in the Address Space, it shall
return the NodeId of a newly created entry in the Products folder here.

If the server uses only method-based recipe management, this shall be null.

Note that, even if the server uses the Products folder to expose product data in the
Address Space, this may be null if the newly created product does not fit the
selection criteria of the server for the entries in the Products folder.

transferRequired In this argument, the server returns whether the vision system assumes that a
transfer of the file content of the recipe is required.

Note that this is only a hint for the client. If the server returns TRUE, the client will
have to assume that the vision system needs the recipe content and shall transfer it.
If the server returns FALSE, the client may transfer the recipe content anyway.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 32 – AddRecipe Method AddressSpace Definition

Attribute Value

BrowseName AddRecipe

References Node
Class

BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.5.2.1.2 New ExternalId

If AddRecipe is called with an ExternalId not yet existing in the recipe management of the vision system, it is
expected that the vision system creates an appropriate management structure with an InternalId which is
system-wide unique. The server may then return this InternalId, however the client cannot rely on this.

If the server chooses to represent all or selected recipes in the Address Space and if the new recipe matches
the current selection critieria, the server shall create a new entry in the Recipes folder in the Address Space.

The method will return TRUE in the TransferRequired argument. Since the ExternalId does not yet exist in the
recipe management of the vision system, it is expected that the recipe content does not yet exist either in the
local recipe storage of the vision system, and therefore needs to be transferred.

Release 1.0 51

OPC 40100-1: Control, configuration management, recipe management, result management

If the ProductId argument is non-empty, it is expected that the vision system creates an appropriate
management structure linking the newly created recipe for use with this ProductId. If the ProductId does not
yet exist on the vision system, it is expected that it is created.

If the ProductId argument is empty, no such linking takes place. Note that it will not be possible to start a job
based on a ProductId not linked to a recipe.

If the server chooses to represent all or selected products in the Address Space and if the ProductId matches
the selection criteria, the server shall create a new entry in the Products folder in the Address Space.

If the server chooses to represent all or selected recipes in the Address Space and if the given recipe matches
the selection criteria, the ProductId shall be added to the list of products within the appropriate Recipe node.

7.5.2.1.3 Identically Existing ExternalId with identical recipe

If AddRecipe is called with an ExternalId already existing in the recipe management of the vision system, it is
expected that the vision system checks whether an identical version of the recipe already exists, provided that
the content of the ExternalId allows for such a check (most likely using the hash value).

Note that the method has no way of checking this with the actual recipe content which is not yet known to the
vision system.

The method will return FALSE in the TransferRequired argument if the system comes to the conclusion that
the recipe already exists with identical content on the vision system. Note that the result is not binding for the
client who may decide to transfer the recipe content anyway.

If the server represents recipes in the Address Space, no new entry shall be created in the recipes folder.

The behavior with regard to the ProductId argument is as described above for a new ExternalId. This way of
calling AddRecipe can be used to link an existing recipe with another product.

7.5.2.1.4 Identically Existing ExternalId with different recipe

If AddRecipe comes to the conclusion that the content of the recipe to be transferred is different from the
content already existing for this ExternalId, it shall return TRUE in the TransferRequired argument.

The behavior with respect to the management of the recipe metadata and recipe content is entirely
application-defined. The vision system may decide to create a new management structure with a new
InternalId and add the recipe content to the local recipe store, or it may decide to re-use the existing
ExternalId and overwrite the recipe content.

If the server chooses to represent recipes in the Address Space, the behavior with respect to these recipe
objects should mirror the behavior of the vision system in its internal recipe management

The behavior with regard to the ProductId argument is as described above for a new ExternalId. If the vision
system stores both recipe versions, it is implementation-defined whether both are linked to the ProductId or
not.

Note that overwriting a recipe shall result in a change to the internalId of the recipe. The change may effect
only the hash value, the identifier may remain the same. Historical storage is not required.

7.5.2.1.5 Local creation or editing of recipes

This is not, strictly speaking, a use-case of the method AddRecipe, but results are comparable, therefore, the
use-case is described here.

If a recipe is created locally on the vision system or is loaded onto the vision system by a different interface
than the OPC Machine Vision interface, i.e. the recipe is added without using the AddRecipe method, then this
recipe shall have a system-wide unique InternalId, just like a recipe added through the method.

If an existing recipe which was uploaded to the vision system through AddRecipe is locally changed, the
ExternalId shall be removed from the changed version and it shall receive a new system-wide unique
InternalId so that the two recipes cannot be confused. Of course the vision system may record the history from
which recipe it was derived.

If the server represents recipes in the Address Space and if the locally created or edited recipes match the
current filter criteria, then they shall be represented as nodes in the Recipes folder, with their system-wide
unique InternalIds, but without ExternalIds.

OPC 40100-1: Control, configuration management, recipe management, result management

 52 Release 1.0

An important special case is the local editing of an already prepared recipe, described in Section B.1.2.3.
Since after local editing, the already prepared recipe is different from before, effectively a new recipe has been
prepared by the local editing. Therefore, a new RecipePrepared event shall be generated (see also Section
8.3.8.1).

7.5.2.2 PrepareRecipe

This method is used to prepare a recipe so that it can be used for starting a job on the vision system.

Signature

PrepareRecipe (

[in] RecipeIdExternalDataType externalId

[in] RecipeIdInternalDataType internalIdIn

[out] RecipeIdInternalDataType internalIdOut

[out] Boolean isCompleted

[out] Int32 error);

Table 33 – PrepareRecipe Method Arguments

Argument Description

externalId Identification of the recipe used by the environment which is to be prepared.

internalIdIn Internal identification of the recipe which is to be prepared.

The client can use either the externalId or the internalIdIn, leaving the other empty.
If both are given, the InternalIdIn takes precedence.

internalIdOut Internal identification of the recipe selected based on the given externalId or
internalId.

isCompleted Flag to indicate that the recipe has been completely prepared before the method
returned.

If False, the client needs either to check the properties of the recipe to determine
when preparation has completed or wait for the RecipePrepared event.

Error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 34 – PrepareRecipe Method AddressSpace Definition

Attribute Value

BrowseName PrepareRecipe

References Node
Class

BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

If the vision system is in state Initialized, it is expected to change into state Ready after successful preparation
of the recipe and be able to execute jobs called by a Start method with the given ExternalId.

If the vision system is already in state Ready when PrepareRecipe is called, it is expected to be in state
Ready again after successful preparation of the recipe and be able to execute jobs called by a Start method
with the given ExternalId. Depending on the capabilities of the vision system, it may temporarily leave state
Ready for state Initialized, then return to Ready, or, if the system is capable of preparing recipes in the
background, it may stay in state Ready and react instantaneously to Start jobs for other, already prepared,

Release 1.0 53

OPC 40100-1: Control, configuration management, recipe management, result management

recipes. Also depending on the capabilities of the vision system, preparing an additional recipe may unprepare
others if the number of recipes being prepared at the same time is limited.

The preparation of a recipe may be a time-consuming operation. The client cannot necessarily assume that
the recipe is completely prepared when the method returns. The client should therefore check the
preparedness of the recipe after a reasonable amount of time or wait for a RecipePrepared event with the
correct ExternalId to be fired. During the time required for preparing a recipe, the system may or may not be
capable of reacting to a start method. However, the server is free to handle PrepareRecipe as a synchronous
method, returning only after the recipe is completely prepared unless an error has occurred.

Not that the local editing of an already prepared recipe, as described in Sections 7.5.2.1.5 and B.1.2.3 is
considered to be the same as the preparation of a new recipe, because after local editing, the already
prepared recipe is different from before, so effectively a new recipe has been prepared by the local editing.
Therefore, a new RecipePrepared event shall be generated (see also Section 8.3.8.1).

Some recipes may exclude each other from being in prepared state at the same time, for example, when there
are mechanical movements involved. Having two such recipes prepared at the same time would mean that an
instantaneous reaction to calling the Start method for a prepared recipe would not be possible. However, this
is at the discretion of the vision system. The client may merely notice an unusually long reaction time between
calling the Start method and the actual state change, or the vision system may prevent the simultaneous
preparation by returning an error.

If there is more than one recipe with the identical ExternalId – e.g. due to local copying and modifying of
recipes on the vision system – it is implementation-defined how this ambiguity will be handled. The vision
system will prepare only a single one of these recipes, which may be the latest one or the latest externally
defined one.

7.5.2.3 UnprepareRecipe

This method is used to revert the preparation of a recipe so that it can no longer be used for starting a job on
the vision system.

Signature

UnprepareRecipe (

[in] RecipeIdExternalDataType externalId

[in] RecipeIdInternalDataType internalIdIn

[out] RecipeIdInternalDataType internalIdOut

[out] Int32 error);

Table 35 – UnprepareRecipe Method Arguments

Argument Description

externalId Identification of the recipe used by the environment which is to be un-prepared.

internalIdIn Internal identification of the recipe which is to be un-prepared.

The client can use either the externalId or the internalIdIn, leaving the other
empty. If both are given, the InternalIdIn takes precedence.

internalIdOut Internal identification of the recipe selected based on a given externalId or
internalId. This is for verification by the client.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

OPC 40100-1: Control, configuration management, recipe management, result management

 54 Release 1.0

Table 36 – UnprepareRecipe Method AddressSpace Definition

Attribute Value

BrowseName UnprepareRecipe

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

If the vision system is in Ready state when UnprepareRecipe is called, and the recipe to be unprepared is the
only recipe currently prepared, the vision system is expected to change into state Initialized after successful
reversion of the preparation of the recipe.

If there are additional recipes in prepared state, the vision system is expected to remain in state Ready and be
able to be called by a Start method with one of the remaining prepared recipes. Depending on the capabilities
of the vision system, it may temporarily leave state Ready for state Initialized, then return to Ready.

If there is more than one recipe with the identical ExternalId – e.g. due to local copying and modifying of
recipes on the vision system – it is implementation-defined how this ambiguity will be handled. However, it is
expected that the vision system will handle the ambiguity in the same way as for method PrepareRecipe so
that UnprepareRecipe is exactly reciprocal to PrepareRecipe.

7.5.2.4 GetRecipeListFiltered

This method is used to get a list of recipes matching certain filter criteria. It concerns itself only with the
metadata of the recipe, the actual content is transferred by a RecipeTransferType object.

Signature

GetRecipeListFiltered (

[in] RecipeIdExternalDataType externalId

[in] ProductIdDataType productId

[in] TriStateBooleanDataType isPrepared

[in] UInt32 maxResults

[in] UInt32 startIndex

[in] Int32 timeout

[out] Boolean isComplete

[out] UInt32 resultCount

[out] Handle recipeHandle

[out] RecipeIdInternalDataType[] recipeList

[out] Int32 error);

Release 1.0 55

OPC 40100-1: Control, configuration management, recipe management, result management

Table 37 – GetRecipeListFiltered Method Arguments

Argument Description

externalId Identification of the recipe used by the environment used as a filter.

productId Identification of a product, used as a filter.

isPrepared This argument is used to filter for prepared recipes (for value TRUE_1), non-
prepared recipes (for value FALSE_0) or without regard for the preparedness of
recipes (for value DONTCARE_2).

maxResults Maximum number of recipes to return in one call; by passing 0, the client indicates
that it does not put a limit on the number of recipes.

startIndex Shall be 0 on the first call, multiples of maxResults on subsequent calls to retrieve
portions of the entire list, if necessary.

Timeout With this argument the client can give a hint to the server how long it will need
access to the configuration data.

A value > 0 indicates an estimated maximum time for processing the data in
milliseconds.

A value = 0 indicates that the client will not need anything besides the data returned
by the method call.

A value < 0 indicates that the client cannot give an estimate.

The client cannot rely on the data being available during the indicated time period.
The argument is merely a hint allowing the server to optimize its resource
management.

isComplete Indicates whether there are more results in the entire list than retrieved according
to startIndex and resultCount.

resultCount Gives the number of valid results in recipeList.

recipeHandle The server shall return to each client requesting recipe data a system-wide unique
handle identifying the recipe set / client combination. This handle has to be used by
the client to release the recipe set.

recipeList List of InternalIDs matching the filters.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 38 – GetRecipeListFiltered Method AddressSpace Definition

Attribute Value

BrowseName GetRecipeListFiltered

References Node
Class

BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The input arguments are used as filters. Strings or TrimmedStrings as arguments or structure components of
arguments can contain * and ? to be used as wildcards. Empty elements are considered to match everything,
or in other words are not taken into account for filtering at all. The notion of emptiness is defined together with
the respective DataTypes.

In RecipeList, the method returns a list of all recipes whose ExternalIds or ProductIds match the filters.

For RecipleList method there are the following cases with the respect to the number of results:

OPC 40100-1: Control, configuration management, recipe management, result management

 56 Release 1.0

• The number of recipes to be returned according to the filter is less or equal to maxResults; the
first call, with nstartIndex=0, returns isComplete=TRUE, so the client knows that no further calls
are necessary. resultCount gives the number of valid elements in the recipeList array.

• The number of recipes to be returned is larger than maxResults; the first N calls (N > 0 with N ≤
(number of recipes) divisor MaxResults), with startIndex=(N-1)*maxResults, return
isComplete=FALSE, so the client knows that further calls are necessary. The following call returns
isComplete=TRUE, so the client knows, no further calls are necessary. resultCount gives the
number of valid elements in the recipeList array (on each call, so on the first N calls, this should
be maxResults).

7.5.2.5 ReleaseRecipeHandle

This method is used to inform the server that the client has finished processing a given recipe set allowing the
server to free resources managing this recipe set.

The server should keep the data of the recipe set available for the client until the ReleaseRecipeHandle
method is called or until a timeout given by the client has expired. However, the server is free to release the
data at any time, depending on its internal resource management, so the client cannot rely on the data being
available. ReleaseRecipeHandle is merely a hint allowing the server to optimize its internal resource
management. For timeout usage see the description in Section 7.5.2.4.

Signature

ReleaseRecipeHandle (

[in] Handle recipeHandle

[out] Int32 error);

Table 39 – ReleaseRecipeHandle Method Arguments

Argument Description

recipeHandle Handle returned by GetRecipeById or GetRecipeListFiltered methods, identifying
the recipe set/client combination.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 40 – ReleaseRecipeHandle Method AddressSpace Definition

Attribute Value

BrowseName ReleaseRecipeHandle

References Node
Class

BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.5.2.6 RemoveRecipe

This method is used to remove a recipe from the recipe management of the vision system.

Signature

RemoveRecipe [(

[in] RecipeIdExternalDataType externalId

[out] Int32 error);

Release 1.0 57

OPC 40100-1: Control, configuration management, recipe management, result management

Table 41 – RemoveRecipe Method Arguments

Argument Description

externalId Identification of the recipe used by the environment.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 42 – RemoveRecipe Method AddressSpace Definition

Attribute Value

BrowseName RemoveRecipe

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

It is expected that the vision system removes the recipe matching the given ExternalId from its management
structures. Whether the vision system also removes the actual recipe content is implementation-defined.

Application Note:
The removed recipe may still be referenced by stored results from the vision system.
Therefore, it is strongly recommended that the InternalId of a removed recipe is not re-
used by the vision system. Otherwise, traceability of results to recipes will be impaired and
the vision system may no be able to fulfil certain external requirements, e.g.the FDA Part
11 requirements for pharmaceutical equipment.
However, this standard makes no requirements on the way the vision system creates and
maintains its internal management data.

If there is more than one recipe with the identical ExternalId – e.g. due to local copying and modifying of
recipes on the vision system – it is implementation-defined how this ambiguity will be handled. For example,
the vision system may remove all these recipes or only the externally defined ones or any number of other
possibilities.

If the server chooses to represent recipes in the Address Space, the server shall remove the recipe node in
the same way as the vision system cleans up its management structures.

7.5.2.7 PrepareProduct

This method is used to prepare a product so that it can be used for starting a job on the vision system.

Signature

PrepareProduct (

[in] ProductIdDataType productId

[out] RecipeIdInternalDataType internalId

[out] Int32 error);

OPC 40100-1: Control, configuration management, recipe management, result management

 58 Release 1.0

Table 43 – PrepareProduct Method Arguments

Argument Description

productId Identification of a product, which can be used in a Start method.

internalId Internal identification of the recipe which is actually being used to work on the
product.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 44 – PrepareProduct Method AddressSpace Definition

Attribute Value

BrowseName PrepareProduct

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

In effect, the vision system will use a recipe to work on the product. Therefore, the vision system is expected
to select a recipe linked to the given ProductId. If more than one recipe is linked to the product, the resolution
of this ambiguity is implementation defined.

The vision system shall return the internal identification of the recipe selected. If there is more than one recipe
linked to the given ProductId, it is implementation-defined how this ambiguity will be handled. It is expected
that the resolution of the ambiguity will be implemented in a systematic manner throughout the vision system.

Since preparing a product is in effect the same as preparing a recipe which has been selected by the vision
system on the basis of the ProductId, state handling is identical to the PrepareRecipe method.

7.5.2.8 UnprepareProduct

This method is used to revert the preparation of a product so that it can no longer be used for starting a job on
the vision system.

Signature

UnprepareProduct (

[in] ProductIdDataType productId

[out] RecipeIdInternalDataType internalId

[out] Int32 error);

Table 45 – UnprepareProduct Method Arguments

Argument Description

productId Identification of a product, which is to be unprepared.

internalId Internal identification of the recipe which is actually unprepared.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Release 1.0 59

OPC 40100-1: Control, configuration management, recipe management, result management

Table 46 – UnprepareProduct Method AddressSpace Definition

Attribute Value

BrowseName UnprepareProduct

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

It is expected that the vision system will select a recipe based on the ProductId in the same way as in method
PrepareProduct and then unprepare that recipe so that UnprepareProduct is exactly reciprocal to
PrepareProduct.

Therefore, state handling is identical to UnprepareRecipe method.

7.5.2.9 UnlinkProduct

This method is used to remove the link between a recipe and a product in the vision system

Signature

UnlinkProduct (

[in] RecipeIdInternalDataType internalId

[in] ProductIdDataType productId

[out] Int32 error);

Table 47 – UnlinkProduct Method Arguments

Argument Description

internalId Identification of the recipe used by the system.

productId Identification of a product, the recipe is to be used for.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 48 – UnlinkProduct Method AddressSpace Definition

Attribute Value

BrowseName UnlinkProduct

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

It is expected that the vision system removes a link between recipes with the given InternalId and products
with the given ProductId from its internal management structures.

UnlinkProduct uses the InternalId to ensure that it is unambiguous which recipe the link is removed from. If
need be, the client can get the InternalIds for given ExternalIds using the GetRecipeListFiltered method
(7.5.2.4).

Starting jobs based on this ProductId will no longer lead to this recipe being used. If there is no link left
between this ProductId and any recipe, it will no longer be possible to start a job based on that ProductId.

If the server chooses to represent recipes in the Address Space, the server shall remove the given ProductId
from the appropriate recipe node.

OPC 40100-1: Control, configuration management, recipe management, result management

 60 Release 1.0

If the server chooses to represent products in the Address Space, and there are no recipes linked to a product
anymore, it is expected that the server removes the corresponding product node.

7.6 RecipeTransferType

7.6.1 Overview

This ObjectType is a subtype of TemporaryFileTransferType defined in OPC 10000-5 and is used for
transferring a recipe.

The RecipeTransferType overwrites the Methods GenerateFileForRead and GenerateFileForWrite to specify
the concrete type of the generateOptions Parameter of the Methods.

Figure 13 shows the hierarchical structure and details of the composition. It is formally defined in Table 49.

RecipeTransferType

GenerateFileForRead

GenerateFileForWrite

TemporaryFileTransferType

Figure 13 – RecipeTransferType

Table 49 – Definition of RecipeTransferType

Attribute Value

BrowseName RecipeTransferType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TemporaryFileTransferType defined in OPC 10000-5

HasComponent Method 0:GenerateFileForRead -- -- Mandatory

HasComponent Method 0:GenerateFileForWrite -- -- Mandatory

7.6.2 RecipeTransferType Methods

7.6.2.1 GenerateFileForRead

This method is used to start the read file transaction. A successful call of this method creates a temporary
FileType Object with the file content and returns the NodeId of this Object and the file handle to access the
Object.

Signature

GenerateFileForRead (

[in] RecipeTransferOptions generateOptions

[out] NodeId fileNodeId

[out] UInt32 fileHandle

[out] NodeId completionStateMachine);

Release 1.0 61

OPC 40100-1: Control, configuration management, recipe management, result management

Table 50 – GenerateFileForRead Method Arguments

Argument Description

generateOptions The structure used to define the generate options for the file, described in
Section 12.11.

fileNodeId NodeId of the temporary file

fileHandle The fleHandle of the opened TransferFile.

The fileHandle can be used to access the TransferFile methods Read and
Close.

completionStateMachine If the creation of the file is completed asynchronously, the parameter returns the
NodeId of the corresponding FileTransferStateMachineType Object.

If the creation of the file is already completed, the parameter is null.

If a FileTransferStateMachineType object NodeId is returned, the Read Method
of the file fails until the TransferState changed to ReadTransfer.

Table 51 – GenerateFileForRead Method AddressSpace Definition

Attribute Value

BrowseName GenerateFileForRead

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.6.2.2 GenerateFileForWrite

This method is used to start the write file transaction. A successful call of this method creates a temporary
FileType Object with the file content and returns the NodeId of this Object and the file handle to access the
Object.

Signature

GenerateFileForWrite (

[in] RecipeTransferOptions generateOptions

[out] NodeId fileNodeId

[out] UInt32 fileHandle);

Table 52 – GenerateFileForWrite Method Arguments

Argument Description

generateOptions The structure used to define the generate options for the file, described in Section
12.11.

fileNodeId NodeId of the temporary file

fileHandle The fleHandle of the opened TransferFile.

The fileHandle can be used to access the TransferFile methods Write and
CloseAndCommit.

OPC 40100-1: Control, configuration management, recipe management, result management

 62 Release 1.0

Table 53 – GenerateFileForWrite Method AddressSpace Definition

Attribute Value

BrowseName GenerateFileForWrite

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.7 RecipeType

7.7.1 Overview

This ObjectType defines the metadata for a recipe and methods for handling individual recipes.

RecipeType

Handle

LinkProduct

UnlinkProduct

Prepare

Unprepare

ExternalId

InternalId

IsPrepared

LastModified

LinkedProducts

BaseObjectType

Figure 14 – Overview RecipeType

Release 1.0 63

OPC 40100-1: Control, configuration management, recipe management, result management

Table 54 – Definition of RecipeType

Attribute Value

BrowseName RecipeType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasProperty Variable ExternalId RecipeIdExternalDataType PropertyType Optional

HasProperty Variable InternalId RecipeIdInternalDataType PropertyType Mandatory

HasProperty Variable IsPrepared Boolean PropertyType Mandatory

HasProperty Variable LastModified UtcTime PropertyType Mandatory

HasProperty Variable LinkedProducts ProductIdDataType[] PropertyType Optional

HasComponent Object Handle -- FileType Optional

HasComponent Method LinkProduct -- -- Optional

HasComponent Method UnlinkProduct -- -- Optional

HasComponent Method Prepare -- -- Mandatory

HasComponent Method Unprepare -- -- Mandatory

ExternalId

RecipeId for identifying the recipe outside the vision system. The ExternalId is only managed by the
environment.

InternalId

System-wide unique ID for identifying a recipe. This ID is assigned by the vision system.

LastModified

The time, when this recipe was last modified in the recipe store of the vision system. It is assumed that this
value is consistent between recipes on the system so that it can be used to order recipes on the system by
modification time. As it is possible that the vision system may not be synchronized with a time server, this
value may not be valid for comparisons between systems.

LinkedProducts

Array of ProductIds which this recipe is linked to. May be empty.

Handle

FileType object for handling transfer of recipe data between client and server. The data is treated as a binary
blob by the server. This method is optional for clients not supporting transfer of the actual recipe contents.

7.7.2 RecipeType Methods

7.7.2.1 Overview

If recipes are exposed in the Address Space, the corresponding entries in the Recipes folder of the
RecipeManagement object have to be created using the AddRecipe method of the RecipeManagement
object. The recipe object cannot destroy itself as this would affect the data structures of the
RecipeManagement object; therefore, removal has to take place using the Remove method of that object.

Operations other than AddRecipe can be carried out directly on the the RecipeType object as well as on he
RecipeManagement object.

For data transfer, the FileType object contained in the RecipeType object can be used directly. Therefore,
there is no need for a specific Get method.

OPC 40100-1: Control, configuration management, recipe management, result management

 64 Release 1.0

7.7.2.2 LinkProduct

This method is used to create a link between the recipe and a product in the vision system

Signature

LinkProduct (

[in] ProductIdDataType productId

[out] Int32 error);

Table 55 – LinkProduct Method Arguments

Argument Description

productId Identification of a product, the recipe is to be used for.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 56 – LinkProduct Method AddressSpace Definition

Attribute Value

BrowseName LinkProduct

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

It is assumed that the given ProductId already exists in the vision system management structures, e.g. having
been created with the AddProduct method of the RecipeManagementType. It is recommended that it also
exists in the Products folder of the RecipeManagementType object to expose a consistent set of data in the
Address Space.

In the case of a successful link, the server shall add the given ProductId to the LinkedProducts list of this
RecipeType object.

The method shall fail if the product does not exist in the vision system management structures.

7.7.2.3 UnlinkProduct

This method is used to remove the link between the recipe and a product in the vision system

Signature

UnlinkProduct (

[in] ProductIdDataType productId

[out] Int32 error);

Release 1.0 65

OPC 40100-1: Control, configuration management, recipe management, result management

Table 57 – UnlinkProduct Method Arguments

Argument Description

productId Identification of a product, the recipe is to be used for.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 58 – UnlinkProduct Method AddressSpace Definition

Attribute Value

BrowseName UnlinkProduct

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The server shall remove the given ProductId from the LinkedProducts list of this RecipeType object.

It is expected that the vision system removes a link between the recipe represented by this object and
products with the given ProductId from its internal management structures.

Starting jobs based on this ProductId will no longer lead to this recipe being used. If there is no link left
between this ProductId and any recipe, it will no longer be possible to start a job based on that ProductId.

7.7.2.4 Prepare

This method is used to prepare the recipe so that it can be used for starting a job on the vision system.

Signature

Prepare (

[out] Boolean isCompleted

[out] Int32 error);

Table 59 – Prepare Method Arguments

Argument Description

isCompleted Flag to indicate that the recipe has been completely prepared before the method
returned.

If False, the client needs either to check the properties of the recipe to determine
when preparation has completed or wait for the RecipePrepared event.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 60 – Prepare Method AddressSpace Definition

Attribute Value

BrowseName Prepare

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

OPC 40100-1: Control, configuration management, recipe management, result management

 66 Release 1.0

The effects of the Prepare method of a RecipeType object on the VisionSystem shall be identical to those of
the PrepareRecipe method of the RecipeManagementType object.

7.7.2.5 Unprepare

This method is used to revert the preparation of the recipe so that it can no longer be used for starting a job on
the vision system.

Signature

Unprepare (

[out] Int32 error);

Table 61 – Unprepare Method Arguments

Argument Description

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 62 – Unprepare Method AddressSpace Definition

Attribute Value

BrowseName Unprepare

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The effects of the Unprepare method of a RecipeType object on the
VisionSystemAutomaticModeStateMachine shall be identical to those of the UnprepareRecipe method of the
RecipeManagementType object.

7.7.2.6 Recipe transfer

There are no dedicated transfer methods on the RecipeType because it already contains a FileType object
representing the content of the actual recipe in the vision system. Thus, transfer can be carried out using the
standard Open, Read, Write, Close methods of the FileType object.

7.8 RecipeFolderType

This ObjectType is a subtype of the FolderType and is used to organize the recipes of a vision system. Figure
15 shows the hierarchical structure and details of the composition. It is formally defined in Table 63.

Instances of this ObjectType organize all available recipes of the vision system, which the server decides to
expose in the Address Space. It may contain no recipe if no recipe is available, if the server does not expose
recipes in the Address Space at all, or if no recipe matches the criteria of the server for exposure in the
Address Space.

Note that the folder contains only metadata of the recipes, not the actual configuration data of the vision
system.

Release 1.0 67

OPC 40100-1: Control, configuration management, recipe management, result management

RecipeFolderType

Recipe

FolderType

Figure 15 – Overview RecipeFolderType

Table 63 – Definition of RecipeFolderType

Attribute Value

BrowseName RecipeFolderType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FolderType defined in OPC 10000-5

HasComponent Object <Recipe> -- RecipeType OptionalPlaceholder

The RecipeType used in the RecipeFolderType is defined in Section 7.7.

7.9 ProductFolderType

This ObjectType is a subtype of the FolderType and is used to organize the products of a vision system.
Figure 16 shows the hierarchical structure and details of the composition. It is formally defined in Table 64.

Instances of this ObjectType organize all available products of the vision system, which the server decides to
expose in the Address Space. It may contain no product if no product is available, if the server does not
expose products in the Address Space at all, or if no product matches the criteria of the server for exposure in
the Address Space.

Note that the folder contains only metadata of the products, not the actual product data of the vision system.

OPC 40100-1: Control, configuration management, recipe management, result management

 68 Release 1.0

ProductFolderType

Product

FolderType

Figure 16 – Overview ProductFolderType

Table 64 – Definition of ProductFolderType

Attribute Value

BrowseName ProductFolderType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FolderType defined in OPC 10000-5

HasComponent Variable <Product> ProductDataType BaseDataVariableType OptionalPlaceholder

The ProductDataType used in the ProductFolderType is defined in Section 12.15.

7.10 ResultManagementType

7.10.1 Overview

This ObjectType defines the representation of the machine vision system result management. Figure 17
shows the hierarchical structure and details of the composition. It is formally defined in Table 65.

ResultManagementType provides methods to query the results generated by the underlying vision system.
Results can be stored in a local result store. An event of ResultReadyEventType, which is defined in Section
8.3.8.4, shall be triggered when the system generates a new result.

Release 1.0 69

OPC 40100-1: Control, configuration management, recipe management, result management

ResultManagementType

Results

ResultTransfer

GetResultListFiltered

GetResultById

GetResultComponentsById

ReleaseResultHandle

BaseObjectType

Figure 17 – Overview ResultManagementType

Table 65 – Definition of ResultManagementType

Attribute Value

BrowseName ResultManagementType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasComponent Method GetResultById

-- -- Mandatory

HasComponent Method GetResultComponentsById -- -- Mandatory

HasComponent Method GetResultListFiltered -- -- Mandatory

HasComponent Method ReleaseResultHandle -- -- Optional

HasComponent Object ResultTransfer -- ResultTransferType Optional

HasComponent Object Results -- ResultFolderType Optional

ResultTransfer is an instance of the ResultTransferType defined in Section 7.12 and it is used to transfer the
contents of a result by the temporary file transfer method defined in OPC 10000-5, Annex C.4.

Results is an Object of the ResultFolderType that organizes variables of the DataType ResultDataType which
is defined in Section 12.17. If the server chooses to expose result information in the Address Space, it may
contain the set of all results available on the system or a filtered subset, e.g. the set of all currently finished
results. This is implementation-defined. If a server does not expose result information in the Address Space,
this variable is expected to be non-existent.

OPC 40100-1: Control, configuration management, recipe management, result management

 70 Release 1.0

7.10.2 ResultManagementType methods

7.10.2.1 GetResultById

This method is used to retrieve a result from the vision system. Depending on the design of the vision system,
the client may be informed by events of ResultReadyEventType that a new result is available. Then, the client
might fetch this result using the information provided by events of ResultReadyEventType which is defined in
Section 8.3.8.4.

Since the resultId is supposed to be system-wide unique, this method shall return only a single result. Since
there may be additional result content to be retrieved by temporary file transfer, the server should keep result
data available, resources permitting, until the client releases the handle ReleaseResult. However, the client
cannot rely on the data to remain available until then.

Signature

GetResultById (

[in] ResultIdDataType resultId

[in] Int32 timeout

[out] Handle resultHandle

[out] ResultDataType result

[out] Int32 error);

Table 66 – GetResultById Method Arguments

Argument Description

resultId System-wide unique identifier for the result.

timeout With this argument the client can give a hint to the server how long it will need access to
the result data.

A value > 0 indicates an estimated maximum time for processing the data in
milliseconds.

A value = 0 indicates that the client will not need anything besides the data returned by
the method call.

A value < 0 indicates that the client cannot give an estimate.

The client cannot rely on the data being available during the indicated time period. The
argument is merely a hint allowing the server to optimize its resource management.

resultHandle The server shall return to each client requesting result data a system-wide unique handle
identifying the result set / client combination. This handle should be used by the client to
indicate to the server that the result data is no longer needed, allowing the server to
optimize its resource handling .

result The result including metadata.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 67 – GetResultById Method AddressSpace Definition

Attribute Value

BrowseName GetResultById

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

Release 1.0 71

OPC 40100-1: Control, configuration management, recipe management, result management

7.10.2.2 GetResultComponentsById

This method is used to retrieve a result from the vision system. It is basically identical to the GetResultById
method described in Section 7.10.2.1, but it returns the result not in a single output argument of
ResultDataType but in individual output arguments corresponding to the elements of the ResultDataType
structure.

The reason for providing this method is to facilitate the use of subtypes to the structures nested inside of
ResultDataType. Since the NodeIds of structured DataTypes nested within a structured DataType are not
transferred together with the DataType, subtyping these nested structures would then also necessitate
subtyping ResultDataType. This is of course possible, but in the absence of such a subtype, the individual
components can still be requested by this method.

Signature

GetResultComponentsById (

[in] ResultIdDataType resultId

[in] Int32 timeout

[out] Boolean hasTransferableDataOnFile

[out] Handle resultHandle

[out] Boolean isPartial

[out] Boolean isSimulated

[out] ResultStateDataType resultState

[out] MeasIdDataType measId

[out] PartIdDataType partId

[out] RecipeIdExternalDataType externalRecipeId

[out] RecipeIdInternalDataType internalRecipeId

[out] ProductIdDataType productId

[out] ConfigurationIdDataType externalConfigurationId

[out] ConfigurationIdDataType internalConfigurationId

[out] JobIdDataType jobId

[out] UtcTime creationTime

[out] ProcessingTimesDataType processingTimes

[out] BaseDataType[] resultContent

[out] Int32 error);

OPC 40100-1: Control, configuration management, recipe management, result management

 72 Release 1.0

Table 68 – GetResultComponentsById Method Arguments

Argument Description

resultId System-wide unique identifier for the result

timeout With this argument the client can give a hint to the server how long it will
need access to the result data.

A value > 0 indicates an estimated maximum time for processing the
data in milliseconds.

A value = 0 indicates that the client will not need anything besides the
data returned by the method call.

A value < 0 indicates that the client cannot give an estimate.

The client cannot rely on the data being available during the indicated
time period. The argument is merely a hint allowing the server to
optimize its resource management.

hasTransferableDataOnFile Indicates that TemporaryFileTransfer needs to be used to retrieve all
data of the result content.

resultHandle The server shall return to each client requesting result data a system-
wide unique handle identifying the result set / client combination. This
handle should be used by the client to indicate to the server that the
result data is no longer needed, allowing the server to optimize its
resource handling.

isPartial Indicates whether the result is the partial result of a total result.

isSimulated
Indicates whether the system was in simulation mode when the job
generating this result was created.

resultState
ResultState provides information about the current state of a result and
the ResultStateDataType is defined in Section 12.19.

measId

This identifier is given by the client when starting a single or continuous
execution and transmitted to the vision system. It is used to identify the
respective result data generated for this job. Although the system-wide
unique JobId would be sufficient to identify the job which the result
belongs to, this makes for easier filtering on the part of the client without
keeping track of JobIds.

partId

A PartId is given by the client when starting the job; although the system-
wide unique JobId would be sufficient to identify the job which the result
belongs to, this makes for easier filtering on the part of the client without
keeping track of JobIds.

externalRecipeId
External identifier of the recipe in use which produced the result. This is
only managed by the environment.

internalRecipeId
Internal identifier of the recipe in use which produced the result. This
identifier is system-wide unique and it is assigned by the vision system.

productId
Identifier of the product in use which produced the result. This is only
managed by the environment.

externalConfigurationId
External identifier of the configuration in use while the result was
produced.

InternalConfigurationId
Internal identifier of the configuration in use while the result was
produced. This identifier is system-wide unique and it is assigned by the
vision system.

jobId The identifier of the job, created by the transition from state Ready to

Release 1.0 73

OPC 40100-1: Control, configuration management, recipe management, result management

Argument Description

state SingleExecution or to state ContinuousExecution which produced
the result.

creationTime CreationTime indicates the time when the result was created.

processingTimes
Collection of different processing times that were needed to create the
result.

resultContent
Abstract data type to be subtyped from to hold the actual result content
created by the job.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 69 – GetResultComponentsById Method AddressSpace Definition

Attribute Value

BrowseName GetResultById

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.10.2.3 GetResultListFiltered

This method is used to get a list of results matching certain filter criteria.

Signature

GetResultListFiltered (

[in] ResultStateDataType resultState

[in] MeasIdDataType measId

[in] PartIdDataType partId

[in] RecipeIdExternalDataType externalRecipeId

[in] RecipeIdInternalDataType internalRecipeId

[in] ConfigurationIdDataType externalConfigurationId

[in] ConfigurationIdDataType internalConfigurationId

[in] ProductIdDataType productId

[in] JobIdDataType jobId

[in] UInt32 maxResults

[in] UInt32 startIndex

[in] Int32 timeout

[out] Boolean isComplete

[out] UInt32 resultCount

[out] Handle resultHandle

[out] ResultDataType[] resultList

[out] Int32 error);

OPC 40100-1: Control, configuration management, recipe management, result management

 74 Release 1.0

Table 70 – GetResultListFiltered Method Arguments

Argument Description

resultState If not 0, only results having the specified state are returned.

measId If not empty, only results corresponding to the given measId are returned

partId If not empty, only results corresponding to the given partId are returned.

externalRecipeId If not empty, only results corresponding to the given externalRecipeId are returned.

internalRecipeId If not empty, only results corresponding to the given internalRecipeId are returned.

externalConfigurationId If not empty, only results corresponding to the given externalConfigurationId are
returned.

internalConfigurationId If not empty, only results corresponding to the given internalConfigurationId are
returned.

productId If not empty, only results corresponding to the given productId are returned.

jobId If not empty, only results corresponding to the given jobId are returned.

maxResults Maximum number of results to return in one call; by passing 0, the client indicates
that it does not put a limit on the number of results.

startIndex Shall be 0 on the first call, multiples of maxResults on subsequent calls to retrieve
portions of the entire list, if necessary.

timeout With this argument the client can give a hint to the server how long it will need
access to the result data.

A value > 0 indicates an estimated maximum time for processing the data in
milliseconds.

A value = 0 indicates that the client will not need anything besides the data
returned by the method call.

A value < 0 indicates that the client cannot give an estimate.

The client cannot rely on the data being available during the indicated time period.
The argument is merely a hint allowing the server to optimize its resource
management.

isComplete Indicates whether there are more results in the entire list than retrieved according
to startIndex and resultCount.

resultCount Gives the number of valid results in ResultList.

resultHandle The server shall return to each client requesting result data a system-wide unique
handle identifying the result set / client combination. This handle has to be used by
the client to release the result set.

resultList List of results matching the Filter.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Release 1.0 75

OPC 40100-1: Control, configuration management, recipe management, result management

Table 71 – GetResultListFiltered Method AddressSpace Definition

Attribute Value

BrowseName GetResultListFiltered

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

There are the following cases with the respect to the number of results:

• The number of results to be returned according to the filter is less or equal to MaxResults; the first
call, with startIndex=0, returns isComplete=TRUE, so the client knows that no further calls are
necessary. resultCount gives the number of valid elements in the resultList array.

• The number of results to be returned is larger than maxResults; the first N calls (N > 0 with N ≤
(number of results) divisor MaxResults), with startIndex=(N-1)*maxResults, return
isComplete=FALSE, so the client knows that further calls are necessary. The following call returns
isComplete=TRUE, so the client knows, no further calls are necessary. resultCount gives the
number of valid elements in the resultList array (on each call, so on the first N calls, this should be
maxResults).

7.10.2.4 ReleaseResultHandle

This method is used to inform the server that the client has finished processing a given result set allowing the
server to free resources managing this result set.

The server should keep the data of the result set available for the client until the ReleaseResultHandle method
is called or until a timeout given by the client has expired. However, the server is free to release the data at
any time, depending on its internal resource management, so the client cannot rely on the data being
available. ReleaseResultHandle is merely a hint allowing the server to optimize its internal resource
management. For timeout usage see the description in Section 7.10.2.1.

Signature

ReleaseResultHandle (

[in] Handle resultHandle

[out] Int32 error);

Table 72 – ReleaseResultHandle Method Arguments

Argument Description

resultHandle Handle returned by GetResultById or GetResultList, identifying the result set/client
combination.

Error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 73 – ReleaseResultHandle Method AddressSpace Definition

Attribute Value

BrowseName ReleaseResultHandle

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

OPC 40100-1: Control, configuration management, recipe management, result management

 76 Release 1.0

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.11 ResultFolderType

This ObjectType is a subtype of FolderType and is used to organize available results of the vision system
which the server decides to expose in the Address Space. It may contain no result if no result is available, if
the server does not expose results in the Address Space at all or if no available result matches the criteria of
the server for exposure in the Address Space. Figure 18 shows the hierarchical structure and details of the
composition. It is formally defined in Table Table 74.

The ResultFolderType contains all results of the vision system, which are available and should be exposed in
the Address Space. It may contain no result if no result is available or multiple if multiple results are available.

ResultFolderType

ResultVariable

FolderType

Figure 18 – Overview ResultFolderType

Table 74 – Definition of ResultFolderType

Attribute Value

BrowseName ResultFolderType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FolderType defined in OPC 10000-5

HasComponent Variable <ResultVariable>
ResultDataTy
pe

ResultType OptionalPlaceholder

The ResultType used in the ResultFolderType is defined in Section 9.1.

7.12 ResultTransferType

7.12.1 Overview

This ObjectType is a subtype of the TemporaryFileTransferType defined in OPC 10000-5 and is used to
transfer result data as a file.

The ResultTransferType overwrites the Method GenerateFileForRead to specify the concrete type of the
generateOptions Parameter of the Methods. It does not specialize the GenerateFileForWrite method of the
base type as results are supposed to be only generated by the vision system, not received.

Figure 19 shows the hierarchical structure and details of the composition. It is formally defined in Table 75.

Release 1.0 77

OPC 40100-1: Control, configuration management, recipe management, result management

ResultTransferType

GenerateFileForRead

TemporaryFileTransferType

Figure 19 – Overview ResultTransferType

Table 75 – Definition of ResultTransferType

Attribute Value

BrowseName ResultTransferType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TemporaryFileTransferType defined in OPC 10000-5

HasComponent Method 0:GenerateFileForRead

-- -- Mandatory

7.12.2 ResultTransferType methods

7.12.2.1 GenerateFileForRead

This method is used to start the read file transaction. A successful call of this method creates a temporary
FileType Object with the file content and returns the NodeId of this Object and the file handle to access the
Object.

Signature

GenerateFileForRead (

[in] ResultTransferOptions generateOptions

[out] NodeId fileNodeId

[out] UInt32 fileHandle

[out] NodeId completionStateMachine);

Table 76 – GenerateFileForRead Method Arguments

Argument Description

generateOptions The structure used to define the generate options for the file.

fileNodeId NodeId of the temporary file

fileHandle The FileHandle of the opened TransferFile.

The FileHandle can be used to access the TransferFile methods Read and
Close.

completionStateMachine If the creation of the file is completed asynchronously, the parameter returns
the NodeId of the corresponding FileTransferStateMachineType Object.

If the creation of the file is already completed, the parameter is null.

If a FileTransferStateMachineType object NodeId is returned, the Read Method
of the file fails until the TransferState changed to ReadTransfer.

OPC 40100-1: Control, configuration management, recipe management, result management

 78 Release 1.0

Table 77 – GenerateFileForRead Method AddressSpace Definition

Attribute Value

BrowseName GenerateFileForRead

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.13 SafetyStateManagementType

7.13.1 Overview

This ObjectType provides a method to inform the vision system about the changes of an external safety state.
The vision system itself gives feedback about the action which is taken to react on this state change. Figure
20 shows the hierarchical structure and details of the composition. It is formally defined in Table 78.

SafetyStateManagementType

ReportSafetyState

BaseObjectType

VisionSafetyTriggered

VisionSafetyInformation

Figure 20 – Overview SafetyStateManagementType

Table 78 – Definition of SafetyStateManagementType

Attribute Value

BrowseName SafetyStateManagementType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasComponent Method ReportSafetyState
-- -- Mandatory

HasComponent Variable VisionSafetyTriggered Boolean BaseDataVariableType Mandatory

HasComponent Variable VisionSafetyInformation String BaseDataVariableType Mandatory

VisionSafetyTriggered

Information about the current internal safety state.

VisionSafetyInformation

Release 1.0 79

OPC 40100-1: Control, configuration management, recipe management, result management

Textual information that can be provided by the vision system – e.g. “open safety door”.

7.13.2 SafetyStateManagementType methods

7.13.2.1 ReportSafetyState

This method is used to provide information about the change of an external safety state. For example, safety
doors which are not under supervision of a vision system are open and as a consequence it is not possible to
switch on a laser source inside a vision system.

Important note: This is not to be used as a safety feature. It is only for information purposes.

Signature

ReportSafetyState (

[in] Boolean safetyTriggered

[in] String safetyInformation

[out] Int32 error);

Table 79 – ReportSafetyState Method Arguments

Argument Description

safetyTriggered Information about the current external safety state.

safetyInformation Information that can be provided to the vision system – e.g. opening safety door.

Error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 80 – ReportSafetyState Method AddressSpace Definition

Attribute Value

BrowseName ReportSafetyState

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

OPC 40100-1: Control, configuration management, recipe management, result management

 80 Release 1.0

8 ObjectTypes for Vision System State Handling

8.1 State Machine overview

8.1.1 Introduction

All state machine types defined in this specification are mandatory unless explicitly stated otherwise.
However, some states may be implemented as transient (do-nothing) states depending on the characteristics
of the vision system.

To improve clarity and re-usability, this specification makes use of hierarchical state machines. This means
that states of a state machine may have underlying SubStateMachines. The instantiation of a
SubStateMachine for a particular state of the main state machine may be specified as optional.

8.1.2 Hierarchical state machines

8.1.2.1 Entering a SubStateMachine

OPC 10000-5, Annex B.4.9 defines several ways of entering a SubStateMachine:

1. If the SubStateMachine has an initial state (i.e., a state of type InitialStateType) this state is entered
whenever the parent state is entered.
We make use of this principle for the VisionStepModelStateMachine defined in Section 8.4.

2. A SubStateMachine can also be entered by a direct transition from the parent state machine into one
of its states, bypassing the initial state. In this case, the parent state machine goes automatically into
the parent state of the SubStateMachine.
We make use of this principle for operation mode state machines like the
VisionAutomaticModeStateMachine defined in Section 8.3.

3. If a SubStateMachine has no initial state and the parent state is entered directly, the state of the
SubStateMachine is server-specific.
We make use of this principle for the error handling described in Section 8.2.2.4.

8.1.2.2 Leaving a SubStateMachine

The SubStateMachine types used here do not have transitions into specific states of the parent state machine
so that they are not bound to a specific state machine, but can be used within states of any state machine.
Therefore, the SubStateMachines are not left explicitly. Instead, the parent state machine may leave the
parent state of the SubStateMachine in which case the SubStateMachine ceases to be active and will enter a
Bad_StateNotActive state. In that case, the system actually transitions from a state of the SubStateMachine
into an unrelated state of the main state machine, but this transition will not be explicitly shown or specified on
the level of the SubStateMachine.

We make use of that principle especially for the error handling described in Section 8.2.2.4.

At present, this specification describes one such mode, the “Automatic” mode. All pertaining states are
contained in a SubStateMachine of type VisionAutomaticModeStateMachine defined in Section
VisionAutomaticModeStateMachineType. The reason for this naming is that this state machine is derived –
but not restricted to – the typical application of a vision system in automatic operation on a production
line.State machine type hierarchy

The following diagram shows the hierarchy of mandatory state machine types in this specification. All state
machine types are derived from the FiniteStateMachineType, implying that all their states and transitions are
pre-defined and cannot be changed or added to by sub-typing so that a client can detect all states and
transitions and rely on these and only these states and transitions to exist on sub-types of the state machine
type

Release 1.0 81

OPC 40100-1: Control, configuration management, recipe management, result management

FiniteStateMachineType

VisionStateMachineType

VisionAutomaticModeStateMachineType

VisionStepModelStateMachineType

StateMachineType

Figure 21 – Vision system state machine type hierarchy

8.1.3 Automatic and triggered transitions and events

In the state machines specified here, most transitions can be caused by method calls and all transitions can
be caused by internal decisions of the vision system. We call these “automatic” transitions.

In the state diagrams describing the state machines in the following sections, all transitions are shown
individually. Transitions caused by methods are shown in black with the method name as the UML transition
trigger. “Automatic” transitions are shown in orange without a trigger.

Upon entry into a new state, a StateChanged Event will be triggered indicating the transition.

Some transitions may trigger extra events. These events are shown in the state diagrams on the transition as
a UML effect, preceded by a “/”.

Some transitions may depend on conditions. Where they are semantically important, they have been put into
the state diagrams as UML guards in “[]”.

8.1.4 Preventing transitions

The server can prevent transitions from being carried out, e.g. due to the internal state of the vision system. A
typical example would be to prevent leaving the parent state of a VisionStepModelStateMachine in order to
avoid interrupting synchronization with an external system.

As automatic transitions are always done for internal reasons, the server will obviously simply not execute the
transition in this case.

For method-triggered transitions, the server should set the Executable flag of the method in question to False
to signal to clients that this method should currently not be called. If the method is called anyway, regardless
of the Executable flag, the method shall fail with an appropriate error code.

8.2 VisionStateMachineType

8.2.1 Introduction

This ObjectType is a subtype of FiniteStateMachineType and represents the top-level behavior of the vision
system. It is formally defined in Table 81.

OPC 40100-1: Control, configuration management, recipe management, result management

 82 Release 1.0

The Operational state has a mandatory SubStateMachine for the “Automatic” mode of operation and may
have additional SubStateMachines for other modes of operation.

The other state may have optional SubStateMachines of the VisionStepModelStateMachineType.

For clarity, transitions into states of SubStateMachines are not shown in the diagram.

Halted

S2

Error

S3

Operational

S4

Preoperational

S1
120 / -- / --

121 / Halt() / --

130 / -- / Error

14
0

/
--

 /
 -

-

14
1

/
Se

le
ct

M
o

de
A

ut
o

m
at

ic
()

 /
 --

211 / Reset() / --

210 / -- / --
311 / Reset() / --

310 / -- / --

321 / Halt() / --

320 / -- / --

340 / -- / ErrorResolved

41
1

/
R

es
e

t(
)

/
--

41
0

/
--

 /
 -

-

421 / Halt() / --

420 / -- / --430 / -- / Error

Figure 22 – States and transitions of the VisionStateMachineType

8.2.2 Operation of the VisionStateMachineType

8.2.2.1 Basic operation

After power-up the system goes into a Preoperational state. It is assumed that the vision system loads a
configuration which is present on the system and marked as active. From there, it can be put into Operational
state either automatically, due to internal initialization processes or by a SelectMode method call. The
VisionStateMachineType provides one mandatory method, SelectModeAutomatic for transition into the
“Automatic” mode SubStateMachine described in Section 8.3. Subtypes of VisionStateMachineType may offer
additional SubStateMachines and thus additional SelectMode method calls.

The system stays in Operational mode, doing its job, until it is either resetted, halted or an error occurs which
suspends normal operation until resolved.

8.2.2.2 Resetting the system

At any time, it may be necessary or desired to revert the vision system into its initial state after power-up, i.e.,
state Preoperational.

The vision system may decide this due to internal conditions, or by calling the Reset method on the
VisionStateMachine in the OPC UA server.

Release 1.0 83

OPC 40100-1: Control, configuration management, recipe management, result management

The Reset method shall always be executable. If for some reason the vision system is not capable of carrying
out this transition, the behavior is undefined. The underlying assumption is that, if the vision system cannot
perform a reset, it cannot be assumed that it is capable of carrying out any other controlled transition,
including a transition into the Error state.

Application Note:
There are basically two reasons for a reset in the state model of this specification.
Either the vision system is idle – reflected by, e.g. the Ready or Initialized state – and the
intent of calling the Reset method is to return to Preoperational state in order to call a
different SelectMode method to change the mode of operation. In that case, carrying out
the transition should not be a problem.
The other situation is as an emergency measure because the vision system does no
longer operate correctly. In that case, the method may fail with an internal error code like
Bad_UnexpectedError or Bad_InvalidState, but since the vision system is in an incorrect
internal state, it is uncertain that it can reach any other state, like Error.
The client can assume that Preoperational or Error states should be reached within a
reasonable – application-specific – time-frame. If that is not the case, the client can
conclude that intervention is necessary and issue an appropriate message and operator
call.

8.2.2.3 Halting the system

A vision system will frequently make use of a number of resources, like camera drivers, files, databases etc.
which will need to be properly closed before shutting down that system.

In Halted state, the system shall have put all resources into a state where it is safe to power down the system.
However, not all operation is stopped, because the system can be brought out of Halted state by a call to the
Reset method, transitioning to the Preoperational state.

The vision system may decide to enter Halted state due to internal conditions or by calling the Halt method on
the OPC UA server.

The Halt method shall always be executable. If for some reason the system is not capable of carrying out the
transition, the VisionStateMachine shall transition into the Error state.

8.2.2.4 Error handling

In every state of the VisionStateMachine or any of its SubStateMachines, an error may occur.

The system may also decide to enter state Error by means of an automatic operation if it cannot – or should
not – continue its normal operation in the presence of an error. Note that the presence of an error condition
does not necessarily cause the system to enter the Error state, it may be capable to continue normal
operation in the presence of a signaled error condition. However, it the system does enter the Error state, it is
mandatory that it indicates this by activating an error condition.

An error shall be signaled by an appropriate error condition. An arbitrary number of error conditions can be
active at any time.

Error conditions are exposed as subtypes of the ConditionType defined in OPC 10000-9 and may have
Acknowledge and Confirm methods and the appropriate state handling. It is expected that the calling of these
methods has an effect upon the underlying system and/or that the underlying vision system monitors the state
of the conditions and uses these in its internal decision making process whether to stay in the Error state or in
which state to transition next.

It is assumed that the Acknowledge method will typically be called by a client automatically, indicated that the
message has at least been received. The Confirm method will typically be caused by a human interaction,
confirming that the cause of the error is remedied.

For convenience, the VisionStateMachine may offer the ConfirmAll method which shall confirm all conditions
currently active. The effect on the internal decision making shall be the same as when the methods would
have been called individually from the outside.

OPC 40100-1: Control, configuration management, recipe management, result management

 84 Release 1.0

Thus, in Error state, the system decides either on its own or based on external input, like an
acknowledgement or confirmation of the error, and other (non OPC UA) input signals, which state to transition
to next.

Upon entering the Error state, an event of type ErrorEventType is triggered, upon leaving to some other state,
an ErrorResolved event is triggered, if the error is actually resolved, in addition to the mandatory
StateChanged events. Thus, a control system may listen only to the Error and ErrorResolved events
monitoring the vision system.

The Error state can be left in the following ways:

 By a call to the Halt or Reset method, transitioning to states Halted and Preoperational respectively.
The condition(s) causing the Error state do not necessarily have to be resolved for this transition. Only
if they are resolved, an ErrorResolvedEvent shall be triggered.

 By an internal decision of the system to transition into the Halted or Preoperational states. As these
states do not constitute normal productive operation of the system, the condition(s) causing the Error
state do not necessarily have to be resolved for this transition. Only if they are resolved, an
ErrorResolved event shall be triggered. Subsequent action, e.g. a call to ActivateConfiguration in
these states may lead to the error being resolved and the system being capable of resuming normal
productive operation.

 By an internal decision of the system to transition into the Operational state. As this state constitutes
normal productive operation, this transition is only allowed if the condition(s) leading to the Error state
are actually resolved. Therefore, an ErrorResolved event shall be triggered in this case.

In the last case, the automatic transition into the Operational state due to the resolving of the error
condition(s), the system will actually go into one of the states of the SubStateMachines of the Operational
state, using the 3rd method for entering a SubStateMachine described in Section 8.1.2.1 by a server-specific
decision about the state.

Thus, the vision system can decide, based on its internal conditions, in which actual state it will continue
operation. It may decide that it can immediately continue a job interrupted by the error and return to the
SingleExecution or ContinuousExecution states; it may decide that it can immediately take on the next job and
return to the Ready state; it may decide that it needs a re-initialization of a recipe and return to the Initialized
state. It may even decide that it can resume a synchronization with an external system and return to any state
within a VisionStepModelStateMachine inside one of these states.

Release 1.0 85

OPC 40100-1: Control, configuration management, recipe management, result management

8.2.3 VisionStateMachineType Overview

VisionStateMachineType

Preoperational

Halted

Error

Operational

PreoperationalStepModel

HaltedStepModel

ErrorStepModel

AutomaticModeStateMachine

Reset

Halt

SelectModeAutomatic

ConfirmAll

StateType

VisionAutomaticModeStateMachineType

VisionStepModelStateMachineType

PreoperationalToInitialized

PreoperationalToInitializedAuto

HaltedToPreoperational

HaltedToPreoperationalAuto

ErrorToPreoperational

PreoperationalToHalted

PreoperationalToHaltedAuto

PreoperationalToErrorAuto

PreoperationalToOperational

PreoperationalToOperationalAuto

OperationalToPreoperationalAuto

OperationalToHalted

OperationalToHaltedAuto

OperationalToErrorAuto

ErrorToPreoperationalAuto

ErrorToHalted

ErrorToHaltedAuto

ErrorToOperationalAuto

OperationalToPreoperational

TransitionType {

Figure 23 – Overview VisionStateMachineType

8.2.4 Modes of operation

One underlying idea of this specification is that a vision system may have different modes of operation with
very different sets of states, methods and transitions.

Due to the high degree of individuality of vision system requirements and solutions, it does not appear
possible to standardize each and every mode of operation of such systems. Therefore, vision systems
according to this specification are free to implement additional state machines for such use cases.

However, this specification considers some states as universal for machine vision systems according to this
specification and thus outside of these modes of operation, namely states related to powering up and shutting
down the system and to error handling.

The system will in any case need to power up and enter some state automatically without outside intervention.
From this state, a selection – either by method call or automatically based on internal and external
circumstances – of the actual mode of operation can be made.

Conversely, the same holds for shutting down the system. Independent from the mode of operation, the
system will need a way to enter a state from which it can safely be powered down.

And finally it will be of great advantage to all clients if the handling of errors is identical in all modes of
operation.

OPC 40100-1: Control, configuration management, recipe management, result management

 86 Release 1.0

Therefore, these states are mandatory in this specification as well as one state encompassing the actual
operation of the system. Modes of operation shall be specified as SubStateMachines to this operational state.

8.2.5 VisionStateMachineType Definition

VisionStateMachineType is formally defined in Table 81.

Release 1.0 87

OPC 40100-1: Control, configuration management, recipe management, result management

Table 81 – VisionStateMachineType Address Space Definition

Attribute Value

 Includes all attributes specified for the FiniteStateMachineType

BrowseName VisionStateMachineType

IsAbstract False

References Node
Class

BrowseName Data
Type

TypeDefinition ModellingRule

Subtype of the FiniteStateMachineType defined in OPC 10000-5 Annex B.4.5

HasComponent Object Preoperational -- StateType

HasComponent Object Halted -- StateType

HasComponent Object Error -- StateType

HasComponent Object Operational -- StateType

HasComponent Object PreoperationalToHalted -- TransitionType

HasComponent Object PreoperationalToHaltedAuto -- TransitionType

HasComponent Object PreoperationalToErrorAuto -- TransitionType

HasComponent Object PreoperationalToOperational -- TransitionType

HasComponent Object PreoperationalToOperationalAuto -- TransitionType

HasComponent Object PreoperationalToInitialized -- TransitionType

HasComponent Object PreoperationalToInitializedAuto -- TransitionType

HasComponent Object HaltedToPreoperational -- TransitionType

HasComponent Object HaltedToPreoperationalAuto -- TransitionType

HasComponent Object ErrorToPreoperational -- TransitionType

HasComponent Object ErrorToPreoperationalAuto -- TransitionType

HasComponent Object ErrorToHalted -- TransitionType

HasComponent Object ErrorToHaltedAuto -- TransitionType

HasComponent Object ErrorToOperationalAuto -- TransitionType

HasComponent Object OperationalToPreoperational -- TransitionType

HasComponent Object OperationalToPreoperationalAuto -- TransitionType

HasComponent Object OperationalToHalted -- TransitionType

HasComponent Object OperationalToHaltedAuto -- TransitionType

HasComponent Object OperationalToErrorAuto -- TransitionType

HasComponent Method Reset -- -- Mandatory

HasComponent Method Halt -- -- Mandatory

HasComponent Method SelectModeAutomatic -- -- Optional

HasComponent Method ConfirmAll -- -- Optional

HasComponent Object PreoperationalStepModel -- VisionStepModelStateMachineType Optional

HasComponent Object HaltedStepModel -- VisionStepModelStateMachineType Optional

HasComponent Object ErrorStepModel -- VisionStepModelStateMachineType Optional

HasComponent Object AutomaticModeStateMachine -- VisionAutomaticModeStateMachineType Optional

8.2.6 VisionStateMachineType States

8.2.6.1 Introduction

OPC 40100-1: Control, configuration management, recipe management, result management

 88 Release 1.0

Table 82 specifies the VisionStateMachine’s state Objects. These state Objects are instances of the
StateType defined in OPC 10000-5 – Annex B. Each state is assigned a unique StateNumber value. Subtypes
of the VisionStateMachineType can add References from any state to a subordinate or nested StateMachine
Object to extend the FiniteStateMachine. See Table 83 for a brief description of the states.

Table 82 – VisionStateMachineType States

BrowseName References Target BrowseName Value Target TypeDefinition Notes

Preoperational HasProperty StateNumber 1 PropertyType --

 FromTransition HaltedToPreoperational TransitionType --

 FromTransition HaltedToPreoperationalAuto TransitionType --

 FromTransition ErrorToPreoperationalAuto TransitionType --

 FromTransition ErrorToPreoperational TransitionType --

 FromTransition OperationalToPreoperational TransitionType --

 FromTransition OperationalToPreoperationalAuto TransitionType --

 ToTransition PreoperationalToHalted TransitionType --

 ToTransition PreoperationalToHaltedAuto TransitionType --

 ToTransition PreoperationalToErrorAuto TransitionType --

 ToTransition PreoperationalToOperational TransitionType --

 ToTransition PreoperationalToOperationalAuto TransitionType --

 ToTransition PreoperationalToInitialized TransitionType --

 ToTransition PreoperationalToInitializedAuto TransitionType --

 HasSubStateMachine PreoperationalStepModel VisionStepModelState
MachineType

--

Halted HasProperty StateNumber 2 PropertyType --

 FromTransition PreoperationalToHalted TransitionType --

 FromTransition PreoperationalToHaltedAuto TransitionType --

 FromTransition ErrorToHalted TransitionType --

 FromTransition ErrorToHaltedAuto TransitionType --

 FromTransition OperationalToHalted TransitionType --

 FromTransition OperationalToHaltedAuto TransitionType --

 ToTransition HaltedToPreoperational TransitionType --

 ToTransition HaltedToPreoperationalAuto TransitionType --

 HasSubStateMachine HaltedStepModel VisionStepModelState
MachineType

--

Error HasProperty StateNumber 3 PropertyType --

 FromTransition PreoperationalToErrorAuto TransitionType --

 FromTransition OperationalToErrorAuto TransitionType --

 ToTransition ErrorToPreoperational TransitionType --

 ToTransition ErrorToPreoperationalAuto TransitionType --

 ToTransition ErrorToHalted TransitionType --

 ToTransition ErrorToHaltedAuto TransitionType --

 ToTransition ErrorToOperationalAuto TransitionType --

 HasSubStateMachine ErrorStepModel VisionStepModelState
MachineType

--

Operational HasProperty StateNumber 4 PropertyType --

Release 1.0 89

OPC 40100-1: Control, configuration management, recipe management, result management

BrowseName References Target BrowseName Value Target TypeDefinition Notes

 FromTransition PreoperationalToOperational TransitionType --

 FromTransition PreoperationalToOperationalAuto TransitionType --

 FromTransition ErrorToOperationalAuto TransitionType --

 ToTransition OperationalToPreoperational TransitionType --

 ToTransition OperationalToPreoperationalAuto TransitionType --

 ToTransition OperationalToHalted TransitionType --

 ToTransition OperationalToHaltedAuto TransitionType --

 ToTransition OperationalToErrorAuto TransitionType --

 HasSubStateMachine AutomaticModeStateMachine VisionAutomaticModeState
MachineType

--

The brief state descriptions in Table 83 will be detailed in the following subsections.

Table 83 – VisionStateMachineType State Descriptions

StateName Description

Preoperational This is the initial state of the system after power-up and the state after a Reset

method call. From here the system has to be brought into Operational state by

selecting a mode of operation. Alternatively it can be halted.

Halted This state is intended as the final state in the operation of the system. All resources
shall be in a state allowing for safe power-down. However, the system can be put
back into operation by a Reset method call, going through the Preoperational state.

Error This state intended for the indication and resolution of errors preventing normal
operation of the system.

Operational This is the state for normal operation of the system. It is always a composite state
with the SubStateMachine modelling the current mode of operation.

This specification describes only a single mode of operation, the “Automatic” mode,
described in 8.3. Vendors can add other modes of operation by sub-typing
VisionStateMachineType and adding other SubStateMachines for these modes of
operation. See Section 8.3.9 for implementation remarks.

8.2.6.2 Preoperational State

In this state, the system is characterized by the following properties:

– System is powered on, this is the initial state after power on

– No recipes are loaded

– No mode of operation is selected

– No error is detected

This state shall be entered automatically upon startup.

If an error is detected, the system shall transit to the Error state.

This state can be entered from any state, either by an automatic transition or caused by calling the Reset
method.

From this state, all other states on this level can be reached, either by an automatic transition or by calling the
Halt method for the Halted state or the SelectModeAutomatic method for sub-state Initialized of the Automatic
mode SubStateMachine of state Operational. (see 8.3 for the description of the Automatic mode
SubStateMachine and see 8.3.9 for implementation remarks on state machines derived from
VisionStateMachineType for other modes of operation) or other SelectMode methods for other, vendor-
specific, sub state machines of the Operational state.

OPC 40100-1: Control, configuration management, recipe management, result management

 90 Release 1.0

This state can be a composite state with an optional VisionStepModelStateMachineType SubStateMachine.

8.2.6.3 Halted State

In this state, the system is characterized by the following properties:

– The system has stopped all operations

– The system can safely be powered down (e.g. all files are closed; all resources are released, …)

– The OPC UA server shall still be running to allow for a transition to state Preoperational.

This state can be reached from any other state either by an automatic transition or by calling the Halt method.
Calling the Halt method in this state will not have an effect.

From this state, only Preoperational state can be reached, either by an automatic transition or by calling the
Reset method.

This state can be a composite state with an optional VisionStepModelStateMachineType SubStateMachine.

8.2.6.4 Error State

In this state, the system is characterized by the following properties:

– An error has occurred which disrupts normal operation.

– The system issues messages (in the form of Conditions) informing clients about the error; it awaits
acknowledgement of these messages, i.e., the information that some client has received the message,
and optionally confirmation, i.e., the information that some corrective action has been taken, typically by
human intervention.

– The system tries to resolve the error by internal means taking into account the (mandatory)
acknowledgement and (optional) confirmation of the messages issued.

This state can be entered from any other state by an automatic transition due to an error detected by the
system.

This state can be left by an automatic transition based on the result of the error resolution into any other state,
or into Preoperational state by a Reset method call or into Halted state by a Halt method call, provided the
requirements on Acknowledgement and Confirmation have been fulfilled. For details on signaling error
conditions and on error resolution behavior see Section 11.4.6.

This state can be a composite state with an optional VisionStepModelStateMachineType SubStateMachine.

8.2.6.5 Operational State

State Operational is a composite state with a mandatory VisionAutomaticModeStateMachineType
SubStateMachine.

In this state, the system is characterized by the following properties:

– The system has been initialized so far that the normal operation intended for the given mode of operation
can be carried out as well as various system management functions.

– The system has not detected an error preventing it from carrying out this operation (by transitioning into
state Error).

– The system is in any of the states of the VisionAutomaticModeStateMachineType, carrying out its normal
operation, or in a state of another state machine added by the vendor as an additional SubStateMachine
of state Operational.

8.2.7 VisionStateMachineType Transitions

Transitions are instances of Objects of the TransitionType defined in OPC 10000-5 – Annex B which also
includes the definitions of the ToState, FromState, HasCause, and HasEffect References used. Table 84
specifies the Transitions defined for the VisionStateMachineType. Each Transition is assigned a unique
TransitionNumber.

Release 1.0 91

OPC 40100-1: Control, configuration management, recipe management, result management

Table 84 – VisionStateMachineType Transitions

BrowseName References Target BrowseName Value Target TypeDefinition Notes

PreoperationalToHalted HasProperty TransitionNumber 121 PropertyType --

 FromState Preoperational StateType --

 ToState Halted StateType --

 HasCause Halt Method --

 HasEffect StateChangedEventType --

PreoperationalToHaltedAuto HasProperty TransitionNumber 120 PropertyType --

 FromState Preoperational StateType --

 ToState Halted StateType --

 HasEffect StateChangedEventType --

PreoperationalToErrorAuto HasProperty TransitionNumber 130 PropertyType --

 FromState Preoperational StateType --

 ToState Error StateType --

 HasEffect StateChangedEventType --

 HasEffect ErrorEventType --

PreoperationalToOperational HasProperty TransitionNumber 141 PropertyType --

 FromState Preoperational StateType --

 ToState Operational StateType --

 HasCause SelectModeAutomatic Method --

 HasEffect StateChangedEventType --

PreoperationalToOperationalAuto HasProperty TransitionNumber 140 PropertyType --

 FromState Preoperational StateType --

 ToState Operational StateType --

 HasEffect StateChangedEventType --

PreoperationalToInitialized HasProperty TransitionNumber 151 PropertyType --

 FromState Preoperational StateType --

 ToState AutomaticModeStateMachine.Initialized StateType --

 HasCause SelectModeAutomatic Method --

 HasEffect StateChangedEventType --

PreoperationalToInitializedAuto HasProperty TransitionNumber 150 PropertyType --

 FromState Preoperational StateType --

 ToState AutomaticModeStateMachine.Initialized StateType --

 HasEffect StateChangedEventType --

HaltedToPreoperational HasProperty TransitionNumber 211 PropertyType --

 FromState Halted StateType --

 ToState Preoperational StateType --

 HasCause Reset Method --

 HasEffect StateChangedEventType --

HaltedToPreoperationalAuto HasProperty TransitionNumber 210 PropertyType --

 FromState Halted StateType --

 ToState Preoperational StateType --

OPC 40100-1: Control, configuration management, recipe management, result management

 92 Release 1.0

BrowseName References Target BrowseName Value Target TypeDefinition Notes

 HasEffect StateChangedEventType --

ErrorToPreoperational HasProperty TransitionNumber 311 PropertyType --

 FromState Error StateType --

 ToState Preoperational StateType --

 HasCause Reset Method --

 HasEffect StateChangedEventType --

ErrorToPreoperationalAuto HasProperty TransitionNumber 310 PropertyType --

 FromState Error StateType --

 ToState Preoperational StateType --

 HasEffect StateChangedEventType

ErrorToHalted HasProperty TransitionNumber 321 PropertyType --

 FromState Error StateType --

 ToState Halted StateType --

 HasCause Halt Method --

 HasEffect StateChangedEventType --

ErrorToHaltedAuto HasProperty TransitionNumber 320 PropertyType --

 FromState Error StateType --

 ToState Halted StateType --

 HasEffect StateChangedEventType --

ErrorToOperationalAuto HasProperty TransitionNumber 340 PropertyType --

 FromState Error StateType --

 ToState Operational StateType --

 HasEffect StateChangedEventType --

 HasEffect ErrorResolvedEventType --

OperationalToPreoperational HasProperty TransitionNumber 411 PropertyType --

 FromState Operational StateType --

 ToState Preoperational StateType --

 HasCause Reset Method --

 HasEffect StateChangedEventType --

OperationalToPreoperationalAuto HasProperty TransitionNumber 410 PropertyType --

 FromState Operational StateType --

 ToState Preoperational StateType --

 HasEffect StateChangedEventType --

OperationalToHalted HasProperty TransitionNumber 421 PropertyType --

 FromState Operational StateType --

 ToState Halted StateType --

 HasCause Halt Method --

 HasEffect StateChangedEventType --

OperationalToHaltedAuto HasProperty TransitionNumber 420 PropertyType --

 FromState Operational StateType --

 ToState Halted StateType --

Release 1.0 93

OPC 40100-1: Control, configuration management, recipe management, result management

BrowseName References Target BrowseName Value Target TypeDefinition Notes

 HasEffect StateChangedEventType --

OperationalToErrorAuto HasProperty TransitionNumber 430 PropertyType --

 FromState Operational StateType --

 ToState Error StateType --

 HasEffect StateChangedEventType --

8.2.8 VisionStateMachineType Methods

8.2.8.1 Halt method

This method commands the system to go into the Halted state from where it is safe to power down the system
without damage to system resources (like files, data bases, etc.); what the system does during this transition
and how long it takes, is application-defined and may depend on the parameter given to the Halt method (e.g.
to distinguish between a fast shutdown due to power-loss or a more gentle shutdown completing ongoing
evaluations).

Signature

Halt (

[in] Int32 cause

[in] String causeDescription

[out] Int32 error);

Table 85 – Halt Method Arguments

Argument Description

cause Implementation-specific number denoting the reason for the Halt method call.

causeDescription Text for said reason, e.g. for logging purposes. May be empty.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 86 – Halt Method AddressSpace Definition

Attribute Value

BrowseName Halt

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The cause argument given to the method can only be interpreted by the underlying vision system It can be
used, for example, for logging purposes. It is expected that a value of 0 will be considered an “unspecified
reason”.

8.2.8.2 Reset method

This method commands the system to return to the Preoperational state where it has not parameterization for
carrying out jobs (single or continuous), e.g. to reset the state of recipes; what the system does during this
transition and how long it takes, is application-defined and may depend on the parameter given to the Reset
method (e.g. to distinguish between a fast emergency reset due to an error or safety condition or a more
gentle reset completing ongoing evaluations).

OPC 40100-1: Control, configuration management, recipe management, result management

 94 Release 1.0

Signature

Reset (

[in] Int32 cause

[in] String causeDescription

[out] Int32 error);

Table 87 – Reset Method Arguments

Argument Description

cause Implementation-specific number denoting the reason for the Reset method call.

causeDescription Text for said reason, e.g. for logging purposes. . May be empty.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 88 – Reset Method AddressSpace Definition

Attribute Value

BrowseName Reset

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The Cause argument given to the method can only be interpreted by the underlying vision system It can be
used, for example, for logging purposes. It is expected that a value of 0 will be considered an “unspecified
reason”.

8.2.8.3 SelectModeAutomatic method

This method commands the system to enter the mandatory AutomaticModeStateMachine attached to
Operational state, or, more precisely, the Initialized state of that SubStateMachine.

Signature

SelectModeAutomatic (

[out] Int32 error);

Table 89 – SelectModeAutomatic Method Arguments

Argument Description

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 90 – SelectModeAutomatic Method AddressSpace Definition

Attribute Value

BrowseName SelectModeAutomatic

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

Release 1.0 95

OPC 40100-1: Control, configuration management, recipe management, result management

8.2.8.4 ConfirmAll method

With this method, a client can confirm all currently active conditions of the server derived from
VisionConditionType. In analogy to the Confirm method of the AcknowledgeableConditionType it expects a
LocalizedText as a comment, not, however an EventId as this would not make sense for multiple events.

Signature

ConfirmAll (

[in] LocalizedText comment);

Table 91 – ConfirmAll Method Arguments

Argument Description

Comment A localized text to be applied to the conditions.

Table 92 – ConfirmAll Method AddressSpace Definition

Attribute Value

BrowseName ConfirmAll

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

8.2.9 VisionStateMachineType EventTypes

8.2.9.1 StateChangedEventType

StateChangedEventType is an EventType subtype of TransitionEventType, defined in OPC 10000-5. This
event shall be triggered by the server whenever the system enters a new state.It is formally defined in Table
93. The event transports the NodeId of the state entered as well as the transition which is leading into that
state.

Table 93 – StateChangedEventType AddressSpace Definition

Attribute Value

BrowseName StateChangedEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TransitionEventType defined in OPC 10000-5

Refer to the TransitionEventType in OPC 10000-5 for the behavior and the transported information.

8.2.9.2 ErrorEventType

ErrorEventType is an EventType subtype of TransitionEventType, defined in OPC 10000-5. This event must
be triggered when the vision system decides that the current conditions require it to suspend normal operation
and enter state Error. Additional detail about the circumstances leading to the Error state shall be indicated by
active ConditionType events. For more detail see Section 11.

It is formally defined in Table 94.

Table 94 – ErrorEventType AddressSpace Definition

Attribute Value

BrowseName ErrorEventType

IsAbstract False

OPC 40100-1: Control, configuration management, recipe management, result management

 96 Release 1.0

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TransitionEventType defined in OPC 10000-5

8.2.9.3 ErrorResolvedEventType

ErrorResolvedEventType is an EventType subtype of TransitionEventType, defined in OPC 10000-5. This
event must be triggered when the vision system decides that the current conditions do not require state Error
to be maintained and initiates the transition into whatever state it deemed appropriate under the
circumstances.

It is formally defined in Table 95.

Table 95 – ErrorResolvedEventType AddressSpace Definition

Attribute Value

BrowseName ErrorResolvedEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TransitionEventType defined in OPC 10000-5

8.3 VisionAutomaticModeStateMachineType

8.3.1 Introduction

VisionAutomaticModeStateMachineType is an ObjectType subtype of FiniteStateMachineType and represents
the behavior of a vision system in automatic operation.

The conceptual idea is that of a vision system installed on a production line for inline inspection or process
control. This is taken in a very broad sense to cover other situations easily, like sample test stations where a
human operator starts the inspection jobs or robot-mounted systems for position guidance. Thus, the state
machine reflects the goal of specifying a system to be easily integrated into automated production and
inspection systems.

The Operational state of the VisionStateMachineType has a mandatory SubStateMachine of the
VisionAutomaticModeStateMachineType, indicating that this mode of operation shall always be present in a
vision system conforming to this specification.

This SubStateMachine is typically entered by a transition from state Preoperational to its internal state
Initialized, either an automatic transition or caused by the SelectModeAutomatic method

It can also be entered by automatic transitions from state Error to any of its internal states. These transitions
exist to allow the vision system to try after resolving an error to resume operation with the “highest possible
state”. That means, when the error occurs in SingleExecution state, the vision system will try to resume and
finish this operation. Failing that, it will try to return to Ready state for the next Start method; failing that, it will
return to state Initialized to be made Ready again. Note however, that the method of resolving an error and
resuming operation after the Error state is defined by the vision system, not this specification.

In the following state diagram, method-triggered transitions are again black with the method written as UML
trigger; automatic transitions are orange with a possible event as UML effect introduced with a “/”.

To clarify the entire context, the other main states are also shown in Figure 24. For clarity, transitions from the
top-level VisionStateMachine into states of the VisionAutomaticModeStateMachine are not shown in the
diagram.

Release 1.0 97

OPC 40100-1: Control, configuration management, recipe management, result management

HaltedHalted

S2S2

ErrorError

S3S3

OperationalOperational

S4S4

PreoperationalPreoperational

S1S1
 -- / --

Halt() / --

 -- / Error

--
 /

 -
-

Se
le

ct
M

o
d

eA
u

to
m

at
ic

()
 /

 -
-

Reset() / --

 -- / --
Reset() / --

 -- / --

Halt() / --

 -- / --

 -- / ErrorResolved

R
es

et
()

 /
 -

-

--
 /

 -
-

Halt() / --

 -- / -- -- / Error

InitializedInitialized

S5S5

ReadyReady

S6S6

SingleExecutionSingleExecution

S7S7

ContinuousExecutionContinuousExecution

S8S8

5
6

1
 /

 P
re

p
ar

eR
ec

ip
e(

)
/

R
ec

ip
eP

re
p

ar
ed

5
6

0
 /

 -
-

/
R

ec
ip

eP
re

p
ar

ed

6
5

2
 /

 U
n

p
re

p
ar

eR
ro

d
u

ct
()

 /
 -

-

6
5

0
 /

 -
-

/
--

671 / StartSingleJob() / --

670 / -- / -- 680 / -- / --

681 / StartContinuous() / --

861 / Stop() / Ready

8
6

0
 /

 -
-

/
R

ea
d

y

761 / Stop() / Ready

7
6

0
 /

 -
-

/
R

ea
d

y

5
6

2
 /

 P
re

p
ar

eP
ro

d
u

ct
()

 /
 R

ec
ip

eP
re

p
ar

ed

6
5

1
 /

 U
n

p
re

p
ar

eR
ec

ip
e(

)
/

--

762 / Abort() / Ready 862 / Abort() / Ready

Figure 24 – States and transitions of the VisionAutomaticModeStateMachineType

Interactions between external systems and the global “AutomaticMode” state machine are limited to few
transitions in the model which we will see in detail in the description of methods and transitions. The most
prominent points are obviously the Start-methods, typically used by a client to start operation of a vision
system.

However, there is frequently a need to synchronize operations between the vision systems and external
systems where the vision system remains conceptually in one of the states of the “AutomaticMode” state

OPC 40100-1: Control, configuration management, recipe management, result management

 98 Release 1.0

machine. The most obvious example is that of taking images of a part from various positions, either by moving
the part relative to a camera system, handling it with a robot arm, or by moving the camera relative to the part,
again possibly by a robot manipulator. This entire interaction would conceptually take place within
SingleExecution state or ContinuousExecution state.

To enable all states in the “AutomaticMode” state machine to carry out such interactions, each is marked as a

complex state by the symbol, and has an optional SubStateMachine of the
VisionStepModelStateMachineType.

8.3.2 Operation of the “AutomaticMode” state machine.

8.3.2.1 Introduction

The AutomaticMode state machine is entered from state Preoperational of the VisionStateMachineType either
by an automatic operation or by the SelectModeAutomatic method.

A call to SelectModeAutomatic causes transition to state Initialized. Alternatively, the system can automatically
transition into Initialized.

It is expected that within the states Initialized and Ready, the system can carry out management operations,
with recipes and configurations. In order to carry out automatic evaluations, at least one recipe needs to be
prepared in the system.

Recipe management is very system- and application-specific and correspondingly hard to generalize.
Therefore, systems may exhibit different state transition behavior caused by recipe management methods,
according to their capabilities. This is described in detail in Annex B.1 and the definition of the
RecipeManagementType in chapter 7.5.

At some point, the system will be in Ready state. The simplest way will typically be a single call to AddRecipe
and to PrepareRecipe to load and prepare a single recipe.

It is expected that in state Ready the system can at any time start an evaluation operation. This operation is
denoted as a “job”. The “AutomaticMode” state machine defines two distinct methods of carrying out
evaluation, namely “single job” operation and “continuous” operation.

Typical examples for SingleJob operation are the inspection of individual work pieces. Typical examples for
Continuous operation are web inspection, package sorting, etc. The main differences between these two
types of jobs are:

– With a SingleJob, the client starting the job can reasonably expect it to end after an application-specific,
but finite time; a Continuous job will typically not end on its own, so the notion of a timeout is meaningless.

– Within a SingleJob, typically an AcquisitionDone event will be triggered at some point, informing the
environment that all required data has been acquired so that the inspection part can leave the field of view
of the camera, either by moving the part or the camera.

The image processing operation is accordingly started by one of two start methods, StartSingleJob or
StartContinuous.

In single job as well as in continuous operation, the system can produce an arbitrary number of results, all of
them partial with the exception of the last one. Whenever a partial or final result is available, the system shall
trigger a ResultReady event with a result ID.

The result can then be retrieved by one of the GetResult method calls or directly from the ResultContent
Component of the ResultReady event if it is included in the event Typically, the result will be available through
a GetResult method call even if included with the ResultReady event, however the client cannot make
assumptions about the result management of the vision system. This has to be treated in an application-
specific way.

8.3.2.2 Single job operation

A call to the StartSingleJob method will cause a transition into state SingleExecution, where the system will
typically acquire data and, once it has finished acquiring data, will fire an AcquisitionDone event. Note that
there is no temporal relationship between the system returning to the Ready state and the completion of
image acquisition or processing for the job triggered by a Start method. The system can already have left

Release 1.0 99

OPC 40100-1: Control, configuration management, recipe management, result management

state SingleExecution to Ready, it can even accept another Start method call and carry out the next job,
before the AcquisitionDone event for the previous job occurs, if the system is capable of handling several
image acquisitions and/or image evaluations simultaneously.

From the point of view of the OPC UA client, the state machine is always carrying out one job only. However,
there may be evaluation process of several jobs running in parallel on the system and may trigger
AcquisitionDone events as well as ResultReady events.

Whenever the system is ready for the next StartSingleJob method, it will transition into the Ready state again.

8.3.2.3 Continuous operation

A call to the StartContinuous method will cause a transition into state ContinuousExecution, where the system
will continuously acquire and process data.

This state models the behavior of systems like textile inspection systeme, package sorting machines,
monitoring and surveillance systems, which do not expect start commands for individual work pieces but
constantly acquire and process data.

The system may go back to the Ready state, automatically due to internal conditions, or by calling the Abort or
Stop methods.

8.3.2.4 General remarks on Stop and Abort methods

The Stop and Abort methods offer two different means of finishing operation in the “Executing” states, with the
intention that the system transitions to the Ready state.

Both can be considered intended interruptions of a running system, in contrast to an error or the complete
stopping of operations by Reset and Halt methods.

The difference between the two methods is:

– In response to an Abort method call, the system is expected to end running operation and transition to the
Ready state as fast as possible, without regard to acquired or computed data.

– In response to a Stop method call, the system is expected to end running operation and transition to the
Ready state as soon as possible while retaining as much result data as possible. It is expected that
results will become available for all images acquired before the Stop method was called.

These methods shall always be executable. If for some reason the vision system is not capable of carrying out
this transition, the method shall fail with an appropriate status code, typically Bad_InternalError, and the state
machine shall transition into the Error state.

For example, depending on the camera / sensor used, it may not be possible to interrupt the acquisition
process arbitrarily from the outside.

8.3.2.5 Entering the “AutomaticMode” state machine

As described in Section 8.1.2.1 the VisionAutomaticMode SubStateMachine of the Operational state can be
entered in two different ways:

 From the Preoperational state of the parent state machine through an automatic transition or a
transition triggered by the SelectModeAutomatic method into the Initialized state of the
VisionAutomaticModeStateMachine. In these cases, the parent state machine transitions into the
parent state Operational implicitly.

 From the Error state of the parent state machine through an automatic transition into the Operational
state of the parent state machine. In this case the server will decide based on the conditions in the
vision system in which state of the VisionAutomaticModeStateMachine the system ends up.

Figure 25 shows these ways; for clarity, all other transitions have been left out. The transitions from the
Preoperational state are shown as solid lines as they are actually modelled in the type definition. The
transitions from the Error state are shown in dashed lines as they are not explicitly modelled but only “virtual”
transitions decided by the server internally.

OPC 40100-1: Control, configuration management, recipe management, result management

 100 Release 1.0

HaltedHalted

S2S2

ErrorError

S3S3

OperationalOperational

S4S4

PreoperationalPreoperational

S1S1
 -- / --

Halt() / --

 -- / Error

--
 /

 -
-

Se
le

ct
M

o
d

eA
u

to
m

at
ic

()
 /

 -
-

Reset() / --

 -- / --
Reset() / --

 -- / --

Halt() / --

 -- / --

 -- / ErrorResolved

R
es

et
()

 /
 -

-

--
 /

 -
-

Halt() / --

 -- / -- -- / Error

InitializedInitialized

S5S5

ReadyReady

S6S6

SingleExecutionSingleExecution

S7S7

ContinuousExecutionContinuousExecution

S8S8

P
re

p
ar

eR
ec

ip
e(

)
/

R
ec

ip
eP

re
p

ar
ed

--
 /

 R
ec

ip
eP

re
p

ar
ed

U
n

p
re

p
ar

eR
ro

d
u

ct
()

 /
 -

-

--
 /

 -
-

StartSingleJob() / --

-- / -- -- / --

StartContinuous() / --

Stop() / Ready

--
 /

 R
ea

d
y

Stop() / Ready

--
 /

 R
ea

d
y

P
re

p
ar

eP
ro

d
u

ct
()

 /
 R

ec
ip

eP
re

p
ar

ed

U
n

p
re

p
ar

eR
ec

ip
e(

)
/

--

Abort() / Ready Abort() / Ready

1
5

1
 /

 S
e

le
ct

M
o

d
e

A
u

to
m

at
ic

()
 /

 -
-

1
5

0
 /

 -
-

/
--

--
 /

 E
rr

o
rR

e
so

lv
e

d

--
 /

 E
rr

o
rR

e
so

lv
e

d

--
 /

 E
rr

o
rR

e
so

lv
e

d

--
 /

 E
rr

o
rR

e
so

lv
e

d

Figure 25 – Entering the VisionAutomaticModeStateMachine SubStateMachine

Release 1.0 101

OPC 40100-1: Control, configuration management, recipe management, result management

8.3.3 VisionAutomaticModeStateMachineType Overview

VisionStateMachineType

Preoperational

Halted

Error

Operational

PreoperationalStepModel

HaltedStepModel

ErrorStepModel

AutomaticModeStateMachine

Reset

Halt

SelectModeAutomatic

ConfirmAll

StateType

VisionAutomaticModeStateMachineType

VisionStepModelStateMachineType

PreoperationalToInitialized

PreoperationalToInitializedAuto

HaltedToPreoperational

HaltedToPreoperationalAuto

ErrorToPreoperational

PreoperationalToHalted

PreoperationalToHaltedAuto

PreoperationalToErrorAuto

PreoperationalToOperational

PreoperationalToOperationalAuto

OperationalToPreoperationalAuto

OperationalToHalted

OperationalToHaltedAuto

OperationalToErrorAuto

ErrorToPreoperationalAuto

ErrorToHalted

ErrorToHaltedAuto

ErrorToOperationalAuto

OperationalToPreoperational

TransitionType {

FiniteStateMachineType

Figure 26 – Overview VisionAutomaticModeStateMachineType

OPC 40100-1: Control, configuration management, recipe management, result management

 102 Release 1.0

8.3.4 VisionAutomaticModeStateMachineType Definition

VisionAutomaticModeStateMachineType is formally defined in Table 96.

Table 96 – VisionAutomaticModeStateMachineType definition

Attribute Value

 Includes all attributes specified for the FiniteStateMachineType

BrowseName VisionAutomaticModeStateMachineType

IsAbstract False

References NodeClass BrowseName Data
Type

TypeDefinition ModellingRule

Subtype of the FiniteStateMachineType defined in OPC 10000-5 Annex B.4.5

HasComponent Object Initialized -- StateType

HasComponent Object Ready -- StateType

HasComponent Object SingleExecution -- StateType

HasComponent Object ContinuousExecution -- StateType

HasComponent Object InitializedToReadyRecipe -- TransitionType

HasComponent Object InitializedToReadyProduct -- TransitionType

HasComponent Object InitializedToReadyAuto -- TransitionType

HasComponent Object ReadyToInitializedRecipe -- TransitionType

HasComponent Object ReadyToInitializedProduct -- TransitionType

HasComponent Object ReadyToInitializedAuto -- TransitionType

HasComponent Object ReadyToSingleExecution -- TransitionType

HasComponent Object ReadyToSingleExecutionAuto -- TransitionType

HasComponent Object ReadyToContinuousExecution -- TransitionType

HasComponent Object ReadyToContinuousExecutionAuto -- TransitionType

HasComponent Object SingleExecutionToReadyStop -- TransitionType

HasComponent Object SingleExecutionToReadyAbort -- TransitionType

HasComponent Object SingleExecutionToReadyAuto -- TransitionType

HasComponent Object ContinuousExecutionToReadyStop -- TransitionType

HasComponent Object
ContinuousExecutionToReadyAbor
t

--
TransitionType

HasComponent Object ContinuousExecutionToReadyAuto -- TransitionType

HasComponent Method Stop -- Mandatory

HasComponent Method Abort -- Mandatory

HasComponent Method StartSingleJob -- Mandatory

HasComponent Method StartContinuous -- Mandatory

HasComponent Method SimulationMode -- Optional

HasComponent Object InitializedStepModel -- VisionStepModelStateMachineType Optional

HasComponent Object ReadyStepModel -- VisionStepModelStateMachineType Optional

HasComponent Object SingleExecutionStepModel -- VisionStepModelStateMachineType Optional

HasComponent Object ContinuousExecutionStepModel -- VisionStepModelStateMachineType Optional

Release 1.0 103

OPC 40100-1: Control, configuration management, recipe management, result management

8.3.5 VisionAutomaticModeStateMachineType States

8.3.5.1 Introduction

Table 97 specifies the VisionAutomaticStateMachine’s state Objects. These state Objects are instances of the
StateType defined in OPC 10000-5 – Annex B. Each state is assigned a unique StateNumber value.

See Table 98 for a brief description of the states. The states will be detailed in the following subsections.

Table 97 – VisionAutomaticModeStateMachineType States

Browse

Name

References Target BrowseName Value Target Type

Definition

Notes

Initialized HasProperty StateNumber 5 PropertyType --

 FromTransition ReadyToInitializedRecipe TransitionType --

 FromTransition ReadyToInitializedProduct TransitionType --

 FromTransition ReadyToInitialzedAuto TransitionType --

 ToTransition InitializedToReadyRecipe TransitionType --

 ToTransition InitializedToReadyProduct TransitionType --

 ToTransition InitializedToReadyAuto TransitionType --

 HasSubstate
Machine

InitializedStepModel VisionStepModel
StateMachineType

--

Ready HasProperty StateNumber 6 PropertyType --

 FromTransition InitializedToReadyRecipe TransitionType --

 FromTransition InitializedToReadyProduct TransitionType --

 FromTransition InitlializedToReadyAuto TransitionType --

 FromTransition SingleExecutionToReadyStop TransitionType --

 FromTransition SingleExecutionToReadyAbort TransitionType --

 FromTransition SingleExecutionToReadyAuto TransitionType --

 FromTransition ContinuousExecutionToReadyStop TransitionType --

 FromTransition ContinousExecutionToReadyAbort TransitionType --

 FromTransition ContinousExecutionToReadyAuto TransitionType --

 ToTransition ReadyToInitializedRecipe TransitionType --

 ToTransition ReadyToInitializedProduct TransitionType --

 ToTransition ReadyToInitializedAuto TransitionType --

 ToTransition ReadyToSingleExecution TransitionType --

 ToTransition ReadyToSingleExecutionAuto TransitionType --

 ToTransition ReadyToContinuousExecution TransitionType --

 ToTransition ReadyToContinuousExecutionAuto TransitionType --

 HasSubstate
Machine

ReadyStepModel VisionStepModel
StateMachineType

--

Single
Execution

HasProperty StateNumber 7 PropertyType --

 FromTransition ReadyToSingleExecution TransitionType --

 FromTransition ReadyToSingleExecutionAuto TransitionType --

 ToTransition SingleExecutionToReadyStop TransitionType --

 ToTransition SingleExecutionToReadyAbort TransitionType --

 ToTransition SingleExecutionToReadyAuto TransitionType --

OPC 40100-1: Control, configuration management, recipe management, result management

 104 Release 1.0

Browse

Name

References Target BrowseName Value Target Type

Definition

Notes

 HasSubstate
Machine

SingleExecutionStepModel VisionStepModel
StateMachineType

--

Continuous
Execution

HasProperty StateNumber 8 PropertyType --

 FromTransition ReadyToContinuousExecution TransitionType --

 FromTransition ReadyToContinuousExecutionAuto TransitionType --

 ToTransition ContinuousExecutionToReadyStop TransitionType --

 ToTransition ContinousExecutionToReadyAbort TransitionType --

 ToTransition ContinousExecutionToReadyAuto TransitionType --

 HasSubstate
Machine

ContinuousExecutionStepModel VisionStepModel
StateMachineType

--

Table 98 – VisionAutomaticModeStateMachineType State Descriptions

StateName Description

Initialized This state indicated that the vision system is sufficiently initialized so that

management operations like configuration and recipe management can be

carried out through the server, if the optional management objects exist.

Ready This state indicates that the vision system is capable of being started to carry out

jobs, e.g. through Start methods called on the server.

SingleExecution This state indicates that the vision system will acquire the data required for

carrying out a single inspection or measuring job and will finish whatever

operations are necessary to return to the Ready state to accept the next job.

ContinuousExecution This state indicates that the vision system continually acquires and processes

data, until it is stopped by internal or external reasons, e.g. calling the Stop or

Abort methods on the server.

8.3.5.2 Initialized State

In this state, the system is characterized by the following properties:

– The system is able to perform management and operations.

– Configurations can be managed by methods detailed in Section 7.2.

– Recipes can be managed by methods detailed in Sections 7.5, 7.6, 7.7.

– One or more recipes can be prepared by the PrepareRecipe method such that these are ready to be used
in processing operations.

– Results can be pulled from the internal result-store by the methods detailed in Section 7.10.

– The system can be put into simulation mode (see Section 8.3.7.5).

This state will be the first state entered in the VisionAutomaticModeStateMachine when the superior
VisionStateMachine enters the Operational state either by an automatic transition from Preoperational or by a
SelectModeAutomatic method call.

If an error is dectected which suspends normal operation, the system will change to the Error state in the
VisionStateMachine.

This state can be left in the following ways:

– Into Ready state by a PrepareRecipe method call.

Release 1.0 105

OPC 40100-1: Control, configuration management, recipe management, result management

– Into Preoperational state of the VisionStateMachine by a Reset method call.

– Into Halted state of the VisionStateMachine by a Halt method call.

– Into Error state of the VisionStateMachine by an internal error.

All method-triggered transitions can also occur automatically upon an internal decision of the system.

This state can be a composite state with an optional VisionStepModelStateMachineType SubStateMachine.

8.3.5.3 Ready State

In this state, the system is characterized by the following properties:

– The vision system has prepared one or more recipes such that they can be used for processing
immediately upon a StartSingleJob or StartContinuous method call (unless it is a system without any
recipe management).

– The vision system is ready to accept either a StartSingleJob or a StartContinuous method to begin image
processing operation.

– Recipes can be added and retrieved by methods detailed in Sections 7.5, 7.6, 7.7.

– Which recipes are ready for use can be changed by calling the PrepareRecipe method depending on the
recipe handling capabilities of the system.

– Results can be pulled from the internal result-store by the methods detailed in Section 7.5.

– The vision system can be put into simulation mode (see Section 8.3.7.5).

Depending on the recipe handling capabilities of the vision system, calling an AddRecipe or PrepareRecipe
method in this state may cause the system to fall back into Initialized state, temporarily preventing it from
accepting Start methods.

If an error is dectected which suspends normal operation, the system will transition to Error state in the
VisionStateMachine.

This state can be left in the following ways:

– Into the SingleExecution state by a StartSingleJob method call.

– Into the ContinuousExecution state by a StartContinuous method call.

– Into the Initialized state by an UnprepareRecipe method call.

– Into the Preoperational state of the VisionStateMachine by a Reset method call.

– Into the Halted state of the VisionStateMachine by a Halt method call.

– Into the Error state of the VisionStateMachine by an internal error.

All method-triggered transitions can also occur automatically upon an internal decision of the system.

This state can be a composite state with an optional VisionStepModelStateMachineType SubStateMachine.

8.3.5.4 SingleExecution State

In this state, the system is characterized by the following properties:

– The vision system has received a command to begin the execution of an individual job (measuring,
inspection, identifying, …), e.g. by a call to the StartSingleJob method on the server.

– The vision system collects sensor data (i.e. acquiring single or multiple images, possibly awaiting triggers,
often in hardware).

– If data acquisition is a “multi-stage-process” (interaction with other devices) this may be modelled with a
VisionStepModelType SubStateMachine (all states allow for this, but this is the most typical application,
therefore we emphasize it here).

OPC 40100-1: Control, configuration management, recipe management, result management

 106 Release 1.0

– The vision system may indicate to the client by an AcquisitionDone event that acquisition has been
finished, e.g. as a signal that the part can be removed from the camera’s field of view, either by moving
the part or he camera.

– The vision system carries out the processing of the acquired data at least so far that the internal
resources are available to transition into state Ready to accept the next start command.

– Results can be pulled from the internal result-store by the methods detailed in Section 7.5 (depending on
the capabilities of the system).

Note that the above description illustrates a typical behavior. The vision system is, however, in no way obliged
to perform any particular operation – like image acquisition or processing – in this state. It can do completely
different things or nothing at all before returning to Ready state. The point is rather that the difference between
SingleExecution state and Ready state lies in the availability of the required resources for starting a job.

If an error is detected which suspends normal operation, the system will change to state Error in the
VisionStateMachine.

This state can be left in the following ways:

– into the Ready state by an automatic transition when the required resources are available. The system
shall trigger a Ready event in this case. Note that this is in no way related to the vision system completing
an image acquisition or evaluation and/or producing a result.

– Into the Ready state by the methods Stop and Abort, see Section 8.3.2.4 for details.

– Into the Preoperational state of the VisionStateMachine by a Reset method call.

– Into the Halted state of the VisionStateMachine by a Halt method call.

– Into the Error state of the VisionStateMachine by an internal error.

All method-triggered transitions can also occur automatically upon an internal decision of the system.

This state can be a composite state with an optional VisionStepModelStateMachineType SubStateMachine.

8.3.5.5 ContinuousExecution State

In this state, the system is characterized by the following properties:

– The vision system has received a StartContinuous command to begin the execution of a continuous job

– The vision system collects sensor data (i.e. acquiring single or multiple images, possibly awaiting triggers,
often in hardware) and processes this in a continuously ongoing fashion.

– Results can be pulled from the internal result-store by the methods detailed in Section 7.5 (depending on
the capabilities of the system).

Note that the above description illustrates a typical behavior. The vision system is, however, in no way obliged
to perform any particular operation – like image acquisition or processing – in this state. It can do completely
different things or nothing at all before returning to Ready state. The point is rather that the difference between
ContinuousExecution state and Ready state lies in the availability of the required resources for starting a job.

If an error is detected which suspends normal operation, the system will change to the Error state in the
VisionStateMachine.

This state can be left in the following ways:

– Into the Ready state by Stop and Abort method calls, see Section 8.3.2.4 for details.

– Into the Preoperational state of the VisionStateMachineType by a Reset method call.

– Into the Halted state of the VisionStateMachineType by a Halt method call.

– Into the Error state of the VisionStateMachineType by an internal error.

All method-triggered transitions can also occur automatically upon an internal decision of the system.

This state can be a composite state with an optional VisionStepModelStateMachineType SubStateMachine.

Release 1.0 107

OPC 40100-1: Control, configuration management, recipe management, result management

8.3.6 VisionAutomaticModeStateMachineType Transitions

Transitions are instances of Objects of the TransitionType defined in OPC 10000-5 – Annex B which also
includes the definitions of the ToState, FromState, HasCause, and HasEffect References used. Table 99
specifies the Transitions defined for the VisionStateMachineType. Each Transition is assigned a unique
TransitionNumber.

Table 99 – VisionAutomaticModeStateMachineType transitions

BrowseName References Target BrowseName Value Target TypeDefinition Notes

InitializedToReadyRecipe HasProperty TransitionNumber 561 PropertyType --

 FromState Initialized StateType --

 ToState Ready StateType --

 HasCause PrepareRecipe Method --

 HasEffect StateChangedEventType --

 HasEffect RecipePreparedEventType --

InitializedToReadyProduct HasProperty TransitionNumber 562 PropertyType --

 FromState Initialized StateType --

 ToState Ready StateType --

 HasCause PrepareProduct Method --

 HasEffect StateChangedEventType --

 HasEffect RecipePreparedEventType --

InitializedToReadyAuto HasProperty TransitionNumber 560 PropertyType --

 FromState Initialized StateType --

 ToState Ready StateType --

 HasEffect StateChangedEventType --

ReadyToInitializedRecipe HasProperty TransitionNumber 651 PropertyType --

 FromState Ready StateType --

 ToState Initialized StateType --

 HasCause UnprepareRecipe Method --

 HasEffect StateChangedEventType --

ReadyToInitializedProduct HasProperty TransitionNumber 652 PropertyType --

 FromState Ready StateType --

 ToState Initialized StateType --

 HasCause UnprepareProduct Method --

 HasEffect StateChangedEventType --

ReadyToInitializedAuto HasProperty TransitionNumber 650 PropertyType --

 FromState Ready StateType --

 ToState Initialized StateType --

 HasEffect StateChangedEventType --

ReadyToSingleExecution HasProperty TransitionNumber 671 PropertyType --

 FromState Ready StateType --

 ToState SingleExecution StateType --

 HasCause StartSingleJob Method --

 HasEffect StateChangedEventType --

 HasEffect JobStartedEventType --

OPC 40100-1: Control, configuration management, recipe management, result management

 108 Release 1.0

BrowseName References Target BrowseName Value Target TypeDefinition Notes

ReadyToSingleExecutionAuto HasProperty TransitionNumber 670 PropertyType --

 FromState Ready StateType --

 ToState SingleExecution StateType --

 HasEffect StateChangedEventType --

 HasEffect JobStartedEventType --

ReadyToContinuousExecution HasProperty TransitionNumber 681 PropertyType --

 FromState Ready StateType --

 ToState ContinuousExecution StateType --

 HasCause StartContinuous Method --

 HasEffect StateChangedEventType --

 HasEffect JobStartedEventType --

ReadyToContinuousExecutionAuto HasProperty TransitionNumber 680 PropertyType --

 FromState Ready StateType --

 ToState ContinuousExecution StateType --

 HasEffect StateChangedEventType --

 HasEffect JobStartedEventType --

SingleExecutionToReadyAuto HasProperty TransitionNumber 760 PropertyType --

 FromState SingleExecution StateType --

 ToState Ready StateType --

 HasEffect StateChangedEventType --

 HasEffect ReadyEventType --

SingleExecutionToReadyStop HasProperty TransitionNumber 761 PropertyType

 FromState SingleExecution StateType --

 ToState Ready StateType --

 HasCause Stop Method --

 HasEffect StateChangedEventType --

 HasEffect ReadyEventType --

SingleExecutionToReadyAbort HasProperty TransitionNumber 762 PropertyType --

 FromState SingleExecution StateType --

 ToState Ready StateType --

 HasCause Abort Method --

 HasEffect StateChangedEventType --

 HasEffect ReadyEventType --

ContinuousExecutionToReadyAuto HasProperty TransitionNumber 860 PropertyType --

 FromState ContinuousExecution StateType --

 ToState Ready StateType --

 HasEffect StateChangedEventType --

 HasEffect ReadyEventType --

ContinuousExecutionToReadyStop HasProperty TransitionNumber 861 PropertyType --

 FromState ContinuousExecution StateType --

 ToState Ready StateType --

 HasCause Stop Method --

Release 1.0 109

OPC 40100-1: Control, configuration management, recipe management, result management

BrowseName References Target BrowseName Value Target TypeDefinition Notes

 HasEffect StateChangedEventType --

 HasEffect ReadyEventType --

ContinuousExecutionToReadyAbort HasProperty TransitionNumber 862 PropertyType --

 FromState ContinuousExecution StateType --

 ToState Ready StateType --

 HasCause Abort Method --

 HasEffect StateChangedEventType --

 HasEffect ReadyEventType --

8.3.7 VisionAutomaticModeStateMachineType Methods

8.3.7.1 StartSingleJob method

Calling this method on the server is used to start a single execution type job in the vision system which will be
reflected by transition from the Ready state to the SingleExecution state.

Signature

StartSingleJob (

[in] MeasIdDataType measId,

[in] PartIdDataType partId,

[in] RecipeIdExternalDataType recipeId

[in] ProductIdDataType productId

[in] BaseDataType[] parameters

[out] JobIdDataType jobId

[out] Int32 error);

Table 100 – StartSingleJob Method Arguments

Argument Description

measId Identifies the measuring or inspection run from the point of view of the client. May be empty.

partId Identifies the part to be measured or inspected from the point of view of the client. The partId
may be identical on different measIDs, e.g. for repeat measurements in capability tests. May
be empty.

recipeId If not empty, it must be the ExternalId of a prepared recipe which is to be used by this job.

productId It not empty, it must be the ProductId of a product for which a recipe has been prepared which
is to be used by this job.

parameters List of parameters for this particular execution of the recipe; number and type of the
parameters are recipe-specific, so the client may need to re-browse the method signature after
a change in recipe preparation.

jobId A system-wide unique identification of the job. This argument must be returned.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 101 – StartSingleJob Method AddressSpace Definition

Attribute Value

BrowseName StartSingleJob

References NodeClass BrowseName DataType TypeDefinition ModellingRule

OPC 40100-1: Control, configuration management, recipe management, result management

 110 Release 1.0

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

It is expected that clients work either recipe-based or product-based, i.e. that a client gives either the RecipeId
argument or the ProductId argument. Recipe and product management being the province of the vision
system, it is implementation defined how the vision system reacts to none or both be given

Typical possibilities are that a system without recipe management or with only a single prepared recipe can
use this recipe to execute a job and accept both parameters to be empty, whereas a system with multiple
prepared recipes would probably consider it an error if both are empty and decide based on internal rules
which takes precedence if both are given.

Results are to be marked with as many of the identification values as possible to allow for unique identification
and flexible filtering, i.e., it is expected that the server uses all meta data elements provided by the client and
supported by the server profile to mark the results, filter the results, and fill the ResultReady event.

The jobId is mandatory to be returned and to be included in results.

Restarting with the same measId can lead to identical or different jobIds, depending on the application. It is
therefore not reliably possible to use multiple calls with the same measId to query for jobIds.

The parameters argument is intended for filling free parameters of a recipe with concrete values for the given
job. Its structure is therefore dependent on the recipe used. The server will have to instantiate this method
with an application-specific parameter structure before entering the Ready state. The server may re-instantiate
this method with a different parameter structure after preparing a different recipe. In the case of several
recipes being in prepared state at the same time, this structure is expected to be the superset of parameters
required by the prepared recipes. The client will have to browse for the actual argument structure of the
method at least once before calling a Start method (in the case of a system without recipe management) and
application-specific potentially after each call to PrepareRecipe.

8.3.7.2 StartContinuous method

Calling this method on the server is used to start a continuous execution type job in the vision system which
will be reflected by transition from the Ready state to the ContinuousExecution state. It has the same
signature and semantics as method StartSingleJob described in Section 8.3.7.1.

Table 102 – StartContinuous Method AddressSpace Definition

Attribute Value

BrowseName StartContinuous

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

8.3.7.3 Abort method

In response to an Abort call on the server, the vision system is expected to end running operation and
transition to the Ready state as fast as possible, without regard to acquired or computed data.

See the general remarks on Stop and Abort methods in Section 8.3.2.4 for further information on the behavior.

Signature

Abort (

[in] Int32 cause

[in] String causeDescription

[out] Int32 error);

Release 1.0 111

OPC 40100-1: Control, configuration management, recipe management, result management

Table 103 – Abort Method Arguments

Argument Description

cause Implementation-specific number denoting the reason for the Abort
command.

causeDescription Text for said reason, e.g. for logging purposes. May be empty.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 104 – Abort Method AddressSpace Definition

Attribute Value

BrowseName Abort

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The cause argument given to the method can only be interpreted by the underlying vision system It can be
used, for example, for logging purposes. It is expected that a value of 0 will be considered an “unspecified
reason”.

8.3.7.4 Stop method

In response to a Stop method call on the server, the vision system is expected to end running operation and
transition to state Ready as soon as possible while retaining as much result data as possible.

See the general remarks on Stop and Abort in 8.3.2.4 for further information on the behavior.

Signature

Stop (

[in] Int32 cause

[in] String causeDescription

[out] Int32 error);

Table 105 – Stop Method Arguments

Argument Description

cause Implementation-specific number denoting the reason for the Stop command.

causeDescription Text for said reason, e.g. for logging purposes. May be empty.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

OPC 40100-1: Control, configuration management, recipe management, result management

 112 Release 1.0

Table 106 – Stop Method AddressSpace Definition

Attribute Value

BrowseName Stop

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The cause argument given to the method can only be interpreted by the underlying vision system It can be
used, for example, for logging purposes. It is expected that a value of 0 will be considered an “unspecified
reason”.

8.3.7.5 SimulationMode method

This method puts the system into a system-specific special mode of operation. It is expected that this mode
does one or all of the following things:

– Simulate hardware (for tests on notebook)

– Produce simulated results (for tests within the line)

– Simulate parts of a recipe

It is mandatory that each result produced by the system when simulation mode is on must be marked with a
simulation flag.

Signature

SimulationMode (

[in] Boolean activate

[in] Int32 cause

[in] String causeDescription

[out] Int32 error);

Table 107 – SimulationMode Method Arguments

Argument Description

activate Switch simulation on (true) or off (false)

cause Implementation specific number which the server can use, e.g. to control the
simulation in a specific way

causeDescription String describing the reason for the call, for logging purposes May be empty.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 108 – SimulationMode Method AddressSpace Definition

Attribute Value

BrowseName SimulationMode

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

Release 1.0 113

OPC 40100-1: Control, configuration management, recipe management, result management

8.3.8 VisionAutomaticModeStateMachineType Events

8.3.8.1 RecipePreparedEventType

RecipePreparedEventType is an EventType subtype of BaseEventType, defined in OPC 10000-5. This event
shall be triggered by the server when the preparation of a recipe is completed on the vision system. Figure 27
defines the structure. It is formally defined in Table 109.

Typically, if the RecipeManagementType object is carried out by the server in a synchronous manner, this
event will be triggered before the method returns, but there is no specified temporal relationship between the
call to the PrepareRecipe method and the triggering of the event (except for the obvious that the event cannot
occur before the call).

The same holds for the PrepareProduct method of the RecipeManagementType object which, in effect, also
prepares a recipe.

An important special case, described in Section B.1.2.3, is local editing of an already prepared recipe. Since
after local editing has finished, the recipe is a different one than before, effectively a new recipe has been
prepared. Therefore, local editing of a prepared recipe shall generate a RecipePrepared event.

The RecipePrepared event transports the identification of the prepared recipe. If the event was caused by a
PrepareProduct method call, it also transports the ProductId, otherwise the ProductId shall be empty.

RecipePreparedEventType

ExternalId

InternalId

ProductId

BaseEventType

Figure 27 – Overview RecipePreparedEventType

Table 109 – Definition of RecipePreparedEventType

Attribute Value

BrowseName RecipePreparedEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseEventType defined in OPC 10000-5

HasProperty Variable ExternalId RecipeIdExternalDataType PropertyType Optional

HasProperty Variable InternalId RecipeIdInternalDataType PropertyType Mandatory

HasProperty Variable ProductId ProductIdDataType PropertyType Optional

8.3.8.2 JobStartedEventType

JobStartedEventType is an EventType subtype of BaseEventType, defined in OPC 10000-5. This event is to
be triggered by the server when the state machine transitions from the Ready state to the SingleExecution or
ContinuousExecution state. Figure 28 defines the structure. It is formally defined in Table 110.

OPC 40100-1: Control, configuration management, recipe management, result management

 114 Release 1.0

It indicates to the client that the vision system has started the execution of a job, regardless whether the
transition occurred due to a call to the StartSingleJob or StartContinuous method or automatically due, e.g. for
a fieldbus start signal.

The event transports the jobId created upon the transition from state Ready to state SingleExecution or
ContinuousExecution. This enables clients to maintain a time-sequential log of jobs, regardless whether this
particular client started the job or whether the job was started by an OPC UA method call at all.

In the case of multiple running state machines in the same server, the client can use the Source property
inherited from BaseEventType to identify the state machine instance the event originated from.

JobId

JobStartedEventType BaseEventType

Figure 28 – Overview JobStartedEventType

Table 110 – Definition of JobStartedEventType

Attribute Value

BrowseName JobStartedEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseEventType defined in OPC 10000-5

HasProperty Variable JobId JobIdDataType PropertyType Mandatory

8.3.8.3 ReadyEventType

ReadyEventType is an EventType subtype of BaseEventType, defined in OPC 10000-5. This event is to be
triggered by the server when the state machine transitions to the Ready state from one of the “Execution”
states, i.e. SingleExecution or ContinuousExecution. Figure 29 defines the structure. It is formally defined in
Table 111.

It indicates to the client that the vision system has the necessary resources available for executing the next
job. The client still has to make sure that the state machine is actually in the Ready state before calling the
StartSingleJob or StartContinuous method as the vision system may fall out of the Ready state due to internal
reasons or other method calls

The event transports the jobId created upon the transition from state Ready to state SingleExecution or
ContinuousExecution. Together with the JobStarted event this enables clients to maintain a time-sequential
log of state changes for each job.

In the case of multiple running state machines in the same server, the client can use the Source property
inherited from BaseEventType to identify the state machine instance the event originated from.

Release 1.0 115

OPC 40100-1: Control, configuration management, recipe management, result management

JobId

ReadyEventType BaseEventType

Figure 29 – Overview ReadyEventType

Table 111 – Definition of ReadyEventType

Attribute Value

BrowseName ReadyEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseEventType defined in OPC 10000-5

HasProperty Variable JobId JobIdDataType PropertyType Mandatory

8.3.8.4 ResultReadyEventType

ResultReadyEvent is an EventType subtype of BaseEventType, defined in OPC 10000-5. This event is to be
triggered by the server when the vision system has a complete or partial result available for the client. Figure
30 defines the structure. It is formally defined in Table 112.

To enable access to a result, several properties of the result, which are generated by the system, are
supplied. These properties can be used to query the results in the ResultManagement object. A sufficiently
small result can also be provided in the ResultContent component of the event.

The ResultReadyEvent is not shown explicitly in the state machine as it is not connected to a state transition.

OPC 40100-1: Control, configuration management, recipe management, result management

 116 Release 1.0

ResultReadyEventType

IsPartial

IsSimulated

ResultState

MeasId

PartId

ExternalRecipeId

InternalRecipeId

ProductId

InternalConfigurationId

JobId

ResultId

CreationTime

ProcessingTimes

ResultContent

BaseEventType

ExternalConfigurationId

Figure 30 – Overview ResultReadyEventType

Table 112 – Definition of ResultReadyEventType

Attribute Value

BrowseName ResultReadyEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseEventType defined in OPC 10000-5

HasProperty Variable IsPartial Boolean PropertyType Mandatory

HasProperty Variable IsSimulated Boolean PropertyType Optional

HasProperty Variable ResultState ResultStateDataType PropertyType Mandatory

HasProperty Variable MeasId MeasIdDataType PropertyType Optional

HasProperty Variable PartId PartIdDataType PropertyType Optional

HasProperty Variable ExternalRecipeId RecipeIdExternalDataType PropertyType Optional

Release 1.0 117

OPC 40100-1: Control, configuration management, recipe management, result management

HasProperty Variable InternalRecipeId RecipeIdInternalDataType PropertyType Mandatory

HasProperty Variable ProductId ProductIdDataType PropertyType Optional

HasProperty Variable ExternalConfigurationId ConfigurationIdDataType PropertyType Optional

HasProperty Variable InternalConfigurationId ConfigurationIdDataType PropertyType Mandatory

HasProperty Variable JobId JobIdDataType PropertyType Mandatory

HasProperty Variable ResultId ResultIdDataType PropertyType Mandatory

HasProperty Variable CreationTime UtcTime PropertyType Mandatory

HasProperty Variable ProcessingTimes ProcessingTimesDataType PropertyType Optional

HasProperty Variable ResultContent BaseDataType[] PropertyType Optional

IsPartial

Indicates whether the result is the partial result of a total result.

IsSimulated

Indicates whether the system was in simulation mode when the job generating this result was created.

ResultState

Indicates at what processing state this result was generated.

MeasId, PartId, ExternalRecipeId, InternalRecipeId, ProductId, ExternalConfigurationId,
InternalConfigurationId, JobId, ResultId

If the information is somehow linked to one of the (vision system) objects referenced by these Ids, these
properties can transport this reference. In particular:

MeasId: This identifier is given by the client when starting a single or continuous execution and transmitted to
the vision system. It is used to identify the respective result data generated for this job. Although the system-
wide unique JobId would be sufficient to identify the job which the result belongs to, this makes for easier
filtering on the part of the client without keeping track of JobIds.

PartId: A PartId is given by the client when starting the job; although the system-wide unique JobId would be
sufficient to identify the job which the result belongs to, this makes for easier filtering on the part of the client
without keeping track of JobIds.

ExternalRecipeId:

External Id of the recipe in use which produced the result. The ExternalId is only managed by the
environment. This will typically be derived from the arguments of the Start method call which caused the result
to be created.

InternalRecipeId:

Internal Id of the recipe in use which produced the result. This Id is system-wide unique and it is assigned by
the vision system. This will typically be derived from the arguments of the Start method call which caused the
result to be created.

ProductId: Id of the product selected to produce the result. This will typically be derived from the arguments of
the Start method call which caused the result to be created.

ExternalConfigurationId: External Id of the configuration in effect in the system when the result was produced.

InternalConfigurationId: Internal Id of the configuration in effect in the system when the result was produced.

JobId:

OPC 40100-1: Control, configuration management, recipe management, result management

 118 Release 1.0

The Id of the job, created by the transition from state Ready to state SingleExecution or to state
ContinuousExecution which produced the result.

ResultId: vision-system-wide unique Id, which is assigned by the system. This Id can be used for fetching
exactly this result using the methods detailed in Section 7.10.2.

CreationTime

CreationTime indicates the time when the result was created.

ProcessingTimes

Collection of different processing times that were needed to create the result.

ResultContent

Abstract data type to be subtyped from to hold result data created by the selected recipe.

8.3.8.5 AcquisitionDoneEventType

AcquisitionDoneEventType is an EventType subtype of BaseEventType, defined in OPC 10000-5. This event
is to be triggered by the server. when the vision system finishes a data acquisition process for a job. Figure 31
shows the structure of the event. It is formally defined in Table 113.

It is not shown explicitly in the state machine diagram as it is not directly connected to a transition.

It indicates to the client that data acquisition for the specified job has finished. In many machines, this will be a
signal that the work piece or camera can be moved. Triggering this event during a single or continuous
execution is application-specific and not mandatory.

The event provides the JobId created upon the transition from the Ready state to the SingleExecution or
ContinuousExecution state. This enables the client to maintain a time-sequential log of state changes for each
job and also to match the event to the corresponding start signal.
In the case of multiple running state machines in the same server, the client can use the Source property
inherited from BaseEventType to identify the state machine instance the event originated from.

AcquisitionDoneEventType

JobId

BaseEventType

Figure 31 – Overview AcquisitionDoneEventType

Table 113 – Definition of AcquisitionDoneEventType

Attribute Value

BrowseName AcquisitionDoneEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseEventType defined in OPC 10000-5

HasProperty Variable JobId JobIdDataType PropertyType Mandatory

JobId

The Id of the job for which the event was triggered. The JobId is created by the transition from state Ready to
state Acquiring.

Release 1.0 119

OPC 40100-1: Control, configuration management, recipe management, result management

8.3.9 Adding an operation mode

If a vendor wants to add a mode of operation, the following steps are required:

1. Define a SubType of FiniteStateMachineType describing the behavior of this operation mode,
designated here as VendorModeStateMachineType. This SubType shall not have an InitialState to
allow for selective activation of operation modes.

2. Define a SubType of VisionStateMachineType which
a. binds an instance of VendorModeStateMachineType as SubStateMachine to the

Operational state of this SubType.
b. defines a SelectModeVendor method to trigger a transition into a desired starting state of

this SubStateMachine.
c. binds the SelectModeVendor method as additional HasCause to the method-triggered

transition from the Preoperational state to the Operational state, i.e., T141 in Table 84
(according to OPC 10000-5 B.4.18, adding causes to a transition is allowed, not however to
introduce a new transition, so the existing transition).

d. contains direct transitions from the Preoperational state into the desired starting state of the
VendorModeStateMachine, typically an automatic one and one triggered by
SelectModeVendor (again this is allowed by OPC 10000-5, B.4.18).

3. Take care that automatic transitions into the Operational state lead into states of the
VendorModeStateMachine in a suitable way, especially for transitions from the Error state to
facilitate the error handling described in Section 8.2.2.4.

The designation elements ModeStateMachineType and SelectMode shall be used as shown above. The
Vendor part of the designations can be freely chosen.

8.4 VisionStepModelStateMachineType

8.4.1 Operation of the VisionStepModelStateMachine

Vision systems frequently require interaction with external systems during image acquisition. For example, it
may be required to capture images in several different positions, i.e., moving the part between image
capturing operations. In that case, the vision system will signal to the PLC when it has captured an image, so
that the part may be safely moved, and the PLC will in turn signal to the vision system when the part is in the
next position to capture the next image.

To enable the states of the VisionAutomaticModeStateMachineType to do such interaction, each is a complex
state with an optional SubStateMachine of the VisionStepModelStateMachineType.

Figure 32 shows the entire SubStateMachine diagram.

OPC 40100-1: Control, configuration management, recipe management, result management

 120 Release 1.0

Any State

Sx

Entry

Sx.S11

Exit

Sx.S12

Wait

Sx.S13

Step

Sx.S14

11
12

0
/

--
 /

 --
[n

o
st

e
p

se
q

ue
nc

e
ne

e
de

d]

11130 / -- / EnterStepSequence

13141 / Sync() / --

13140 / -- / --

14120 / -- / LeaveStepSequence

14130 / -- / NextStep

Figure 32 – States and transitions of the VisionStepModelStateMachineType

8.4.1.1 Entering the step model SubStateMachine

It is supposed that a SubStateMachine is entered automatically if it is present in the superior state. Since the
Entry state is of InitialStateType it will be entered automatically.

Upon entering the SubStateMachine there is a check in the Entry state whether there is a step-sequence to
execute. This is application-dependent and may depend on the situation (e.g. on the currently active recipe)
and the way of determining this is application-specific.

8.4.1.2 Executing a step sequence

If in the Entry state the system decides that there is a step sequence to be executed, the SubStateMachine
informs the client about this by firing an EnterStepSequence event. It then enters the Wait state to wait for a
synchronization event.

The synchronization can occur by a Sync method call from an OPC UA client, typically the control system.
The synchronization can also occur internally, typically due to communication events on other interfaces, e.g.
a digital trigger.

The system then enters the Step state, where it does the actual work required in this state of the step model
and decides whether there are any steps left in the step sequence. This is application-specific, as is the
original decision to execute a step sequence at all.

The system indicates the need for another step-sequence cycle by firing a NextStep event and re-enters the
Wait state. In this manner, an arbitrary and dynamic number of steps can be executed. It is not necessary to
predefine the number of steps.

Release 1.0 121

OPC 40100-1: Control, configuration management, recipe management, result management

To use the common example of image acquisition: There may be one image acquisition in each Step state,
but it is also possible that the step sequence is used only for mechanical synchronization and all acquisition is
done in the Exit state.

8.4.1.3 Completing the SubStateMachine

If no step-sequence is to be executed at all, the system will transition into the Exit state directly from the Entry
state and perform the actual task of the superior state. After the task is finished, the superior state will
transition to whatever is its target state, thus de-activating the SubStateMachine.

When a step sequence is being executed and the system decides in the Step state that there are no more
steps to execute in the step sequence, it fires a LeaveStepSequence event, transitions to the Exit state and
proceeds as in the case without a step sequence.

How the work of the superior state and of the steps of the sequence is distributed between the states of the
step model is application-specific.

8.4.1.4 Leaving the superior state

The superior state of a currently active VisionStepModelStateMachine is some state in the
VisionStateMachineType or the VisionAutomaticModeStateMachineType.

Each of these states can be left due to internal causes (like error conditions) or external causes (like the Stop,
Abort, Halt, Reset method calls). In that case, the SubStateMachine becomes inactive and will be in state
Bad_StateNotActive, as explained in Section 8.1.2.

How and when these transitions take place is at the discretion of the vision system underlying the OPC UA
server. In particular, the vision system can disable the Executable flag on each of these methods when the
current operation does not allow for, e.g. an Abort command to be carried out.

8.4.2 VisionStepModelStateMachineType Overview

This ObjectType is a subtype of FiniteStateMachineType and it is used to represent interactions of the vision
system with external components/systems for synchronization purposes. It is formally defined in Table 114.

VisionStepModelStateMachineType

Entry

Exit

Wait

Step

StateType

StepToWaitAuto

EntryToExitAuto

EntryToWaitAuto

WaitToStep

WaitToStepAuto

StepToExitAuto

Sync

InitialStateType

TransitionType {

FiniteStateMachineType

Figure 33 – Overview VisionStepModelStateMachineType

8.4.3 VisionStepModelStateMachineType Definition

VisionStepModelStateMachineType is formally defined in Table 114.

OPC 40100-1: Control, configuration management, recipe management, result management

 122 Release 1.0

Table 114 – VisionStepModelStateMachineType definition

Attribute Value

 Includes all attributes specified for the FiniteStateMachineType

BrowseName VisionStepModelStateMachineType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FiniteStateMachineType defined in OPC 10000-5 Annex B.4.5

HasComponent Object Entry -- InitialStateType --

HasComponent Object Exit -- StateType --

HasComponent Object Wait -- StateType --

HasComponent Object Step -- StateType --

HasComponent Object EntryToExitAuto -- TransitionType --

HasComponent Object EntryToWaitAuto -- TransitionType --

HasComponent Object WaitToStep -- TransitionType --

HasComponent Object WaitToStepAuto -- TransitionType --

HasComponent Object StepToExitAuto -- TransitionType --

HasComponent Object StepToWaitAuto -- TransitionType --

HasComponent Method Sync -- -- Mandatory

8.4.4 VisionStepModelStateMachineType States

Table 115 lists the states of VisionStepModelStateMachineType. See Table 116 for a brief description of the
states. These will be detailed in the following subsections.

Table 115 – VisionStepModelStateMachineType states

BrowseName References Target BrowseName Value Target TypeDefinition Notes

Entry HasProperty StateNumber 11 PropertyType --

 ToTransition EntryToExitAuto TransitionType --

 ToTransition EntryToWaitAuto TransitionType --

Exit HasProperty StateNumber 12 PropertyType --

 FromTransition EntryToExitAuto TransitionType --

 FromTransition StepToExitAuto TransitionType --

Wait HasProperty StateNumber 13 PropertyType --

 FromTransition EntryToWaitAuto TransitionType --

 FromTransition StepToWaitAuto TransitionType --

 ToTransition WaitToStep TransitionType --

 ToTransition WaitToStepAuto TransitionType --

Step HasProperty StateNumber 14 PropertyType --

 FromTransition WaitToStep TransitionType --

 FromTransition WaitToStepAuto TransitionType --

 ToTransition StepToExitAuto TransitionType --

 ToTransition StepToWaitAuto TransitionType --

Release 1.0 123

OPC 40100-1: Control, configuration management, recipe management, result management

Table 116 – VisionStepModelStateMachineType state descriptions

StateName Description

Entry If a superior state has a step model SubStateMachine, this state will be entered

automatically.

In this state, the step model SubStateMachine decides whether a step model

execution is required or not. This decision may depend on the current recipe or

other factors.

Exit In this state, the SubStateMachine signals to the superior state that its work is

finished so that the superior state can be completed and transition to its target

state. The superior state may also be left at any time due to other reasons

regardless of the current state of the step model.

Wait In this state, the system waits for a synchronization event. This may be a call to

the Sync method or other internal or external factor, e.g. communication via a

different interface.

Step In this state, the system carries out the work for the current step, then decides

based on the current situation whether more steps are required, in which case

the state machine transitions back into state Wait, or not, in which case the state

machine transitions to the Exit state.

8.4.5 VisionStepModelStateMachineType Transitions

Table 117 lists the transitions of VisionStepModelStateMachineType.

Table 117 – VisionStepModelStateMachineType transitions

BrowseName References Target BrowseName Value Target TypeDefinition Notes

EntryToExitAuto HasProperty TransitionNumber 11120 PropertyType --

 FromState Entry StateType --

 ToState Exit StateType --

 HasEffect StateChangedEventType --

EntryToWaitAuto HasProperty TransitionNumber 11130 PropertyType --

 FromState Entry StateType --

 ToState Wait StateType --

 HasEffect EnterStepSequenceEventType --

 HasEffect StateChangedEventType --

WaitToStep HasProperty TransitionNumber 13141 PropertyType --

 FromState Wait StateType --

 ToState Step StateType --

 HasCause Sync Method --

 HasEffect StateChangedEventType --

WaitToStepAuto HasProperty TransitionNumber 13140 PropertyType --

 FromState Wait StateType --

 ToState Step StateType --

 HasEffect StateChangedEventType --

StepToExitAuto HasProperty TransitionNumber 14120 PropertyType --

 FromState Step StateType --

OPC 40100-1: Control, configuration management, recipe management, result management

 124 Release 1.0

BrowseName References Target BrowseName Value Target TypeDefinition Notes

 ToState Exit StateType --

 HasEffect LeaveStepSequenceEventType --

 HasEffect StateChangedEventType --

StepToWaitAuto HasProperty TransitionNumber 14130 PropertyType --

 FromState Step StateType --

 ToState Wait StateType --

 HasEffect NextStepEventType --

 HasEffect StateChangedEventType --

8.4.6 VisionStepModelStateMachineType Methods

8.4.6.1 Sync method

This method can be called to cause a transition from the Wait state in the step model to the ExecuteStep
state.

Signature

Sync (

[in] Int32 cause

[in] String causeDescription

[out] Int32 error);

Table 118 – Sync Method Arguments

Argument Description

cause Implementation-specific number denoting circumstances of the command

causeDescription Description of the circumstances, e.g. for logging purposes. May be empty.

error 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

Table 119 – Sync Method AddressSpace Definition

Attribute Value

BrowseName Sync

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The cause argument given to the method can only be interpreted by the underlying vision system It can be
used, for example, for ending the step model prematurely.

8.4.7 VisionStepModelStateMachine Events

8.4.7.1 EnterStepSequenceEventType

EnterStepSequenceEventType is an EventType subtype of BaseEventType, defined in OPC 10000-5. This
event is to be triggered by the server when in the Entry state the decision is taken that under the current

Release 1.0 125

OPC 40100-1: Control, configuration management, recipe management, result management

circumstances (superior state, recipe etc.) a step sequence is to be executed and the transition into the first
Wait state is initiated. The structure is defined in Figure 34. It is formally defined in Table 120.

Event properties

– Steps: number of steps to expect. If the number of steps is not known, this should be -1. Even if this is a
positive value, the client should not rely on it because circumstances occurring during execution of the
step model may change the number of steps required, for example a call to the Sync method with a
particular mode argument.

EnterStepSequenceEventType

Steps

BaseEventType

Figure 34 – Overview EnterStepSequenceEvent

Table 120 – EnterStepSequenceEventType definition

Attribute Value

BrowseName EnterStepSequenceEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseEventType defined in OPC 10000-5

HasProperty Variable Steps Int32 PropertyType Mandatory

8.4.7.2 NextStepEventType

NextStepEventType is an EventType subtype of BaseEventType, defined in OPC 10000-5. This event is to be
triggered by the server when in the Step state the decision is reached that under the current circumstances
(superior state, recipe, number of steps already taken, parameter of Sync method) another step has to be
taken and the state machine must translate to the Wait state. It is formally defined in Table 121

Event properties

– State NodeId

– Running number of the step

NextStepEventType

Step

BaseEventType

Figure 35 – Overview NextStepEvent

OPC 40100-1: Control, configuration management, recipe management, result management

 126 Release 1.0

Table 121 – NextStepEventType definition

Attribute Value

BrowseName NextStepEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseEventType defined in OPC 10000-5

HasProperty Variable Step Int32 PropertyType Mandatory

8.4.7.3 LeaveStepSequenceEventType

LeaveStepSequenceEventType is an EventType subtype of BaseEventType, defined in OPC 10000-5, this
event is to be triggered by the server when in the Step state the decision is reached that under the current
circumstances (superior state, recipe, number of steps already taken, parameter of Sync method) no further
steps have to be taken and the transition into the Exit state is initiated. It is formally defined in Table 122.

LeaveStepSequenceEventType BaseEventType

Figure 36 – Overview LeaveStepSequenceEventType

Table 122 – LeaveStepSequenceEventType definition

Attribute Value

BrowseName LeaveStepSequenceEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseEventType defined in OPC 10000-5

Release 1.0 127

OPC 40100-1: Control, configuration management, recipe management, result management

9 VariableTypes for the Vision System

9.1 ResultType

This VariableType aggregates simple Variables using simple DataTypes that reflect the elements of the
ResultDataType structure. Its DataVariables have the same semantics as defined in in 12.17.

 It is formally defined in Table 123.

ResultType

ResultId

HasTransferableDataOnFile

IsPartial

IsSimulated

ResultState

MeasId

PartId

ExternalRecipeId

InternalRecipeId

ProductId

JobId

CreationTime

ProcessingTimes

ResultContent

BaseDataVariableType

InternalConfigurationId

ExternalConfigurationId

Figure 37 – Overview ResultType

OPC 40100-1: Control, configuration management, recipe management, result management

 128 Release 1.0

Table 123 – ResultType VariableType

Attribute Value

BrowseName ResultType

IsAbstract False

ValueRank -1 {Scalar}

DataType ResultDataType

References Node Class BrowseName DataType / TypeDefinition ModellingRule

Subtype of the BaseDataVariableType defined in OPC 10000-5

HasComponent Variable ResultId
ResultIdDataType
BaseDataVariableType

Mandatory

HasComponent Variable HasTransferableDataOnFile
Boolean
BaseDataVariableType

Optional

HasComponent Variable IsPartial
Boolean
BaseDataVariableType

Mandatory

HasComponent Variable IsSimulated
Boolean
BaseDataVariableType

Optional

HasComponent Variable ResultState
ResultStateDataType
BaseDataVariableType

Mandatory

HasComponent Variable MeasId
MeasIdDataType
BaseDataVariableType

Optional

HasComponent Variable PartId
PartIdDataType
BaseDataVariableType

Optional

HasComponent Variable ExternalRecipeId
RecipeIdExternalDataType
BaseDataVariableType

Optional

HasComponent Variable InternalRecipeId
RecipeIdInternalDataType
BaseDataVariableType

Mandatory

HasComponent Variable ProductId
ProductIdDataType
BaseDataVariableType

Optional

HasComponent Variable ExternalConfigurationId
ConfigurationIdDataType
BaseDataVariableType Optional

HasComponent Variable InternalConfigurationId
ConfigurationIdDataType
BaseDataVariableType

Mandatory

HasComponent Variable JobId
JobIdDataType
BaseDataVariableType

Mandatory

HasComponent Variable CreationTime
UtcTime
BaseDataVariableType

Mandatory

HasComponent Variable ProcessingTimes
ProcessingTimesDataType
BaseDataVariableType

Optional

HasComponent Variable ResultContent
BaseDataType[]
BaseDataVariableType

Optional

Id

System-wide unique trimmed string, which is assigned by the system. This ID can be used for fetching exactly
this result using the methods detailed in Section 7.10.2 and it is identical to the ResultId of the
ResultReadyEventType defined in Section8.3.8.4.

IsPartial

Indicates whether the result is the partial result of a total result.

IsSimulated

Indicates whether the system was in simulation mode when the job generating this result was created.

Release 1.0 129

OPC 40100-1: Control, configuration management, recipe management, result management

ResultState

ResultState provides information about the current state of a result and the ResultStateDataType is defined in
Section 12.18.

MeasId

This identifier is given by the client when starting asingle or continuous execution and transmitted to the vision
system. It is used to identify the respective result data generated for this job. Although the system-wide unique
JobId would be sufficient to identify the job which the result belongs to, this makes for easier filtering on the
part of the client without keeping track of JobIds.

PartId

A PartId is given by the client when starting the job; although the system-wide unique JobId would be
sufficient to identify the job which the result belongs to, this makes for easier filtering on the part of the client
without keeping track of JobIds.

ExternalRecipeId

External Id of the recipe in use which produced the result. The ExternalID is only managed by the
environment.

InternalRecipeId

Internal Id of the recipe in use which produced the result. This ID is system-wide unique and it is assigned by
the vision system.

ProductId

productId which was used in starting the job which created the result.

ExternalConfigurationId

External Id of the configuration in use while the result was produced.

InternalConfigurationId

Internal Id of the configuration in use while the result was produced. This ID is system-wide unique and it is
assigned by the vision system.

JobId

The ID of the job, created by the transition from state Ready to state SingleExecution or to state
ContinuousExecution which produced the result.

CreationTime

CreationTime indicates the time when the result was created.

ProcessingTimes

Collection of different processing times that were needed to create the result.

ResultContent

Abstract data type to be subtyped from to hold result data created by the selected recipe.

OPC 40100-1: Control, configuration management, recipe management, result management

 130 Release 1.0

10 EventTypes for the Vision System

10.1 VisionStateMachineType EventTypes

The VisionStateMachineType EventTypes lists all EventTypes that are part of the VisionStateMachineType.
Table 124 shows all EventTypes and gives references to their descriptions and definitions in Section 8.2.8.3.

Table 124 – VisionStateMachineType EventTypes

Defined in chapter BrowseName

8.2.9.1 StateChangedEventType

8.2.9.2 ErrorEventType

8.2.9.3 ErrorResolvedEventType

10.2 VisionAutomaticModeStateMachineType EventTypes

The VisionAutomaticModeStateMachineType EventTypes lists all EventTypes that are part of the
VisionAutomaticModeStateMachineType. Table 125 shows all EventTypes and gives references to their
descriptions and definitions in Section 8.3.8.

Table 125 – VisionAutomaticModeStateMachineType EventTypes

Defined in chapter BrowseName

8.3.8.1 RecipePreparedEventType

8.3.8.3 ReadyEventType

8.3.8.4 ResultReadyEventType

8.3.8.5 AcquisitionDoneEventType

10.3 VisionStepModelStateMachineType EventTypes

The VisionStepModelStateMachineType EventTypes lists all EventTypes that are part of the
VisionStepModelStateMachineType. Table 126 shows all EventTypes and gives references to their
descriptions and definitions in Section 8.4.7.

Table 126 – VisionStepModelStateMachineType EventTypes

Defined in chapter BrowseName

8.4.7.1 EnterStepSequenceEventType

8.4.7.2 NextStepEventType

8.4.7.3 LeaveStepSequenceEventType

10.4 Vision System State EventTypes and ConditionTypes

Table 127 shows all EventTypes and ConditionTypes used for signaling interior information about the vision
system and gives references to their descriptions and definitions in Section 11.4.

Release 1.0 131

OPC 40100-1: Control, configuration management, recipe management, result management

Table 127 – Vision System State EventTypes and ConditionTypes

Defined in chapter BrowseName

11.4.1 VisionEventType

11.4.2 VisionDiagnosticInfoEventType

11.4.3 VisionInformationEventType

11.4.4 VisionConditionType

11.4.5 VisionWarningConditionType

11.4.6 VisionErrorConditionType

11.4.7 VisionPersistentErrorConditionType

11.4.8 VisionSafetyEventType

OPC 40100-1: Control, configuration management, recipe management, result management

 132 Release 1.0

11 System States and Conditions for the Vision System

11.1 Introduction

Usually it is desirable to expose some information on the inner state of the machine vision framework to the
outside world. A state machine only covers information on the current control state of the vision system. If an
error occurs it transits to the Error state, but offers no information why this happened. Therefore we need
additional communication elements that are capable of transporting error messages, warning messages to
avoid the occurrence of an error, or any other kind of information helpful for the client.

The kind of errors that may occur and the additional information to be transported are highly application
specific. Therefore it is out of scope for this standard to define such things. Instead we are defining a
framework of rules on how to structure application specific messages and how messages should interact with
the state machine. The goal for this is to make it possible that even a “generic” client without further
knowledge of a specific application is able to get a basic picture of the current state of the vision system.

11.2 Client interaction

11.2.1 Introduction

In general each client is free to decide if it reads information from an OPC UA server. There is no mechanism
for a server to enforce that a specific client gets a message. But OPC UA offers different levels of client / user
interaction that may be selected for information being published.

11.2.2 No Interaction

The message is published at the interface and no feedback is expected to inform the server if the information
has been read by any client.

11.2.3 Acknowledgement

After it is published on the interface the server waits for one client to acknowledge the reception of the
message. Usually such an acknowledgement is automatically generated by a client PLC reading the
information.

If a message requiring an acknowledgement has been published it will stay active till an acknowledgement
has been received, even if the cause triggering this message has already been cleared.

Application Note:
As a Reset method call tries to bring the system back to an initial state it clears all active
messages. If an error state could not be cleared the message will show up again after
performing the reset.

11.2.4 Confirmation

After the message is published one of the receiving clients has to acknowledge the reception and afterward
has to confirm that the server may clear the information. This mechanism is usually used to call for human
assistance. The client PLC acknowledges the reception and shows a message on its HMI. After the operator
gives the command to continue the PLC sends the confirmation to inform the server.

If the vision System has its own user console such a user confirmation may be entered there. Therefor it is
allowed that the vision system may clear the message even without the confirmation received from a client.
But it has to wait for the reception of an acknowledgement before doing so.

Release 1.0 133

OPC 40100-1: Control, configuration management, recipe management, result management

11.2.5 Confirm All

As a number of messages may be published at the same time the vision system may optionally offer a
ConfirmAll method that sets the confirmation for all active messages.

11.3 Classes of Informational Elements

11.3.1 Overview

We are defining five classes of informational elements to be exposed on the interface. The classes are
distinguished by their severity regarding the influence on the operation of the vision system.

Each message transports its severity represented as a value between 0 and 1000.

11.3.2 Diagnostic Information

This class of lowest severity carries messages for debugging and diagnostic purposes. It may safely be
ignored by clients.

11.3.3 Information

This class may be used for messages that do not require that any client reads them for the normal operation.
The vision system is able to safely continue normal operation even if this message is ignored.

11.3.4 Warning

A message of this class has a midlevel severity. The server can decide if for a specific message an
acknowledgement, or acknowledgement and confirmation may be needed.

11.3.5 Error

If on the vision system side a condition arises that could affect the normal operation of the system a message
of this class should be created. An error message requires an acknowledgement from the client side. The
server may decide that also a confirmation is needed.

11.3.6 Persistent Error

This highest class of severity is used for error messages associated with problems that need human
interaction. This kind of errors cannot automatically be solved, an operator has to do something in the physical
world before the operation can go on. Acknowledgement and confirmation is mandatory for this class.

Table 128 – Information Elements

Information Type Severity
needs
Acknowledge

needs
Confirmation OPC UA Type

Persistent Error 801...1000 yes yes VisionPersistentErrorConditionType

Error 601...800 yes optional VisionErrorConditionType

Warning 401...600 optional optional VisionWarningConditionType

Information 201...400 no no VisionInformationEventType

Diagnostic Information 1…200 no no VisionDiagnosticInfoEventType

11.4 EventTypes for Informational Elements

11.4.1 VisionEventType

11.4.1.1 Overview

VisionEvents are generated to signal noteworthy events during the operation of the vision system which do
not require interaction.

OPC 40100-1: Control, configuration management, recipe management, result management

 134 Release 1.0

All non-inherited properties are optional and stay optional on the concrete sub-types because these
EventTypes will be used under very different operational circumstances in the vision system; it is therefore not
possible to specify that, e.g. a jobId shall be mandatory, since an event may be triggered during the
preparation of a recipe, when no job is running.

However, the intention is for the server to provide as much information to the client as possible, i.e. fill as
many properties as possible.

The EventType for VisionEvents is formally defined in Table 129.

VisionEventType

InternalConfigurationId

JobId

ResultId

BaseEventType

CausePath

MeasId

PartId

ExternalRecipeId

InternalRecipeId

ProductId

ExternalConfigurationId

Figure 38 – Overview VisionEventType

Release 1.0 135

OPC 40100-1: Control, configuration management, recipe management, result management

Table 129 – VisionEventType Definition

Attribute Value

BrowseName VisionEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseEventType defined in OPC 10000-5

HasSubtype ObjectType VisionDiagnosticInfoEventType Defined in 11.4.2

HasSubtype ObjectType VisionInformationEventType Defined in 11.4.3

HasProperty Variable CausePath String PropertyType Optional

HasProperty Variable MeasId MeasIdDataType PropertyType Optional

HasProperty Variable PartId PartIdDataType PropertyType Optional

HasProperty Variable ExternalRecipeId RecipeIdExternalDataType PropertyType Optional

HasProperty Variable InternalRecipeId RecipeIdInternalDataType PropertyType Optional

HasProperty Variable ProductId ProductIdDataType PropertyType Optional

HasProperty Variable ExternalConfigurationId ConfigurationIdDataType PropertyType Optional

HasProperty Variable InternalConfigurationId ConfigurationIdDataType PropertyType Optional

HasProperty Variable JobId JobIdDataType PropertyType Optional

HasProperty Variable ResultId ResultIdDataType PropertyType Optional

11.4.1.2 Usage of inherited properties

The following properties are inherited from BaseEventType and shall be used in VisionEventType in the
manner described here.

SourceNode

Reference to the source of the Message. This could be a failing method or, in case of an internally triggered
message, the state machine object itself.

SourceName

Name of the Message source.

Severity

Severity of the Information within the boundaries defined by Table 128.

Message

A textual description of the error as a string.

11.4.1.3 Usage of additional properties

The following describes the usage of the properties added by VisionEventType with respect to
BaseEventType.

CausePath

Path information string based on the E10 scheme described in 11.6 or an application specific expanded
derivation of that.

OPC 40100-1: Control, configuration management, recipe management, result management

 136 Release 1.0

MeasId, PartId, ExternalRecipeId, InternalRecipeId, ProductId, ExternalConfigurationId,
InternalConfigurationId, JobId, ResultId

If the information is somehow linked to one of the (vision system) objects referenced by these Ids, these
properties can transport this reference.

11.4.2 VisionDiagnosticInfoEventType

VisionDiagnosticInfoEvents are generated to signal events of the lowest severity class as described in Section
11.3.2.

The EventType for VisionDiagnosticInfoEvents is formally defined in Table 130.

VisionDiagnosticInfoEventType VisionEventType

Figure 39 – Overview VisionDiagnosticInfoEventType

Table 130 – VisionDiagnosticInfoEventType

Attribute Value

BrowseName VisionDiagnosticInfoEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the VisionEventType

11.4.3 VisionInformationEventType

VisionInformationEvents are generated to signal events of low severity class as described in Section 11.3.3.

The EventType for VisionInformationEvents is formally defined in Table 131.

VisionInformationEventType VisionEventType

Figure 40 – Overview VisionInformationEventType

Table 131 – VisionInformationEventType

Attribute Value

BrowseName VisionInformationEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the VisionEventType

11.4.4 VisionConditionType

11.4.4.1 Overview

VisionConditions are generated to signal important events during the operation of the vision system which
require interaction, i.e. conditions.

Release 1.0 137

OPC 40100-1: Control, configuration management, recipe management, result management

All non-inherited properties are optional and stay optional on the concrete sub-types because these
ConditionTypes will be used under very different operational circumstances in the vision system; it is therefore
not possible to specify that, e.g. a jobId shall be mandatory, since an error condition may be triggered during
the preparation of a recipe, when no job is running.

However, the intention is for the server to provide as much information to the client as possible, i.e. fill as
many properties as possible.

The EventType for VisionConditions is formally defined in Table 132.

VisionConditionType

MeasId

PartId

ExternalRecipeId

InternalRecipeId

ProductId

ExternalConfigurationId

InternalConfigurationId

JobId

ResultId

ErrorCode

ErrorString

StopReaction

BlockReaction

AcknowledgableConditionType

CausePath

Figure 41 – Overview VisionConditionType

OPC 40100-1: Control, configuration management, recipe management, result management

 138 Release 1.0

Table 132 – VisionConditionType

Attribute Value

BrowseName VisionConditionType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AcknowledgeableConditionType defined in OPC 10000-9

HasSubtype ObjectType VisionWarningConditionType Defined in 11.4.5

HasSubtype ObjectType VisionErrorConditionType Defined in 11.4.6

HasSubtype ObjectType VisionPersistentErrorConditionType Defined in 11.4.7

HasProperty Variable CausePath String PropertyType Optional

HasProperty Variable MeasId MeasIdDataType PropertyType Optional

HasProperty Variable PartId PartIdDataType PropertyType Optional

HasProperty Variable ExternalRecipeId RecipeIdExternalDataType PropertyType Optional

HasProperty Variable InternalRecipeId RecipeIdInternalDataType PropertyType Optional

HasProperty Variable ProductId ProductIdDataType PropertyType Optional

HasProperty Variable ExternalConfigurationId ConfigurationIdDataType PropertyType Optional

HasProperty Variable InternalConfigurationId ConfigurationIdDataType PropertyType Optional

HasProperty Variable JobId JobIdDataType PropertyType Optional

HasProperty Variable ResultId ResultIdDataType PropertyType Optional

HasProperty Variable ErrorCode UInt64 PropertyType Optional

HasProperty Variable ErrorString String PropertyType Optional

HasProperty Variable StopReaction Boolean PropertyType Mandatory

HasProperty Variable BlockReaction Boolean PropertyType Mandatory

11.4.4.2 Usage of properties in common with VisionEventType

The properties which VisionConditionType has in common with VisionEventType have the same semantics
and usage as described in Sections 11.4.1.2 and 11.4.1.3..

11.4.4.3 Usage of additional properties

The following describes the usage of the properties added by VisionConditionType with respect to
AcknowledgeableConditionType.

ErrorString

A system specific string classifying the error / warning.

ErrorCode

A system specific numeric code classifying the error / warning.

Release 1.0 139

OPC 40100-1: Control, configuration management, recipe management, result management

StopReaction

If the system did stop normal operation because of this error (state machine did transit to error state) this
property shall be set to true.

BlockReaction

If the system did stop normal operation and user interaction is needed because of this error this property shall
be set to true.

11.4.5 VisionWarningConditionType

The VisionWarningConditionType is used to represent conditions in the vision system which the client should
be warned about as described in Section 11.3.4.

The server can use the AckedState and ConfirmedState variables of the AcknowledgeableConditionType to
control whether the vision system requires acknowledgement and confirmation of the condition as described in
OPC 10000-9.

The VisionWarningConditionType is formally defined in Table 133.

VisionWarningConditionType VisionConditionType

Figure 42 – Overview VisionWarningConditionType

Table 133 – VisionWarningConditionType

Attribute Value

BrowseName VisionWarningConditionType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the VisionConditionType

11.4.6 VisionErrorConditionType

The VisionErrorConditionType is used to represent error conditions in the vision system as described in
Section 11.3.5.

The server can use the AckedState and ConfirmedState variables of the AcknowledgeableConditionType to
control whether the vision system requires acknowledgement and confirmation of the condition as described in
OPC 10000-9.

The VisionErrorConditionType is formally defined in Table 134.

VisionErrorConditionType VisionConditionType

Figure 43 – Overview VisionErrorConditionType

OPC 40100-1: Control, configuration management, recipe management, result management

 140 Release 1.0

Table 134 – VisionErrorConditionType

Attribute Value

BrowseName VisionErrorConditionType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the VisionConditionType

11.4.7 VisionPersistentErrorConditionType

The VisionPersistentErrorConditionType is used to represent error conditions in the vision system requiring
outside interaction as described in Section 11.3.6.

The server can use the AckedState and ConfirmedState variables of the AcknowledgeableConditionType to
control whether the vision system requires acknowledgement and confirmation of the condition as described in
OPC 10000-9.

The VisionPersistentErrorConditionType is formally defined in Table 135.

VisionPersistentErrorConditionType VisionConditionType

Figure 44 – Overview VisionPersistentErrorConditionType

Table 135 – VisionPersistentErrorConditionType

Attribute Value

BrowseName VisionPersistentErrorConditionType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the VisionConditionType

11.4.8 VisionSafetyEventType

VisionSafetyEventType is an EventType subtype of BaseEventType, defined in OPC 10000-5. This event is to
be triggered by the server when a safety-related incident occurs in the vision system. The structure is defined
in Figure 45. It is formally defined in Table 136.

Event properties

– VisionSafetyTrigger: flag indicating the current internal safety state

– VisionSafetyInformation: information about the internal safety state provided by the vision system

Release 1.0 141

OPC 40100-1: Control, configuration management, recipe management, result management

VisionSafetyEventType

VisionSafetyTriggered

VisionSafetyInformation

BaseEventType

Figure 45 – Overview VisionSafetyEventType

Table 136 – VisionSafetyEventType Definition

Attribute Value

BrowseName VisionSafetyEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseEventType defined in OPC 10000-5

HasProperty Variable VisionSafetyTriggered Boolean PropertyType Mandatory

HasProperty Variable VisionSafetyInformation String PropertyType Mandatory

11.5 Interaction between Messages, State Machine, and Vision System

There is only a loose connection between the generation of messages and the exposed behavior of the vision
system on the state machine level. The following mandatory behavior is defined:

As the OPC UA interface only offers a view to the underlying vision system each call of the defined methods
may fail. The method may deliver some information on the cause of the fail, but this information is only visible
for the client calling the method. If any other clients are interested in this kind of information there is no way for
them to get it. Therefore we define that if a method call fails the vision system has to generate a message at
least of the warning without acknowledgement type naming the failed method including the calling parameters.

As the definition of the vision system is out of the scope of this document this is also true for the detection of
error states within the vision system. As a consequence of this the generation of messages signaling such
conditions is not associated to a specific state of the state machine.

As a general rule the transition to the error state of the state machine should only be performed if this is
inevitable for the operation. The creation of an error message does not require that the state machine
transitions to the Error state. A problem may be detected in a part of the vision system that is not needed for
the current task at hand. Only if in this situation a method is called that can’t be performed because of this
problem a transition to the Error state should occur.

On the other hand if the state machine does a transition to the Error state it is mandatory that a message of
the error type or higher severity describing the cause is generated or already active.

It is up to the vision system to define if an internal error condition can be resolved immediately or if it has to
wait for external acknowledgement / confirmation before trying to do so. Even if the system is successful in
clearing the condition internally it has to wait for the reception of the acknowledgement of the corresponding
message object if this is of an acknowledgeable type, before the message is cleared.

OPC 40100-1: Control, configuration management, recipe management, result management

 142 Release 1.0

Application Note:
As the reception of an acknowledgement / confirmation can only take place once for each
message object on the interface the vision system after reception has to check if the error
condition is / can be resolved. If it is unable to resolve the error and interaction of the client
/ user side is required for resolving, it has to clear the message and create a new one to
start a new resolving cycle.
Example:
During normal operation a vision system detects that it cannot accept a new job because
the camera lens is dirty. It generates an error message informing the client on this with Ack
and Conf required.
The client acknowledges the message and shows a message box on its console asking
the operator to clean the lens.
The Operator presses the confirmation button without reading the message.
The client sends the confirmation for the message.
After reception of confirmation the vision System takes a test image and detects that the
lens is still dirty. As there is still the need for user interaction the vision system has to
decide what to do.
If it does nothing the client still sees the confirmed error message and therefore knows that
it was not resolved. But as there are no additional confirmation options for the client the
vision system will never get informed that if it may continue.
Therefore the vision system clears the confirmed message and creates a new one to start
a new cleaning request with a hopefully better result.

The generation of large amounts of diagnostic messages may have impact on the performance of the vision
system. As an OPC UA client can decide on its own if he reads such messages this is only a problem on the
server side. It is common practice that the generation of such debugging / diagnostic messages can be
suppressed within the vision System software. The server shall expose the information on suppressing of
such messages in the following way. An integer variable DiagnosticLevel with a valid range between 1 … 200
is published showing that all diagnostic messages with a severity level lower or equal to this value are
suppressed. Optionally this variable may be defined to be client writable to set a desired diagnostic level
externally. For values lower than 150 it is not mandatory that the vision System is capable of upholding the
performance expected for the application. The initial value of this variable on system start should be 200.

Application Note:
Example of a failing method call
Let’s assume the vision system is in the Ready state with an activated recipe in its
memory. A client can call the PrepareRecipe method to load a second recipe but with a
wrong recipe name that is not present in the vision system.
The method call will fail with an error message informing the calling client that this is a
unknown recipe.
The vision system issues a warning message with a severity of e.g. 503 containing the
information that a call of the PrepareRecipe method for that Recipe name failed.
The vision system does not transit to the Error state as there is no need to do so, since
normal operation is not compromised at the moment. The vision system is able to accept
jobs using the already activated recipe.
If the client now calls the StartSingleJob method with the unknown recipe the vision
system could consider this an error and transition to the Error state while issuing a
message of the error class. This decision is application specific. It is also valid that it only
lets the method call fail and issues a warning message without transition to the Error state.
An external recipe management system could receive such a warning message and push
the missing recipe to the vision system using the AddRecipe method.

Release 1.0 143

OPC 40100-1: Control, configuration management, recipe management, result management

11.6 Structuring of Vision System State information

11.6.1 Overview

System state information is often used to benchmark the reliability of a system. Therefore on a time scale it is
estimated how long the system was productive, defective or in maintenance. To support this, a system should
be able to publish its current state in a way enabling a client to do such estimation.

This standard follows the scheme of 6 basic system states defined by SEMI E10 standard (SEMI E10:
Specification for Definition and Measurement of Equipment Reliability, Availability, and Maintainability (RAM)
and Utilization). The following diagram shows how the total time of existence of a system is divided into
different categories. From the left to the right the model gets more detailed.

Table 137 – E10 system states

E10

Total Time Operations Time Uptime Manufacturing Time Production PRD

Standby SBY

Engineering ENG

Downtime Scheduled Downtime SDT

Unscheduled Downtime UDT

Nonscheduled Time NST

If the optional SystemState variable exists on the server, the vision system shall continuously map its internal
state to one of the six generic states on the right. This current state shall be published in the SystemState
variable in the interface.

11.6.2 Production (PRD)

The vision system is currently working on a job.

11.6.3 Standby (SBY)

The vision system is ready to accept a command but is currently not executing a job. It could for example be
waiting for a Start command or a user input.

11.6.4 Engineering (ENG)

The vision system is not working and not ready to accept a command because a user is currently working on
the system. This could be for editing a recipe or changing the system configuration.

11.6.5 Scheduled Downtime (SDT)

The vision system is not available for production and this was planned in advance. This could be for cleaning,
maintenance or calibration works.

11.6.6 Unscheduled Downtime (UDT)

The vision system is not available for production due to failure and repair. This covers all kinds of error states
that might occur during operation.

11.6.7 Nonscheduled Time (NST)

The vision system is not working because no production was scheduled. This also covers things like operator
training on the system.

http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=1948&DownloadID=2515
http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=1948&DownloadID=2515
http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=1948&DownloadID=2515

OPC 40100-1: Control, configuration management, recipe management, result management

 144 Release 1.0

Example:

An application specific extension of the base states:

E10 vendor / application specific extension

PRD Acquisition ACQ CAM A

 ACQ CAM B

 Processing
 SBY Waiting for PREPARE
 Waiting for START
 ENG Recipe Editing
 Calibration
 SDT Maintenance
 Cleaning Optics A

 Optics B

UDT Software Related Error
 Hardware Related Error
 NST Powered Off
 Operator Training

If the system is in state “ACQ CAM A” the current path would be
“PRD/Acquisition/ACQ CAM A”

The tree-like E10 scheme may be extended to the right by getting more specific on the current state of action
the system is performing. As in the original E10 scheme, at every time the system has to choose exactly one
state (rightmost field of a branch) it is currently in. To be compatible to clients understanding only the basic
E10 states the system has to give the “/” separated path running along the branch of that tree starting from the
base E10 state to the current state.

The same scheme should be used to structure error states. Every error information carries such path
information to enable generic clients without deeper application knowledge to get a basic understanding of the
possible error cause. The following basic error paths shall be used. As above this model may be expanded to
the right as needed.

Table 138 – Basic error paths

UDT Software Related Error
 Hardware Related Error Computing Unit

 Sensor Unit

 Controller Unit

 Lighting Unit

The system can only be in one specific state (leaf of the tree), although errors can occur in more than one leaf
simultaneously. In this case the system still has to select exactly one system state to be published.

There are two different approaches possible:

1) The system selects the most severe error and publishes its path as the current system state.

2) The system truncates the path to the last element common for all active errors.

Release 1.0 145

OPC 40100-1: Control, configuration management, recipe management, result management

The system may select one approach fitting to the current application.

Example:

A system is in an Error State and there are currently two errors active. The system uses
application specific extended error classes:

 UDT/Hardware Related Error/ Sensor Unit/Camera A/Fan Fail

 UDT/Hardware Related Error/Lighting Unit/LED A/Over Temperature

Possibility 1:
The system decides that an over temperature is the most severe error and publishes
“UDT/Hardware Related Error/Lighting Unit/LED A/Over Temperature“ as its system state.

Possibility 2:
The system publishes the truncated path “UDT/Hardware Related Error” as its current
system state.

OPC 40100-1: Control, configuration management, recipe management, result management

 146 Release 1.0

12 DataTypes for the Vision System

12.1 Handle

This Simple Data Type defines a UInt32 representing a handle to a collection of data managed by the server.

12.2 TrimmedString

This Simple Data Type defines a String with no leading or trailing whitespace, where whitespace means the
Unicode characters defined as whitespace (“WSpace=Y”, “WS”) in the Unicode database.

Where a TrimmedString is specified as input argument to a method and the incoming string contains leading
or trailing whitespace, the server is entitled to react with an error (Bad_TypeMismatch) or – preferably –
silently trim the string internally before processing it.

12.3 TriStateBooleanDataType

This DataType is an enumeration that identifies the filtering of particular properties in requests for lists of
results, recipes etc. Its values are defined in Table 139.

Table 139 – Values of TriStateBooleanDataType

Value Description

FALSE_0 The filtering function shall look for entities where the filtered value is FALSE.

TRUE_1 The filtering function shall look for entities where the filtered value is TRUE.

DONTCARE_2 The filtering function shall not take the value into account.

12.4 ProcessingTimesDataType

This structure contains measured times that were generated during the execution of a recipe. These
measured values provide information about the duration required by the various sub-functions.

Table 140 – Definition of ProcessingTimesDataType

Name Type Description O / M

ProcessingTimesDataType structure

startTime UtcTime Contains the time when the vision system started execution of the recipe. Mandatory

endTime UtcTime Contains the time when the vision system finished (or stopped/aborted)
execution of the recipe.

Mandatory

acquisitionDuration Duration Time spent by the vision system acquiring images Optional

processingDuration Duration Time spent by the vision system processing data Optional

12.5 MeasIdDataType

This structure is used by the client to pass an identification of the measurement to be carried out in a Start
method. It is typically not changed by the server and is included in the meta data for identifying a result.

In its basic version here, the MeasIdDataType contains only a TrimmedString. It has been encapsulated in a
structure for the purpose of easy sub-typing if more sophisticated identification is required.

A basic MeasIdDataType structure is considered empty when the id member has length 0. For sub-types of
MeasIdDataType additional rules may apply., i.e., they shall always be considered empty, when the Id
member has length 0, and may also be considered empty when other structure members fulfill particular
conditions.

Release 1.0 147

OPC 40100-1: Control, configuration management, recipe management, result management

Table 141 – Definition of MeasIdDataType

Name Type Description O / M

MeasIdDataType structure

id TrimmedString Id is an identifier/name for identifying the measurement operation. This
identifier is passed by the client to the vision system so no assumptions can
be made about its uniqueness or other properties.

Mandatory

description LocalizedText Optional short human readable description of the measurement. Optional

12.6 PartIdDataType

This structure defines the identification of a part, i.e. a Unit Under Test. It is formally defined in Table 142.

PartId structures can be passed by the client with a Start method call and should be stored by he server in
results pertaining to that part. Thus they describe the connection between a unit under test and a result, which
was created during the processing of a recipe applied on this unit under test.

In its basic version here, the PartIdDataType contains only a TrimmedString. It has been encapsulated in a
structure for the purpose of easy sub-typing if more sophisticated identification is required, e.g. including a
batch or carrier Id.

A basic PartIdDataType structure is considered empty when the id member has length 0. For sub-types of
PartIdDataType this can be defined differently.

Table 142 – Definition of PartIdDataType

Name Type Description O / M

PartIdDataType structure

id TrimmedString Describes the connection between a unit under test and a result, which was
created during the processing of a recipe applied on this unit under test. Usually
passed by the client with a Start method call and not changed by the server.

Mandatory

description LocalizedText Optional short human readable description of the part. Optional

12.7 JobIdDataType

This structure is used to pass an identification of the measurement to be carried out following a Start method
call. It is typically included in the meta data for identifying a result.

In its basic version here, the JobIdDataType contains only a TrimmedString. It has been encapsulated in a
structure for the purpose of easy sub-typing if more sophisticated identification is required.

A basic JobIdDataType structure is considered empty when the id member has length 0. For sub-types of
JobIdDataType additional rules may apply, i.e. they shall always be considered empty, when the Id member
has length 0, and may also be considered empty when other structure members fulfill particular conditions.

Table 143 – Definition of JobIdDataType

Name Type Description O / M

JobIdDataType structure

id TrimmedString Id is a system-wide unique identifier/name for identifying the job carried out. Mandatory

OPC 40100-1: Control, configuration management, recipe management, result management

 148 Release 1.0

12.8 BinaryIdBaseDataType

This abstract DataType is the base data type for identifying binary data internally and externally. Its subtypes
are used in objects of RecipeType which is defined in Section 7.7., of ConfigurationDataType which is defined
in Section 12.12 and also in results. It is formally defined in Table 144.

The main rationale for introducing a base type and several (identical) subtypes is to facilitate a type-safe
enforcing of the distinction between external and internal Ids in method arguments.

Table 144 – Definition of BinaryIdBaseDataType

Name Type Description O / M

BinaryIdBaseDataType structure

Id TrimmedString Id is a system-wide unique name for identifying the binary data. Mandatory

Version TrimmedString Represents an optional version number of the identified binary data. It is
recommended to be of the format Major.minor.patch.build or a subset thereof,
but the actual format is implementation defined.

Optional

hash ByteString Represents an optional hash of the binary content of the actual data (as it
would be transmitted by the transfer methods).

The hash is supposed to be provided by the environment if existing. The
environment shall use the same hash function on all binary data so that a
difference in the hash indicates a difference in the binary data. It is
recommended to use the SHA-256 algorithm for computing the hash,
however, the actual algorithm is implementation-defined.

Optional

hashAlgorithm String Name of the hash function used. Required if internally and externally
computed hashes are to be compared

Optional

description LocalizedText Optional short human readable description of the configuration Optional

12.9 RecipeIdExternalDataType

This structure is used for the external identification of recipes. It is identical to BinaryIdBaseDataType
described in Section 12.8 except that it is not abstract.

12.10 RecipeIdInternalDataType

This structure is used for the internal identification of recipes. It is identical to BinaryIdBaseDataType
described in Section 12.8 except that it is not abstract.

12.11 RecipeTransferOptions

This structure contains elements to control the transfer of the actual content of a vision system recipe by
TemporaryFileTransfer using the GenerateFileForRead and GenerateFileForWrite methods of the
RecipeTransferType ObjectType defined in Section 7.6. The structure is formally defined in Table 145Table
147.

Table 145 – RecipeTransferOptions structure

Name Type Description O / M

RecipeTransferOptions structure

internalId RecipeIdInternalDataType The InternalId of the recipe to be transferred to or from the
client.

Mandatory

If RecipeTransferOptions are used in connection with AddRecipe method, the InternalId returned by
AddRecipe is to be used for generating the transfer file to have an unambiguous identification.

Release 1.0 149

OPC 40100-1: Control, configuration management, recipe management, result management

12.12 ConfigurationDataType

This structure is used to manage one external configuration. It has no knowledge of the internal structure of an
external configuration. The actual configuration used by the machine vision system is a system-specific
structure, which may be transferred using a TemporaryFileTransfer.

Table 146 – Definition of ConfigurationDataType

Name Type Description O / M

ConfigurationDataType structure

hasTransferableDataOnFile Boolean Indicates that actual content of the configuration
may be transferred through temporary file
transfer method.

Optional

externalId ConfigurationIdDataType Identification of the configuration used by the
environment. This argument must not be empty.

Optional

internalId ConfigurationIdDataType System-wide unique ID for identifying a
configuration. This ID is assigned by the vision
system.

Mandatory

lastModified UtcTime The time and date when this configuration was
last modified.

Mandatory

12.13 ConfigurationIdDataType

This structure is used for the identification of an object of ConfigurationDataType which is defined in Section
12.12. It is identical to BinaryIdBaseDataType described in Section 12.8 except that it is not abstract.

12.14 ConfigurationTransferOptions

This structure contains elements to control the transfer of the actual content of a vision system configuration
by TemporaryFileTransfer using the GenerateFileForRead and GenerateFileForWrite methods of the
ConfigurationTransferType ObjectType defined in Section 7.4. The structure is formally defined in Table 147.

Table 147 – Definition of ConfigurationTransferOptions

Name Type Description O / M

ConfigurationTransferOptions structure

internalId ConfigurationIdDataType The Id of the configuration to be transferred to or from
the client.

Mandatory

12.15 ProductDataType

This structure is used to reference one product known to the vision system. It has no knowledge of the actual
manner of managing a product in the vision system, it merely signals that the vision system has knowledge of
said product.

Table 148 – Definition of ProductDataType

Name Type Description O / M

ProductDataType Structure

externalId ProductIdDataType Identification of the product used by the environment. This
argument must not be empty.

Mandatory

OPC 40100-1: Control, configuration management, recipe management, result management

 150 Release 1.0

12.16 ProductIdDataType

This structure is used for identifying an object of ProductDataType.

In its basic version here, the ProductIdDataType contains only a TrimmedString. It has been encapsulated in a
structure for the purpose of easy sub-typing if more sophisticated identification is required.

A basic ProductIdDataType structure is considered empty when the id member has length 0. For sub-types of
ProductIdDataType additional rules may apply. , i.e., they shall always be considered empty, when the Id
member has length 0, and may also be considered empty when other structure members fulfill particular
conditions.

Table 149 – Definition of ProductIdDataType

Name Type Description O / M

ProductIdDataType structure

id TrimmedString Id is a system-wide unique identifier/name for identifying the product. Mandatory

description LocalizedText Optional short human readable description of the configuration Optional

12.17 ResultDataType

This structure contains properties that were created during the execution of a recipe. The Id is required to
retrieve a result using the method GetResultById, which is defined in Section 7.10.2.1. A result may be a total
or a partial result, which is defined by the value of the property IsPartial. The structure of the ResultContent
which is generated by the vision system is application-specific and not defined at this time.

Note that this DataType contains nested structures, namely the Id types. If these are subtyped, the entire
structure needs to be sub-typed also so that the client can recognize that fact.

Release 1.0 151

OPC 40100-1: Control, configuration management, recipe management, result management

Table 150 – Definition of ResultDataType

Name Type Description O / M

ResultDataType Structure

resultId ResultIdDataType

System-wide unique identifier, which is assigned by the
system. This ID can be used for fetching exactly this result
using the methods detailed in Section 7.10.2 and it is identical
to the ResultId of the ResultReadyEventType defined in
Section8.3.8.4.

Mandatory

hasTransferableDataOnFile Boolean
Indicates that additional data for this result can be retrieved
by temporary file transfer

Optional

isPartial Boolean
Indicates whether the result is the partial result of a total
result.

Mandatory

isSimulated Boolean
Indicates whether the system was in simulation mode when
the result was created.

Optional

resultState ResultStateDataType

ResultState provides information about the current state of a
result and the ResultStateDataType is defined in Section
12.18.

Mandatory

measId MeasIdDataType

This identifier is given by the client when starting asingle or
continuous execution and transmitted to the vision system. It
is used to identify the respective result data generated for this
job. Although the system-wide unique JobId would be
sufficient to identify the jobwhich the result belongs to, this
makes for easier filtering on the part of the client without
keeping track of JobIds.

Optional

partId PartIdDataType

A PartId is given by the client when starting the job; although
the system-wide unique JobId would be sufficient to identify
the job which the result belongs to, this makes for easier
filtering on the part of the client without keeping track of
JobIds.

Optional

externalRecipeId RecipeIdExternalDataType
External Id of the recipe in use which produced the result. The
ExternalID is only managed by the environment.

Optional

internalRecipeId RecipeIdInternalDataType

Internal Id of the recipe in use which produced the result. This
ID is system-wide unique and it is assigned by the vision
system.

Mandatory

productId ProductIdDataType
productId which was used to trigger the job which created the
result.

Optional

externalConfigurationId ConfigurationIdDataType External Id of the configuration in use while the result was
produced.

Optional

internalConfigurationId ConfigurationIdDataType

Internal Id of the configuration in use while the result was
produced. This ID is system-wide unique and it is assigned by
the vision system.

Mandatory

jobId JobIdDataType
The ID of the job, created by the transition from state Ready
to state SingleExecution or to state ContinuousExecution
which produced the result.

Mandatory

creationTime UtcTime CreationTime indicates the time when the result was created. Mandatory

processingTimes ProcessingTimesDataType

Collection of different processing times that were needed to
create the result.

Optional

resultContent BaseDataType[]
Abstract data type to be subtyped from to hold result data
created by the selected recipe.

Optional

12.18 ResultIdDataType

This structure is used to pass an identification of a result generated by an operation of the vision system.

OPC 40100-1: Control, configuration management, recipe management, result management

 152 Release 1.0

In its basic version here, the ResultIdDataType contains only a TrimmedString. It has been encapsulated in a
structure for the purpose of easy sub-typing if more sophisticated identification is required.

A basic ResultIdDataType structure is considered empty when the id member has length 0. For sub-types of
ResultIdDataType additional rules may apply, i.e. they shall always be considered empty, when the Id
member has length 0, and may also be considered empty when other structure members fulfil particular
conditions.

Table 151 – Definition of ResultIdDataType

Name Type Description O / M

ResultIdDataType structure

Id TrimmedString Id is a system-wide unique identifier/name for identifying the generated result. Mandatory

12.19 ResultStateDataType

This subtype of Int32 provides information about the current state of a result. This status can change during
recipe processing.

It is deliberately not an Enumeration, allowing for system-specific extensions.

Table 152 – Definition of ResultStateDataType

Attribute Value

BrowseName ResultStateDataType

IsAbstract False

References
Node
Class BrowseName DataType TypeDefinition

Modelling
Rule

Subtype of the Int32 DataType defined in OPC 10000-5

Table 153 – Values of ResultStateDataType

Allowed Value Description

< 0 Application-specific states

0 Undefined: Initialization value. When returned by access methods of ResultManagementType it indicates an error.

1 Completed: Processing was carried out correctly.

2 Processing: Processing has not been finished yet.

3 Aborted: Processing was stopped at some point before completion.

4 Failed: Processing failed in some way.

12.20 ResultTransferOptions

This structure contains elements to control the transfer of the actual content of a vision system result by
TemporaryFileTransfer using the GenerateFileForRead method of the ResultTransferType ObjectType
defined in Section 7.12. The structure is formally defined in Table 154.

Table 154 – Definition of ResultTransferOptions

Name Type Description O / M

ResultTransferOptions structure

id ResultIdDataType The Id of the result to be transferred to the client. Mandatory

Release 1.0 153

OPC 40100-1: Control, configuration management, recipe management, result management

12.21 SystemStateDataType

This DataType is an enumeration that identifies the pre-defined SEMI E10 states as described in Section 11.6.
Its values are defined in Table 155.

Table 155 – Values of SystemStateDataType

Value Description

PRD_1 Production: The vision system is currently working on a job.

SBY_2 Stand by: The vision system is ready to accept a command but is currently not executing a job. It could for example be
waiting for a Start command or a user input.

ENG_3 Engineering: The vision system is not working and not ready to accept a command because a user is currently working
on the system. This could be for editing a recipe or changing the system configuration.

SDT_4 Scheduled downtime: The vision system is not available for production and this was planned in advance. This could be
for cleaning, maintenance or calibration works.

UDT_5 Unscheduled downtime: The vision system is not available for production due to failure and repair. This covers all
kinds of error states that might occur during operation.

NST_6 Nonscheduled time: The vision system is not working because no production was scheduled. This also covers things
like operator training on the system.

12.22 SystemStateDescriptionDataType

This structure is used to describe the system state as explained in Section 11.6.

Table 156 – Definition of SystemStateDescriptionDataType

Name Type Description O / M

SystemStateDescriptionDataType Structure

state SystemStateDataType Denotes one of the basic SEMI E10 states Mandatory

stateDescription TrimmedString Optional string describing the full state path, starting with
the SEMI E10 state denoted by the state member; the
string format is described in Section 11.6.

Optional

OPC 40100-1: Control, configuration management, recipe management, result management

 154 Release 1.0

13 Profiles and Namespaces

13.1 Namespace Metadata

Table 157 defines the namespace metadata for this specification. The Object is used to provide version
information for the namespace and an indication about static Nodes. Static Nodes are identical for all
Attributes in all Servers, including the Value Attribute. See OPC 10000-5 for more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a component of the
NamespacesObject that is part of the Server Object. The NamespaceMetadataType ObjectType and its
Properties are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file. The
UANodeSet XML schema is defined in OPC 10000-6.

Table 157 – NamespaceMetadata Object for this Specification

Attribute Value

BrowseName http://opcfoundation.org/UA/MachineVision

References BrowseName DataType Value

HasProperty NamespaceUri String http://opcfoundation.org/UA/MachineVision

HasProperty NamespaceVersion String 1.0

HasProperty NamespacePublicationDate DateTime 2018-06-18

HasProperty IsNamespaceSubset Boolean False

HasProperty StaticNodeIdTypes IdType[]

HasProperty StaticNumericNodeIdRange NumericRange[]

HasProperty StaticStringNodeIdPattern String

13.2 Conformance Units

13.2.1 Overview

This section defines Conformance Units that are specific to the OPC UA Machine Vision Information model.
These Conformance Units are separated into Conformance Units that are Server specific and those that are
Client specific.

13.2.2 Server

Table 158 defines the server based Conformance Units.

Table 158 – Definition of Server Conformance Units

Category Title Description

Server Vision System – Basic Vision System The VisionSystemType with all mandatory sub nodes is
implemented by the server.

Server Vision System – Basic Result Management The Result Management node with all mandatory sub nodes is
implemented by the server.

Server Vision System – Basic Configuration Management The ConfigurationManagement node with all mandatory sub
nodes is implemented by the server.

Server Vision System – Basic Recipe Management The RecipeManagement node with all mandatory sub nodes is
implemented by the server.

Server Vision System – Safety State Management The SafetyStateManagement node is implemented and
VisionSafetyEvents are generated by the server.

Server Vision System – System State Information The SystemState node is implemented and used by the server to
publish its current state.

http://opcfoundation.org/UA/MachineVision

Release 1.0 155

OPC 40100-1: Control, configuration management, recipe management, result management

Server Vision System – Diagnostic Events The DiagnosticLevel node is implemented, used by the server to
publish the current diagnostic level, and can be written by the
Client to set the current diagnostic level.
VisionDiagnosticInfoEvents are generated by the server.

Server Vision System – Information Events VisionInformationEvents are generated by the server.

Server Vision System – Error Conditions VisionWarningConditions, VisionErrorConditions and
VisionPersistentErrorConditions are generated by the server.

Server Vision State Machine – Automatic Mode The AutomaticModeStateMachine node with all mandatory sub
nodes and the SelectModeAutomatic method are implemented
by the server.

Server Vision State Machine – Easy Confirmation The ConfirmAll method is implemented by the server.

Server Vision State Machine – Error Events ErrorEvents and ErrorResolvedEvents are generated by the
server.

Server Vision State Machine – StepModel Preoperational The PreoperationalStepModel state machine is implemented by
the server.

Server Vision State Machine – StepModel Halted The HaltedStepModel state machine is implemented by the
server.

Server Vision State Machine – StepModel Error The ErrorStepModel state machine is implemented by the
server.

Server Automatic Mode – Simulation The SimulationMode method is implemented by the server. The
isSimulated sub nodes of ResultReadyEvents, ResultDataType
and ResultType are implemented and reflect the state of the
simulation mode during creation of the job generaring this result;
likewise, the isSimulated output arguments of methods
GetResultComponentsById and GetResultById reflect this state.

Server Automatic Mode – StepModel Initialized The InitializedStepModel state machine is implemented by the
server.

Server Automatic Mode – StepModel Ready The ReadyStepModel state machine is implemented by the
server.

Server Automatic Mode – StepModel SingleExecution The SingleExecutionStepModel state machine is implemented by
the server.

Server Automatic Mode – StepModel ContinuousExecution The ContinuousExecutionStepModel state machine is
implemented by the server.

Server Meta Data Handling – Measurement ID The measId argument of methods StartSingleJob and
StartContinuous is associated to the jobs started by calling these
methods. Results arising from these jobs include the given
MeasId. Therefore the server implements the MeasId sub node
of all occurrences of ResultDataType and ResultType as well as
within ResultReadyEvents, and returns it in the output argument
of methods GetResultComponentsById and GetResultById as
well as observing it in the input argument of method
GetResultListFiltered. The server may additionally implement the
MeasId sub node of VisionDiagnosticInfoEvents,
VisionInformationEvents, VisionWarningConditions,
VisionErrorConditions and VisionPersistentErrorConditions.

Server Meta Data Handling – Part ID The partId argument of methods StartSingleJob and
StartContinuous is associated to the jobs started by calling these
methods. Results arising from these jobs include the PartId.
Therefore the server implements the PartId sub node of all
occurrences of the ResultDataType and ResultType as well as
within ResultReadyEvents, and returns it in the output argument
of methods GetResultComponentsById and GetResultById as
well as observing it in the input argument of method
GetResultListFiltered method. The server may additionally
implement the PartId sub node of VisionDiagnosticInfoEvents,
VisionInformationEvents, VisionWarningConditions,
VisionErrorConditions and VisionPersistentErrorConditions

OPC 40100-1: Control, configuration management, recipe management, result management

 156 Release 1.0

Server Meta Data Handling – Recipe ID External The externalRecipeId argument of methods StartSingleJob and
StartContinuous is associated to the jobs started by calling these
methods. All results arising from these jobs include the
ExternalRecipeId. Therefore the server implements the
ExternalRecipeId sub node of all occurrences of the
ResultDataType and ResultType as well as within
ResultReadyEvents, and returns it in the output argument of
methods GetResultComponentsById and GetResultById as well
as observing it in the input argument of method
GetResultListFiltered. The server may additionally implement the
ExternalRecipeId sub node of VisionDiagnosticInfoEvents,
VisionInformationEvents, VisionWarningConditions,
VisionErrorConditions and VisionPersistentErrorConditions

Server Meta Data Handling – Recipe Versioning To enforce the uniqueness of recipe IDs, the server implements
the calculation and comparison of hash values of the binary
object representing a recipe. All occurrences of the
RecipeIdExternalDataType and RecipeIdInternalDataType
implement the sub nodes version, hash and hashAlgorithm.

Server Meta Data Handling – Product ID The productId argument of methods StartSingleJob and
StartContinuous is associated to the jobs started by calling these
methods. All results arising from these jobs include the
ProductId. Therefore the server implements the ProductId sub
node of all occurrences of the ResultDataType, ResultType and
RecipeType as well as within ResultReadyEvents, and returns it
in the output argument of methods GetResultComponentsById
and GetResultById as well as observing it in the intput argument
of method GetResultListFiltered. The server may additionally
implement the ProductId sub node of
VisionDiagnosticInfoEvents, VisionInformationEvents,
VisionWarningConditions, VisionErrorConditions and
VisionPersistentErrorConditions

Server Meta Data Handling – Configuration ID External The externalConfigurationId argument of methods
StartSingleJob and StartContinuous is associated to the jobs
started by calling these methods. All results arising from these
jobs include the ExternalConfigurationId. Therefore the server
implements the ExternalConfigurationId sub node of all
occurrences of the ResultDataType and ResultType as well as
within ResultReadyEvents, and returns it in the output argument
of methods GetResultComponentsById and GetResultById as
well as observing it in the intput argument of method
GetResultListFiltered. The server may additionally implement the
ExternalConfigurationId sub node of VisionDiagnosticInfoEvents,
VisionInformationEvents, VisionWarningConditions,
VisionErrorConditions and VisionPersistentErrorConditions

Server Meta Data Handling – Configuration Versioning To enforce the uniqueness of configuration IDs, the server
implements the calculation and comparison of hash values of the
binary object representing a configuration. All occurrences of the
ConfigurationIdDataType implement the sub nodes version, hash
and hashAlgorithm.

Server Meta Data Handling – Processing Times The server implements the logging of the start and end times of
a job and associates these with the results of this job. Therefore
the server implements the processingTimes sub node of all
occurrences of the ResultDataType and ResultType as well as
within ResultReadyEvents, and returns it in the output argument
of methods GetResultComponentsById and GetResultById().

Server Meta Data Handling – Processing Times Extended The server implements the logging of the start and end times of
a job as well as the determination of the duration of acquisition
and processing and associates these with the results of this job.
Therefore the server implements the processingTimes sub node
of all occurrences of the ResultDataType and ResultType as well
as within ResultReadyEvents, and returns it in the output
argument of methods GetResultComponentsById and
GetResultById.

Server Result Handling – Event Based Content The server provides full or partial result content as sub node of
ResultReadyEvents and provides a means for the client to
interpret the application-specific structure of this node.

Release 1.0 157

OPC 40100-1: Control, configuration management, recipe management, result management

Server Result Handling – Method Based Content The server provides full or partial result content in the output
argument of methods GetResultComponentsById GetResultById
and provides a means for the client to interpret the application-
specific structure of this argument.

Server Result Handling – Result File The server implements the ResultTransfer node to offer
additional result content as a downloadable file. It implements
the HasTransferableDataOnFile node within all occurrences of
ResultDataType and ResultType and provides information about
the existence of such content in these nodes and in the output
argument of methods GetResultComponentsById and

GetResultById.

Server Result Handling – Result Folder The server provides meta data and full or partial result content
by implementing the Results folder node.

Server Configuration Handling – Configuration File The server allows upload and download of configuration objects.
Therefore it implements the ConfigurationTransfer node as well
as the AddConfiguration and RemoveConfiguration methods.
Additionally it signals the availability of a local configuration
object by using the hasTransferableDataOnFile node within all
occurrences of the ConfigurationDataType.

Server Configuration Handling – Configuration Folder The server provides meta data on local configuration objects by
implementing the Configurations folder node.

Server Recipe Handling – Recipe File The server allows upload and download of recipe objects.
Therefore it implements the RecipeTransfer node as well as the
AddRecipe and RemoveRecipe methods. Additionally it signals
the availability of a local recipe object by using the Handle node
within all occurrences of the RecipeType.

Server Recipe Handling – Recipe Folder The server provides meta data on local recipe objects by
implementing the Recipes folder node. Additionally it returns the
node id of the recipe object created in the folder by an
AddRecipe method call.

Server Recipe Handling – Product Folder The server provides meta data on local product objects by
implementing the Products folder node. Additionally it returns the
node id of the product object created in the folder by an
AddRecipe method call.

13.2.3 Client

Table x defines the Client based Conformance Units.

Table 159 – Definition of Client Conformance Units

Category Title Description

Client Vision System – System State Information Client The Client is capable of monitoring the SystemState node if
existing in the server including optional items.

Client Vision System – Diagnostic Events Client The Client is capable of reading and writing the DiagnosticLevel
node if existing in the server and to monitor
VisionDiagnosticInfoEvents generated by the server, including all
possibly existing data elements of the events.

Client Vision System – Information Events Client The Client is capable of monitoring VisionInformationEvents
generated by the server, including all possibly existing data
elements of the events.

Client Vision System – Error Conditions Client The Client is capable of monitoring, acknowledging and
confirming VisionWarningConditions, VisionErrorConditions and
VisionPersistentErrorConditions generated by the server,
including all possibly existing data elements of the conditions.

Client Vision State Machine – State Machine Monitoring The Client is capable of monitoring state and transitions of the
mandatory VisionStateMachine.

Client Vision State Machine – State Machine Events
Monitoring

The Client is capable of monitoring the events generated by the
mandatory VisionStateMachine.

Client Vision State Machine – State Machine Control The Client is capable of controlling the mandatory
VisionStateMachine by calling its methods.

OPC 40100-1: Control, configuration management, recipe management, result management

 158 Release 1.0

Category Title Description

Client Vision State Machine – StepModel Monitoring The Client is capable of detecting the existence of StepModel
state machines inside any state of any state machine in the
server and monitor their states and transitions.

Client Vision State Machine – StepModel Events Monitoring The Client is capable of monitoring events generated by an
active StepModel state machine in the server.

Client Vision State Machine – StepModel Control The Client is capable of controlling any StepModel state machine
existing in the server by calling its Sync method.

Client Vision Automatic Mode – Automatic Mode Selection The Client is capable of calling the SelectAutomaticMode
method and monitor the success of entering the
VisionAutomaticModeStateMachine.

Client Vision Automatic Mode – Safety Information Client The Client is capable of monitoring VisionSafetyEvents and the
SafetyStateManagement node and is capable of reporting safety
information by using the ReportSafetyState method.

Client Vision Automatic Mode – Easy Confirmation Client The Client can call the ConfirmAll method if implemented by the
server.

Client Vision Automatic Mode – Simulation Mode Control The Client is capable of calling the SimulationMode method. If
the client processes vision system results, it takes appropriate
action based on the value of the isSimulated flag included with
the results.

Client Vision Automatic Mode– Automatic Mode Monitoring The Client is capable of monitoring state and transitions of the
AutomaticModeStateMachine

Client Vision Automatic Mode – Automatic Mode Events
Monitoring

The Client is capable of monitoring the events generated by the
AutomaticModeStateMachine.

Client Vision Automatic Mode – Automatic Mode Control The Client is capable of controlling the
AutomaticModeStateMachine by calling its methods.

Client Meta Data Handling – Client Job ID The Client is capable of reading a jobId from methods providing
one and to pass it to methods accepting one, provided the client
implements the call of this method at all (as stated by other
Conformance Units). The client is also capable of processing
jobId information contained in vision system results.

Client Meta Data Handling – Client Measurement ID The Client is capable of providing a measId to all methods
accepting one, provided the client implements the call of this
method at all (as stated by other Conformance Units). The client
is also capable of processing measId information contained in
vision system results and events and returned by methods.

Client Meta Data Handling – Client Part ID The Client is capable of providing a partId to all methods
accepting one, provided the client implements the call of this
method at all (as stated by other Conformance Units). The client
is also capable of processing partId information contained in
vision system results and events and returned by methods.

Client Meta Data Handling – Result IsSimulated The client is capable of monitoring if the isSimulated flag
included within ResultReadyEvents.

Client Meta Data Handling – Client Recipe ID The Client is capable of providing externalRecipeId or
internalRecipeId arguments to methods requiring one (provided
the client implements the call to that method at all, as stated by
other Conformance Units) and of processing externalRecipeId
and internalRecipeId information contained in vision system
results and events and returned by methods.

Client Meta Data Handling – Basic Client Recipe Versioning The Client is capable of comparing version and hash information
contained in externalRecipeId and internalRecipeId structures.

Client Meta Data Handling – Full Client Recipe Versioning The Client is capable of computing hash information on recipes
based on the hashAlgorithm information optionally contained in
externalRecipeId and internalRecipeId structures, provide the
server with such information and process such information when
returned from the server.

Client Meta Data Handling – Client Product ID The Client is capable of providing a productId to all methods
accepting one, provided the client implements the call of this
method at all (as stated by other Conformance Units). The client
is also capable of processing productId information contained in
vision system results and events and returned by methods.

Release 1.0 159

OPC 40100-1: Control, configuration management, recipe management, result management

Category Title Description

Client Meta Data Handling – Basic Client Configuration
Versioning

The Client is capable of providing externalConfigurationId or
internalConfigurationId arguments to methods requiring one
(provided the client implements the call to that method at all, as
stated by other Conformance Units) and of processing
externalConfigurationId and internalConfigurationId information
contained in vision system results and events and returned by
methods.

Client Meta Data Handling –Full Client Configuration
Versioning

The Client is capable of comparing version information contained
in externalConfigurationId and internalConfigurationId structures.

Client Meta Data Handling – Client Processing Times The Client is capable of processing basic ProcessingTimes
information contained in vision systems results and events and
returned by methods (provided the client implements calls to
these methods at all, as stated by other Conformance Units).

Client Meta Data Handling – Client Processing Times
Extended

The Client is capable of processing extended ProcessingTimes
information contained in vision systems results and events and
returned by methods (provided the client implements calls to
these methods at all, as stated by other Conformance Units).

Client Result Handling – Client Event Based Content Basic The Client is capable of monitoring ResultReady events
generated by the server and extracting all provided meta data
from the event.

Client Result Handling – Client Event Based Content
Extended

The Client is capable of monitoring ResultReady events
generated by the server and extracting all provided meta data
from the event, as well as extracting application-specific result
content.

Client Result Handling – Client Method Based Content Basic The Client is capable of calling method GetResultListFiltered,
GetResultById, GetResultComponentsById,
ReleaseResultHandle. The client is further capable of processing
the meta data for the returned results.

Client Result Handling – Client Method Based Content
Extended

The Client is capable of calling method GetResultListFiltered,
GetResultById, GetResultComponentsById,
ReleaseResultHandle. The client is further capable of processing
the meta data for the returned results as well as extracting
application-specific result content.

Client Result Handling – Client Result File The client is capable of using the ResultTransfer methods to
obtain opaque result content based on resultId and
hasTransferableDataOnFile information obtained from
ResultReady events or method calls.

Client Result Handling – Client Result Folder The client is capable of obtaining result meta data from the
Results folder node, if implemented by the server.

Client Configuration Handling – Client Configuration Methods The client is capable of calling the methods of the
ConfigurationManagementType node to manage configuration
information on the server.

Client Configuration Handling – Client Configuration File The client is capable of using the ConfigurationTransfer methods
to upload and download opaque configuration content based on
configurationId and hasTransferableDataOnFile information
obtained from events or method calls.

Client Configuration Handling – Client Configuration Folder The client is capable of obtaining configuration meta data from
the Configurations folder node if implemented by the server.

Client Recipe Handling – Client Recipe Methods The client is capable of calling the methods of the
RecipeManagementType node to manage recipe and product
information on the server.

Client Recipe Handling – Client Recipe File The client is capable of using the RecipeTransfer methods to
upload and download opaque recipe content based on recipeId
and hasTransferableDataOnFile information obtained from
events or method calls.

Client Recipe Handling – Client Recipe Folder The client is capable of obtaining recipe meta data from the
Recipes folder node if implemented by the server.

Client Recipe Handling – Client Product Folder The client is capable of obtaining product meta data from the
Products folder node if implemented by the server.

OPC 40100-1: Control, configuration management, recipe management, result management

 160 Release 1.0

13.3 Facets and Profiles

13.3.1 Overview

Profiles and facets are named groupings of Conformance Units as defined in OPC 10000-7. This section
describes the various facets and profiles on the server and the client side that are provided as part of the OPC
UA Machine Vision companion specification information model.

13.3.2 Server

13.3.2.1 Overview

Table 160 – Server Facets

Profile Related Category URI

Release 1.0 161

OPC 40100-1: Control, configuration management, recipe management, result management

Basic Vision System Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/BasicVisionSystemServerFacet

Inline Vision System Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/InlineVisionSystemServerFacet

Automatic Mode Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/AutomaticModeServerFacet

Processing Times Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/ProcessingTimesMetaDataHandlingServerFacet

File Transfer Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/FileTransferServerFacet

Basic Result Handling Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/BasicResultHandlingServerFacet

Inline Result Handling Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/InlineResultHandlingServerFacet

Full Result Handling Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/FullResultHandlingServerFacet

Standard Configuration Handling Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/StandardConfigurationHandlingServerFacet

Full Configuration Handling Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/FullConfigurationHandlingServerFacet

Standard Recipe Handling Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/StandardRecipeHandlingServerFacet

Full Recipe Handling Server Facet Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/FullRecipeHandlingServerFacet

Basic Vision System Server Profile Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/BasicVisionSystemServerProfile

Basic Vision System Server Profile without
OPC UA Security

Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/BasicVisionSystemServerProfileWithoutOPCUA
Security

Simple Inline Vision System Server Profile Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/SimpleInlineVisionSystemServerProfile

Simple Inline Vision System with File Transfer
Server Profile

Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/SimpleInlineVisionSystemWithFileTransferServe
rProfile

Simple Inline Vision System with File
Revisioning Server Profile

Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/SimpleInlineVisionSystemWithFileRevisioningSe
rverProfile

Inline Vision System with File Transfer Server
Profile

Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/InlineVisionSystemWithFileTransferServerProfile

Inline Vision System with File Revisioning
Server Profile

Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/InlineVisionSystemWithFileRevisioningServerPr
ofile

Full Vision System Server Profile Machine Vision CS
Server

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/FullVisionSystemServerProfile

13.3.2.2 Facets

13.3.2.2.1 Basic Vision System Server Facet

This facet defines the elements for a very basic machine vision system. It shall implement the mandatory
nodes and also some fundamental types and functionality concerning results, configurations and recipes

Table 161 – Definition of Basic Vision System Server Facet

Group Conformance Unit / Profile Title M / O

http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/BasicVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/BasicVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/BasicVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/BasicVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystemWithFileTransfer
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystemWithFileTransfer
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystemWithFileRevisioning
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystemWithFileRevisioning
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/InlineVisionSystemWithFileTransfer
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/InlineVisionSystemWithFileTransfer
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/InlineVisionSystemWithFileRevisioning
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/InlineVisionSystemWithFileRevisioning
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/FullVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/FullVisionSystem

OPC 40100-1: Control, configuration management, recipe management, result management

 162 Release 1.0

Vision System Basic Vision System Mandatory

Vision System Basic Result Management Mandatory

Vision System Basic Configuration Management Mandatory

Vision System Basic Recipe Management Mandatory

13.3.2.2.2 Inline Vision System Server Facet

An “inline” machine vision system, as defined in Section 3.1, is used in the manner of a 100% inspection
system within a production line (which does not necessarily mean that it is a quality inspection system at all).

This type of use typically takes place under the guidance and supervision of a control system which requires
information about the current operating state of the vision system, error conditions and other diagnostic
information, and may want to inform the vision system about safety-related events.

Table 162 – Definition of Inline Vision System Server Facet

Group Conformance Unit / Profile Title M / O

Vision System Safety State Management Optional

Vision System System State Information Mandatory

Vision System Diagnostic Events Mandatory

Vision System Information Events Mandatory

Vision System Error Conditions Mandatory

13.3.2.2.3 Automatic Mode Server Facet

This facet gives a superior control system more detailed control over the behavior of the vision system. This is
related to the notion of an inline machine vision system which will typically operate in automatic mode.

Table 163 – Definition of Automatic Mode Server Facet

Group Conformance Unit / Profile Title M / O

Vision State Machine Automatic Mode Mandatory

Vision State Machine Easy Confirmation Optional

Vision State Machine Error Events Mandatory

Vision State Machine StepModel Preoperational Optional

Vision State Machine StepModel Halted Optional

Vision State Machine StepModel Error Optional

Automatic Mode Simulation Mandatory

Automatic Mode StepModel Initialized Optional

Automatic Mode StepModel Ready Optional

Automatic Mode StepModel SingleExecution Optional

Automatic Mode StepModel ContinuousExecution Optional

13.3.2.2.4 Processing Times Server Facet

This facet contains information about the basic start and end time of jobs as well as information about internal
timing of jobs.

Table 164 – Definition of Processing Times Server Facet

Group Conformance Unit / Profile Title M / O

Release 1.0 163

OPC 40100-1: Control, configuration management, recipe management, result management

Meta Data Handling Processing Times Mandatory

Meta Data Handling Processing Times Extended Mandatory

13.3.2.2.5 File Transfer Server Facet

This facet combines the various TemporaryFileTransfer definitions for the transfer of black-box data to and
from the vision system.

Table 165 – Definition of File Transfer Server Facet

Group Conformance Unit / Profile Title M / O

Result Handling Result File Mandatory

Configuration Handling Configuration File Mandatory

Recipe Handling Recipe File Mandatory

13.3.2.2.6 Basic Result Handling Server Facet

This facet contains the basic definitions for the handling of result content within the ResultDataType (the basic
definitions for the identification of results are already contained in the Basic Vision System Facet in Section
13.3.2.2.1).

Table 166 – Definition of Basic Result Handling Server Facet

Group Conformance Unit / Profile Title M / O

Result Handling Event Based Content Mandatory

Result Handling Method Based Content Optional

13.3.2.2.7 Inline Result Handling Server Facet

This facet contains result handling functionality which will typically be expected from an inline vision system
(see Section 13.3.2.2.2). Since such a system running within an automated production line will usually handle
series of individual, often identifiable parts, and may need to buffer results for later collection, the conformance
units Part ID and Result File are part of this facet.

Table 167 – Definition of Inline Result Handling Server Facet

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Facet Basic Result Handling Facet Mandatory

Meta Data Handling Measurement ID Mandatory

Meta Data Handling Part ID Mandatory

Result Handling Method Based Content Mandatory

Result Handling Result File Mandatory

13.3.2.2.8 Full Result Handling Server Facet

This facet adds the capability of exposing individual results in the address space inside the Results folder to
the Inline Result Handling Facet (see Section 13.3.2.2.7).

Table 168 – Definition of Full Result Handling Server Facet

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Facet Inline Result Handling Facet Mandatory

Result Handling Result Folder Mandatory

OPC 40100-1: Control, configuration management, recipe management, result management

 164 Release 1.0

13.3.2.2.9 Standard Configuration Handling Server Facet

This facet combines the handling of configuration identification with the transfer of black-box configuration
content by TemporaryFileTransfer objects.

Table 169 – Definition of Standard Configuration Handling Server Facet

Group Conformance Unit / Profile Title M / O

Meta Data Handling Configuration ID External Mandatory

Configuration Handling Configuration File Mandatory

13.3.2.2.10 Full Configuration Handling Server Facet

This facet adds the capability of exposing individual configurations in the address space inside the
Configurations folder to the Standard Configuration Handling Facet (see Section 13.3.2.2.9).

Table 170 – Definition of Full Configuration Handling Server Facet

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Facet Standard Configuration Handling Facet Mandatory

Meta Data Handling Configuration Versioning Mandatory

Configuration Handling Configuration Folder Mandatory

13.3.2.2.11 Standard Recipe Handling Server Facet

This facet combines the handling of recipe and product identification with the transfer of black-box recipe
content by TemporaryFileTransfer objects.

Table 171 – Definition of Standard Recipe Handling Server Facet

Group Conformance Unit / Profile Title M / O

Meta Data Handling Recipe ID External Mandatory

Meta Data Handling Product ID Mandatory

Recipe Handling Recipe File Mandatory

13.3.2.2.12 Full Recipe Handling Server Facet

This facet adds the capability of exposing individual recipes and products in the address space inside the
Recipes and Products folders to the Standard Recipe Handling Facet (see Section13.3.2.2.1113.3.2.2.11).

Table 172 – Definition of Full Recipe Handling Server Facet

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Facet Standard Recipe Handling Facet

Meta Data Handling Recipe Versioning Mandatory

Recipe Handling Recipe Folder Mandatory

Recipe Handling Product Folder Mandatory

13.3.2.3 Profiles

13.3.2.3.1 Basic Vision System Server Profile

This Profile is a FullFeatured Profile intended for basic machine vision systems capable of limited handling of
recipe and configuration information, provision of result information and content and executing the standard
automatic mode as defined in Section 8.3.

It is built upon the Embedded 2017 UA Server Profile which provides Security conformance units.

Release 1.0 165

OPC 40100-1: Control, configuration management, recipe management, result management

Table 173 – Definition of Basic Vision System Server Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Basic Vision System Server Facet Mandatory

Machine Vision CS Server Basic Result Handling Server Facet Mandatory

Vision System Diagnostic Events Optional

Vision System Information Events Optional

Vision State Machine Automatic Mode Mandatory

OPC UA Embedded 2017 UA Server Profile Mandatory

13.3.2.3.2 Basic Vision System Server Profile without OPC UA Security

This profile is intended as fallback for very limited systems not capable of implementing OPC UA security
functionality as required by the Embedded 2017 UA Server Profile used in all other profiles in this
specification. We strongly recommend implementing OPC UA security whenever possible.

Table 174 – Definition of Basic Vision System Server Profile without OPC UA Security

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Basic Vision System Server Facet Mandatory

Machine Vision CS Server Basic Result Handling Server Facet Mandatory

Vision System Diagnostic Events Optional

Vision System Information Events Optional

Vision State Machine Automatic Mode Mandatory

OPC UA Micro Embedded Device 2017 Server Profile Mandatory

13.3.2.3.3 Simple Inline Vision System Server Profile

In accordance with the notion of an “inline” machine vision system, used, as defined in Section 3.1 and
Section 13.3.2.2.2, in the manner of a 100% inspection system within a production line, this is a FullFeatured
Profile, providing the typical functionality required for a simple version of such a system: full automatic mode,
diagnostic info required by a control system, basic result handling. It lacks the handling of client-supplied IDs
included in the (not-simple) Inline Result Handling Facet in Section 13.3.2.2.7, leaving the part tracing to the
superior control system.

Table 175 – Definition of Simple Inline Vision System Server Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Basic Vision System Server Facet Mandatory

Machine Vision CS Server Inline Vision System Server Facet Mandatory

Machine Vision CS Server Automatic Mode Server Facet Mandatory

Machine Vision CS Server Basic Result Handling Server Facet Mandatory

Meta Data Handling Processing Times Mandatory

OPC UA Embedded 2017 UA Server Profile Mandatory

13.3.2.3.4 Simple Inline Vision System with File Transfer Profile

This FullFeatured Profile complements the Simple Inline Vision System with the handling of recipe and
configuration identification and the black-box transfer of contents by TemporaryFileTransfer objects.

OPC 40100-1: Control, configuration management, recipe management, result management

 166 Release 1.0

Table 176 – Definition of Simple Inline Vision System with File Transfer Server Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Simple Inline Vision System Server Profile Mandatory

Machine Vision CS Server Standard Recipe Handling Server Facet Mandatory

Machine Vision CS Server Standard Configuration Handling Server Facet Mandatory

Machine Vision CS Server File Transfer Facet Mandatory

Meta Data Handling Processing Times Mandatory

13.3.2.3.5 Simple Inline Vision System with File Revisioning Server Profile

This FullFeatured Profile complements the Simple Inline Vision System with File Transfer by the capability of
managing recipe and configuration versions.

Table 177 – Definition of Simple Inline Vision System with File Revisioning Server Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Simple Inline Vision System with File Transfer Server Profile Mandatory

Meta Data Handling Recipe Versioning Mandatory

Meta Data Handling Configuration Versioning Mandatory

13.3.2.3.6 Inline Vision System with File Transfer Server Profile

This FullFeatured Profile complements the Simple Inline Vision System with File Transfer by the complete
ProcessingTimes information and the additional capability of handling result content and client-supplied IDs
defined in the Inline Result Handling Facet in Section 13.3.2.2.7, and is thus suitable for sophisticated vision
systems in automated production handling part traceability information.

Table 178 – Definition of Inline Vision System with File Transfer Server Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Simple Inline Vision System with File Transfer Server Profile Mandatory

Machine Vision CS Server Processing Times Server Facet Mandatory

Machine Vision CS Server Inline Result Handling Server Facet Mandatory

13.3.2.3.7 Inline Vision System with File Revisioning Server Profile

This FullFeatured Profile complements complements the Inline Vision System with File Transfer by the
capability of managing recipe and configuration versions and is thus suitable for sophisticated vision systems
in automated production handling a multitude of recipes and configurations changing over time.

Table 179 – Definition of Inline Vision System with File Revisioning Server Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Inline Vision System with File Transfer Server Profile Mandatory

Meta Data Handling Recipe Versioning Mandatory

Meta Data Handling Recipe Versioning

13.3.2.3.8 Full Vision System Server Profile

This FullFeatured Profile comprises the complete functionality of this specification and is thus suitable for the
most complex vision systems.

Release 1.0 167

OPC 40100-1: Control, configuration management, recipe management, result management

Table 180 – Definition of Full Vision System Server Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Server Inline Vision System with File Revisioning Server Profile Mandatory

Machine Vision CS Server Full Result Handling Server Facet Mandatory

Machine Vision CS Server Full Configuration Handling Server Facet Mandatory

Machine Vision CS Server Full Recipe Handling Server Facet Mandatory

13.3.3 Client

13.3.3.1 Overview

Table 181 – Definition of Client Facets

Profile Related Category URI

Basic Control Client Facet Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/BasicControlClientFacet

Full Control Client Facet Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/FullControlClientFacet

Basic Result Content Client
Facet

Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/BasicResultContentClientFacet

Simple Result Content Client
Facet

Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/SimpleResultContentClientFacet

Full Result Content Client Facet Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/FullResultContentClientFacet

Result Meta Data Client Facet Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/ResultMetaDataClientFacet

Configuration Handling Client
Facet

Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/ConfigurationHandlingClientFacet

Recipe Handling Client Facet Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/RecipeHandlingClientFacet

Vision State Monitoring Client
Facet

Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/VisionStateMonitoringClientFacet

Production Quality Monitoring
Client Facet

Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/ProductionQualitaMonitoringClientFa
cet

Data Backup Client Facet Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/DataBackupClientFacet

Basic Control Client Profile Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/BasicControlClientProfile

Simple Control Client Profile Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/SimpleControlClientProfile

Full Control Client Profile Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/FullControlClientProfile

Result Content Client Profile Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/ResultContentClientProfile

Monitoring Client Profile Machine Vision CS http://opcfoundation.org/UA-Profile/External/Client/

http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicControlClientFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicControlClientFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullControlFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullControlFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/SimpleResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/SimpleResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ResultMetaDataFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ResultMetaDataFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ConfigurationHandlingFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ConfigurationHandlingFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/RecipeHandlingFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/RecipeHandlingFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/VisionStateMonitoringFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/VisionStateMonitoringFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ProductionQualitaMonitoringFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ProductionQualitaMonitoringFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ProductionQualitaMonitoringFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/DataBackupFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/DataBackupFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/SimpleControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/SimpleControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ResultContentClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ResultContentClientProfile
http://opcfoundation.org/UA-Profile/External/Client/

OPC 40100-1: Control, configuration management, recipe management, result management

 168 Release 1.0

Client MachineVision/MonitoringClientProfile

Configuration Management
Client Profile

Machine Vision CS
Client

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/ConfigurationManagementClientProfi
le

13.3.3.2 Facets

13.3.3.2.1 Basic Control Client Facet

This facet contains the basic functionality required for a client to monitor and control a vision system server
using DataChange subscriptions and basic methods.

Table 182 – Definition of Basic Control Client Facet

Group Conformance Unit / Profile Title M / O

Vision System System State Information Client Mandatory

Vision System Error Conditions Client Optional

Vision State Machine State Machine Monitoring Mandatory

Vision State Machine State Machine Control Mandatory

Vision Automatic Mode Automatic Mode Selection Mandatory

Vision Automatic Mode Automatic Mode Monitoring Mandatory

Vision Automatic Mode Automatic Mode Control Mandatory

13.3.3.2.2 Full Control Client Facet

This facet contains functionality required for in-depth control of a vision system including StateChanged and
Error events and the StepModel methods and events.

Table 183 – Definition of Full Control Client Facet

Group Conformance Unit / Profile Title M / O

Vision System System State Information Client Mandatory

Vision System Error Conditions Client Mandatory

Vision State Machine State Machine Monitoring Mandatory

Vision State Machine State Machine Events Monitoring Mandatory

Vision State Machine State Machine Control Mandatory

Vision State Machine StepModel Monitoring Mandatory

Vision State Machine StepModel Events Monitoring Mandatory

Vision State Machine StepModel Control Mandatory

Vision Automatic Mode Automatic Mode Selection Mandatory

Vision Automatic Mode Simulation Mode Control Mandatory

Vision Automatic Mode Automatic Mode Monitoring Mandatory

Vision Automatic Mode Automatic Mode Events Monitoring Mandatory

Vision Automatic Mode Automatic Mode Control Mandatory

http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ConfigurationManagementClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ConfigurationManagementClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ConfigurationManagementClientProfile

Release 1.0 169

OPC 40100-1: Control, configuration management, recipe management, result management

13.3.3.2.3 Basic Result Content Client Facet

This facet contains basic functionality required to monitor and access result information, including the
distinction between real and simulated results.

Table 184 – Definition of Basic Result Content Client Facet

Group Conformance Unit / Profile Title M / O

Meta Data Handling Client Result IsSimulated Mandatory

Result Handling Client Event Based Content Basic Mandatory

Result Handling Client Method Based Content Basic Mandatory

13.3.3.2.4 Simple Result Content Client Facet

This facet contains the same functionality as the Basic Result Content Client Facet in Section 13.3.3.2.3 and
in addition the capability to process the – potentially dynamic – application-specific result content and to
access black-box result content using TemporaryFileTransfer objects.

Table 185 – Definition of Simple Result Content Client Facet

Group Conformance Unit / Profile Title M / O

Meta Data Handling Client Result IsSimulated Mandatory

Result Handling Client Event Based Content Basic Mandatory

Result Handling Client Event Based Content Extended Optional

Result Handling Client Method Based Content Basic Mandatory

Result Handling Client Method Based Content Extended Optional

Result Handling Client Result File Mandatory

13.3.3.2.5 Full Result Content Client Facet

This facet contains the same functionality as the Simple Result Content Client Facet in Section 13.3.3.2.4 and
in addition the capability to access result nodes exposed by a server in the Results folder.

Table 186 – Definition of Full Result Content Client Facet

Group Conformance Unit / Profile Title M / O

Meta Data Handling Client Result IsSimulated Mandatory

Result Handling Client Event Based Content Basic Mandatory

Result Handling Client Event Based Content Extended Mandatory

Result Handling Client Method Based Content Basic Mandatory

Result Handling Client Method Based Content Extended Mandatory

Result Handling Client Result File Mandatory

Result Handling Client Result Folder Optional

13.3.3.2.6 Result Meta Data Client Facet

This facet contains functionality to process the entire range of meta data a vision system server can provide
for a result.

Table 187 – Definition of Result Meta Data Client Facet

Group Conformance Unit / Profile Title M / O

OPC 40100-1: Control, configuration management, recipe management, result management

 170 Release 1.0

Meta Data Handling Client Job ID Mandatory

Meta Data Handling Client Measurement ID Mandatory

Meta Data Handling Client Part ID Mandatory

Meta Data Handling Client Result IsSimulated Mandatory

Meta Data Handling Client Recipe ID Mandatory

Meta Data Handling Basic Client Recipe Versioning Optional

Meta Data Handling Client Product ID Mandatory

Meta Data Handling Basic Client Configuration Versioning Optional

Meta Data Handling Client Processing Times Mandatory

Meta Data Handling Client Processing Times Extended Mandatory

13.3.3.2.7 Configuration Handling Client Facet

This facet contains the capabilities required to access the full potential range of configuration handling
functionality potentially provided by a vision system server.

Table 188 – Definition of Configuration Handling Client Facet

Group Conformance Unit / Profile Title M / O

Meta Data Handling Basic Client Configuration Versioning Mandatory

Meta Data Handling Full Client Configuration Versioning Mandatory

Configuration Handling Client Configuration Methods Mandatory

Configuration Handling Client Configuration File Mandatory

Configuration Handling Client Configuration Folder Optional

13.3.3.2.8 Recipe Handling Client Facet

This facet contains the capabilities required to access the full potential range of recipe handling functionality
potentially provided by a vision system server.

Table 189 – Definition of Recipe Handling Client Facet

Group Conformance Unit / Profile Title M / O

Vision Automatic Mode Automatic Mode Events Monitoring Mandatory

Meta Data Handling Client Recipe ID Mandatory

Meta Data Handling Basic Client Recipe Versioning Mandatory

Meta Data Handling Full Client Recipe Versioning Mandatory

Meta Data Handling Client Product ID Mandatory

Recipe Handling Client Recipe Methods Mandatory

Recipe Handling Client Recipe File Mandatory

Recipe Handling Client Recipe Folder Optional

Recipe Handling Client Product Folder Optional

13.3.3.2.9 Vision State Monitoring Client Facet

This facet contains the capabilities required to access the full potential range of state and condition
information functionality potentially provided by a vision system server.

Release 1.0 171

OPC 40100-1: Control, configuration management, recipe management, result management

Table 190 – Definition of Vision State Monitoring Client Facet

Group Conformance Unit / Profile Title M / O

Vision System System State Information Client Mandatory

Vision System Diagnostic Events Client Mandatory

Vision System Information Events Client Mandatory

Vision System Error Conditions Client Mandatory

Vision State Machine State Machine Monitoring Mandatory

Vision State Machine State Machine Events Monitoring Mandatory

Vision State Machine StepModel Monitoring Mandatory

Vision State Machine StepModel Events Monitoring Mandatory

Vision Automatic Mode Safety Information Client Mandatory

Vision Automatic Mode Easy Confirmation Client Optional

Vision Automatic Mode Automatic Mode Monitoring Mandatory

Vision Automatic Mode Automatic Mode Events Monitoring Mandatory

13.3.3.2.10 Production Quality Monitoring Client Facet

This facet contains the capabilities required to access production-quality relevant information potentially
provided by a vision system server, including the distinction between real and simulated results, result
contents and the processing times which can be an important indicator for problems in either production or
vision system.

Table 191 – Definition of Production Quality Monitoring Client Facet

Group Conformance Unit / Profile Title M / O

Meta Data Handling Client Result IsSimulated Mandatory

Meta Data Handling Client Processing Times Mandatory

Meta Data Handling Client Processing Times Extended Mandatory

Result Handling Client Event Based Content Basic Mandatory

Result Handling Client Event Based Content Extended Mandatory

13.3.3.2.11 Data Backup Client Facet

This facet contains the capabilities required to manage the retrieval and organized backup of all types of data
from a vision system server.

Table 192 – Definition of Data Backup Client Facet

Group Conformance Unit / Profile Title M / O

OPC 40100-1: Control, configuration management, recipe management, result management

 172 Release 1.0

Meta Data Handling Client Job ID Mandatory

Meta Data Handling Client Measurement ID Mandatory

Meta Data Handling Client Part ID Mandatory

Meta Data Handling Client Result IsSimulated Mandatory

Meta Data Handling Client Recipe ID Mandatory

Meta Data Handling Basic Client Recipe Versioning Mandatory

Meta Data Handling Full Client Recipe Versioning Mandatory

Meta Data Handling Client Product ID Mandatory

Meta Data Handling Basic Client Configuration Versioning Mandatory

Meta Data Handling Full Client Configuration Versioning Mandatory

Meta Data Handling Client Processing Times Mandatory

Meta Data Handling Client Processing Times Extended Mandatory

Result Handling Client Method Based Content Basic Mandatory

Result Handling Client Method Based Content Extended Mandatory

Result Handling Client Result File Mandatory

Result Handling Client Result Folder Mandatory

Configuration Handling Client Configuration Methods Mandatory

Configuration Handling Client Configuration File Mandatory

Configuration Handling Client Configuration Folder Mandatory

Recipe Handling Client Recipe Methods Mandatory

Recipe Handling Client Recipe File Mandatory

Recipe Handling Client Recipe Folder Mandatory

Recipe Handling Client Product Folder Mandatory

13.3.3.3 Profiles

13.3.3.3.1 Basic Control Client Profile

This FullFeatured Profile defines a client capable of basic monitoring and control of a vision system server and
its results.

Table 193 – Definition of Basic Control Client Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Client Basic Control Client Facet Mandatory

Machine Vision CS Client Basic Result Content Client Facet Mandatory

OPC UA Standard UA Client 2017 Profile Mandatory

13.3.3.3.2 Simple Control Client Profile

This FullFeatured Profile defines a client capable of in-depth monitoring and control of a vision system server
and full utilization of its results.

Table 194 – Definition of Simple Control Client Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Client Full Control Client Facet Mandatory

Machine Vision CS Client Simple Result Content Client Facet Mandatory

Machine Vision CS Client Vision State Monitoring Client Facet Mandatory

Release 1.0 173

OPC 40100-1: Control, configuration management, recipe management, result management

OPC UA Standard UA Client 2017 Profile Mandatory

13.3.3.3.3 Full Control Client Profile

This FullFeatured Profile defines a client capable of in-depth monitoring and control of a vision system server
and full utilization of its results including all potentially provided result meta data.

Table 195 – Definition of Full Control Client Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Client Full Control Client Facet Mandatory

Machine Vision CS Client Full Result Content Client Facet Mandatory

Machine Vision CS Client Result Meta Data Client Facet Mandatory

Machine Vision CS Client Vision State Monitoring Client Facet Mandatory

OPC UA Standard UA Client 2017 Profile Mandatory

13.3.3.3.4 Result Content Client Profile

This FullFeatured Profile defines a client capable of full utilization of the results of a vision system server
including all potentially provided meta data. The intention of such a client is not control of the vision system
server but observation and retrieval of its results.

Table 196 – Definition of Result Content Client Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Client Full Result Content Client Facet Mandatory

Machine Vision CS Client Result Meta Data Client Facet Mandatory

OPC UA Standard UA Client 2017 Profile Mandatory

13.3.3.3.5 Monitoring Client Profile

This FullFeatured Profile defines a client capable of monitoring all aspects of the state of a vision system
server as well as production-quality relevant data and events. The intention of such a client is not control of
the vision system but observation and condition monitoring.

Table 197 – Definition of Monitoring Client Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Client Vision State Monitoring Client Facet Mandatory

Machine Vision CS Client Production Quality Monitoring Client Facet Mandatory

OPC UA Standard UA Client 2017 Profile Mandatory

13.3.3.3.6 Configuration Management Client Profile

This FullFeatured Profile defines a client capable of retrieving and providing all meta data and black-box data
for vision system server configurations, recipes and results. The intention of such a client is not control of the
vision system server, but management of all relevant data in connection with the server.

Table 198 – Definition of Configuration Management Client Profile

Group Conformance Unit / Profile Title M / O

Machine Vision CS Client Configuration Handling Client Facet Mandatory

Machine Vision CS Client Recipe Handling Client Facet Mandatory

Machine Vision CS Client Data Backup Client Facet Mandatory

OPC 40100-1: Control, configuration management, recipe management, result management

 174 Release 1.0

OPC UA Standard UA Client 2017 Profile Mandatory

13.4 Handling of OPC UA Namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities. The
AttributesNodeId and BrowseName are identifiers. A Node in the UA AddressSpace is unambiguously
identified using a NodeId. Unlike NodeIds, the BrowseName cannot be used to unambiguously identify a
Node. Different Nodes may have the same BrowseName. They are used to build a browse path between two
Nodes or to define a standard Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName. However, if they
want to provide a standard Property, its BrowseName shall have the namespace of the standards body
although the namespace of the NodeId reflects something else, for example the EngineeringUnitsProperty. All
NodeIds of Nodes not defined in this specification shall not use the standard namespaces.

Table 199 provides a list of mandatory and optional namespaces used in an MachineVision OPC UA Server.

Table 199 – Namespaces used in a MachineVision Server

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in the OPC UA
specification. This namespace shall have namespace index 0.

Mandatory

Local Server URI Namespace for nodes defined in the local server. This may include
types and instances used in an AutoID Device represented by the
server. This namespace shall have namespace index 1.

Mandatory

http://opcfoundation.org/UA/MachineVision/ Namespace for NodeIds and BrowseNames defined in this specification.
The namespace index is server specific.

Mandatory

Vendor specific types and instances A server may provide vendor-specific types like types derived from
ObjectTypes defined in this specification or vendor-specific instances of
those types in a vendor-specific namespace.

Optional

Table 200 provides a list of namespaces and their index used for BrowseNames in this specification. The
default namespace of this specification is not listed since all BrowseNames without prefix use this default
namespace.

Table 200 – Namespaces used in this specification

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

http://opcfoundation.org/UA/MachineVision/ 2 2:VisionSystem

Release 1.0 175

OPC 40100-1: Control, configuration management, recipe management, result management

Annex A
(normative)

Machine Vision Namespace and mappings

A.1 Namespace and identifiers for Machine Vision Information Model

This appendix defines the numeric identifiers for all of the numeric NodeIds defined in this specification. The
identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an Instance Node
that appears in the specification and the Identifier is the numeric value for the NodeId.

The BrowsePath for an Instance Node is constructed by appending the BrowseName of the instance Node to
the BrowseName for the containing instance or type. An underscore character is used to separate each
BrowseName in the path. Let’s take for example, the <type> ObjectType Node which has the <propery>
Property. The Name for the <property> InstanceDeclaration within the <type> declaration is:
AutoIdDeviceType_DeviceLocation.

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/MachineVision/

The CSV released with this version of the specification can be found here:

– http://www.opcfoundation.org/UA/schemas/MachineVision/1.0/NodeIds.csv

NOTE The latest CSV that is compatible with this version of the specification can be found here:

– http://www.opcfoundation.org/UA/schemas/MachineVision/NodeIds.csv

A computer processible version of the complete Information Model defined in this specification is also
provided. It follows the XML Information Model schema syntax defined in OPC 10000-6.

The Information Model Schema released with this version of the specification can be found here:

– http://www.opcfoundation.org/UA/schemas/MachineVision/1.0/Opc.Ua.MachineVision.NodeSet2.xml

A.2 Profile URIs for Machine Vision Information Model

Table A.1 defines the Profile URIs for the Machine Vision Information Model companion specification.

Table A.1 – Profile URIs

Profile Profile URI

Basic Vision System Server Facet http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/BasicVisionSystemServerFacet

Inline Vision System Server Facet http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/InlineVisionSystemServerFacet

Automatic Mode Server Facet http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/AutomaticModeServerFacet

Processing Times Server Facet http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/ProcessingTimesMetaDataHandlingServerFacet

File Transfer Server Facet http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/FileTransferServerFacet

Basic Result Handling Server Facet http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/BasicResultHandlingServerFacet

Inline Result Handling Server Facet http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/InlineResultHandlingServerFacet

Full Result Handling Server Facet http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/FullResultHandlingServerFacet

Standard Configuration Handling
Server Facet

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/StandardConfigurationHandlingServerFacet

Full Configuration Handling Server
Facet

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/FullConfigurationHandlingServerFacet

Standard Recipe Handling Server Facet http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/StandardRecipeHandlingServerFacet

http://opcfoundation.org/UA/MachineVision/
http://www.opcfoundation.org/UA/schemas/MachineVision/1.0/NodeIds.csv
http://www.opcfoundation.org/UA/schemas/MachineVision/NodeIds.csv
http://www.opcfoundation.org/UA/schemas/MachineVision/1.0/Opc.Ua.MachineVision.NodeSet2.xml

OPC 40100-1: Control, configuration management, recipe management, result management

 176 Release 1.0

Full Recipe Handling Server Facet http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/FullRecipeHandlingServerFacet

Basic Vision System Server Profile http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/BasicVisionSystemServerProfile

Basic Vision System Server Profile
without OPC UA Security

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/BasicVisionSystemServerProfileWithoutOPCUASecurity

Simple Inline Vision System Server
Profile

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/SimpleInlineVisionSystemServerProfile

Simple Inline Vision System with File
Transfer Server Profile

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/SimpleInlineVisionSystemWithFileTransferServerProfile

Simple Inline Vision System with File
Revisioning Server Profile

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/SimpleInlineVisionSystemWithFileRevisioningServerProfile

Inline Vision System with File Transfer
Server Profile

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/InlineVisionSystemWithFileTransferServerProfile

Inline Vision System with File
Revisioning Server Profile

http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/InlineVisionSystemWithFileRevisioningServerProfile

Full Vision System Server Profile http://opcfoundation.org/UA-Profile/External/Server/
MachineVision/FullVisionSystemServerProfile

Basic Control Client Facet http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/BasicControlClientFacet

Full Control Client Facet http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/FullControlClientFacet

Basic Result Content Client Facet http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/BasicResultContentClientFacet

Simple Result Content Client Facet http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/SimpleResultContentClientFacet

Full Result Content Client Facet http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/FullResultContentClientFacet

Result Meta Data Client Facet http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/ResultMetaDataClientFacet

Configuration Handling Client Facet http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/ConfigurationHandlingClientFacet

Recipe Handling Client Facet http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/RecipeHandlingClientFacet

Vision State Monitoring Client Facet http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/VisionStateMonitoringClientFacet

Production Quality Monitoring Client
Facet

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/ProductionQualitaMonitoringClientFacet

Data Backup Client Facet http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/DataBackupClientFacet

Basic Control Client Profile http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/BasicControlClientProfile

Simple Control Client Profile http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/SimpleControlClientProfile

Full Control Client Profile http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/FullControlClientProfile

Result Content Client Profile http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/ResultContentClientProfile

Monitoring Client Profile http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/MonitoringClientProfile

Configuration Management Client
Profile

http://opcfoundation.org/UA-Profile/External/Client/
MachineVision/ConfigurationManagementClientProfile

http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/BasicVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/BasicVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/BasicVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/BasicVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystemWithFileTransfer
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystemWithFileTransfer
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystemWithFileRevisioning
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/SimpleInlineVisionSystemWithFileRevisioning
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/InlineVisionSystemWithFileTransfer
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/InlineVisionSystemWithFileTransfer
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/InlineVisionSystemWithFileRevisioning
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/InlineVisionSystemWithFileRevisioning
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/FullVisionSystem
http://opcfoundation.org/UA-Profile/External/Server/%20MachineVision/FullVisionSystem
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicControlClientFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicControlClientFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullControlFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullControlFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/SimpleResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/SimpleResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullResultContentFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ResultMetaDataFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ResultMetaDataFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ConfigurationHandlingFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ConfigurationHandlingFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/RecipeHandlingFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/RecipeHandlingFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/VisionStateMonitoringFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/VisionStateMonitoringFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ProductionQualitaMonitoringFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ProductionQualitaMonitoringFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/DataBackupFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/DataBackupFacet
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/BasicControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/SimpleControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/SimpleControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/FullControlClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ResultContentClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ResultContentClientProfile
http://opcfoundation.org/UA-Profile/External/Client/
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ConfigurationManagementClientProfile
http://opcfoundation.org/UA-Profile/External/Client/%20MachineVision/ConfigurationManagementClientProfile

Release 1.0 177

OPC 40100-1: Control, configuration management, recipe management, result management

Annex B
(informative)

Conceptual Model

B.1 Recipe management

B.1.1 Terms used in recipe management

In addition to terms defined in 3.1the following important terms are used in the description of the recipe
management use case:

– Recipe object: the OPC UA data structure containing meta data for a recipe and possibly a reference to
the recipe itself

– Recipe list: a list of recipe variables maintained in the VisionSystem object in the OPC UA server

– External: not part of the vision system or the OPC UA server; may refer to the automation system, the
manufacturing execution system or other entities

– Environment: the set of external entities working with the vision system in one way or another, e.g. PLC,
MES, etc.

– ExternalId: OPC UA datatype identifying a recipe in the view of the environment

– InternalId: OPC UA datatype identifying an instance of the recipe on the vision system

– ProductId: OPC UA datatype identifying a product in the view of the environment

B.1.2 Recipes in general

B.1.2.1 Definition

Properties, procedures and parameters that describe a machine vision task for the vision system are stored in
a recipe. Usually there are multiple usable recipes on a vision system. This specification provides methods for
activating, loading, and saving recipes. Recipes are handled as binary objects.

B.1.2.2 Structure and management

Recipes are potentially complex entities. A recipe may contain (possibly nested) references to sub-recipes
and it may be used for several products. The internal composition and interpretation of recipes – including the
referencing of sub-recipes – is outside the scope of this specification.

Recipes are typically created and managed centrally, then rolled out to production, usually together with the
information, what product(s) the recipe is to be used for, as it would not be practical to add this locally on
every system.

Recipes may also be created and/or edited locally. So a local system may have additional recipes not known
externally and different versions of recipes than those existing externally. This may or may not be known to
the recipe management and thus to the client.

A recipe may be used for several products. Also, there may be several recipes for the same product, be it
different versions of the recipe or different sub-sections of the complete recipe or different complete recipes
that may be used under different circumstances.

B.1.2.3 Identification

This specification assumes that the vision system receives recipes from the environment identified by an
ExternalId. Neither the vision system nor the server alter the ExternalId.

The environment uses only the ExternalId for managing recipes, and only the ExternalId or the ProductId for
managing the operation of the vision system.

OPC 40100-1: Control, configuration management, recipe management, result management

 178 Release 1.0

From the point of view of the vision system, the ExternalId identifies a recipe pushed to the system
unambiguously. The vision system does not concern itself with a failure of the environment to keep the
ExternalId unambiguous.

The ExternalId can achieve identifying a recipe unambiguously by using a recipe name, optionally in
combination with a version number and/or a hash.

B.1.3 Recipes on the vision system

B.1.3.1 Existing and prepared recipes

This specification distinguishes between recipes which are merely present on the vision system and prepared
recipes, which have then been activated in such a way that they can be immediately used for processing.

Thus, we have two conceptually distinct operations:

– AddRecipe: Adds a new recipe to the vision system.

– PrepareRecipe: Prepares one of the recipes on the vision system. It is expected that after successful
preparation, the recipe can be immediately used by a Start method for processing.

This specification assumes that the client has no knowledge of the internal recipe management by the vision
system. The only information provided by the client is the ExternalId and the ProductId.

In many cases, the automation system, represented here by the OPC UA client, will want to work only with the
ProductId.

B.1.3.2 Recipe identification

This specification assumes that the client can achieve the objectives of recipe management solely by method
calls.

It is therefore not required that the server exposes any recipe information beyond the objects required for the
method calls in the Address Space. However, the server may choose to expose recipe information in the form
of recipe metadata and references to the actual recipe contents for all recipes of the vision system or a subset
thereof.

When the recipe is downloaded to the vision system via the OPC UA server, the underlying assumption is that
an internal representation is created in the vision system with an InternalId that is unique in the scope of the
vision system/server combination. This InternalId may comprise a hash useful for determining the binary
identity of recipes.

This is especially useful in the case of recipes created or edited locally. A recipe may be locally edited. The
behavior of the vision system/server combination in the case of local editing of recipes is implementation-
defined. Among them (without any claim to completeness):

– The original recipe is kept and an additional recipe is added with new metadata including a new InternalId.

– The original recipe is overwritten with the edited version and the InternalId is changed to indicate the
change (especially useful if it includes a hash); note that this may impair traceability in the results.

– The original recipe is overwritten by the edited version and neither the ExternalId nor the InternalId are
changed; note that this will impair traceability even more severely.

The remarks on traceablity notwithstanding, the recipe management of the vision system is outside the scope
of this specification and the server merely reflects the internal recipe management.

An important case – independent of the various ways of handling versions and IDs described above – is local
editing of an active recipe, i.e., a recipe that is currently prepared. In effect, after the local editing, a different
recipe is now active than before, so this amounts to the same as preparing a different recipe. Therefore, local
editing of an active recipe shall be indicated to clients by a new RecipePreparedEvent.

When a recipe is downloaded to the vision system via the server with an already existing ExternalId and
different content from the recipe already present on the system, the behavior of the vision system is again
implementation-defined. Among them (without any claim to completeness):

Release 1.0 179

OPC 40100-1: Control, configuration management, recipe management, result management

– Keeping both the previous and the new version of the recipe under the same ExternalId with different
InternalIds and employing some ambiguity resolution method to decide which recipe to use.

– Overwriting the existing recipe with the new version without changing any Ids, again impairing traceability.

Note that this specification assumes that there may be several recipes on the vision system with the same
ExternalId, but different content and different InternalIds, and that it is the responsibility of the vision system to
decide which one to use in a given situation.

B.1.3.3 Recipes in the Address Space

This specification defines two methods of recipe handling:

– Method-based

– AddressSpace-based

The handling of recipes by calling methods is mandatory as it is expected to be easy to handle byclients. It
uses the methods on the RecipeManagementType described in Section 0 to send/retrieve all recipe related
information.

The handling of recipes in the Address Space allows for more flexibility on the part of the client as it can do its
own browsing and filtering of recipes. On the other hand, it makes higher demands on client and server, and is
therefore optional.

If the server offers handling of recipes in the Address Space, it will use the optional Recipes folder of the
RecipeManagementType described in Section 7 to expose recipe information.

B.1.3.4 Client-side recipe handling

Information required by the client from the Server includes

– Recipes existing on the vision system (identified by their ExternalIds)

– The assignment between recipes on the vision system and ProductIds

– Recipes currently prepared on the vision system (identified by their ExternalIds)

– Preparedness of a particular recipe (identified by its ExternalId)

– ExternalId of the recipe to a particular ProductId

Note that the OPC UA server is merely a view on the underlying vision system. How a vendor distributes
recipe and identification management between the vision system and the server is implementation-defined
and outside the scope of this specification.

As long as all data required by the client is available through method calls, it is not actually necessary -
although possibly desirable - to expose this information in the OPC UA server Address Space. The OPC UA
server will then have to execute a vision system function to retrieve the requested information and return it in
an output parameter of the method. For example, the list of recipes existing on the vision system may be
requested by a client using a method like GetRecipeListFiltered instead of being read directly from the
Address Space.

Exposing meta information on recipes in the Address Space has the consequence that the data is kept in two
places, i.e. in the OPC UA server Address Space and in the vision system itself. In this case the
implementation has to take care that the data is always updated in both places (for example by the server
polling the data).

Exposing recipe information in the Address Space also allows a sophisticated client to carry out requests not
covered by pre-defined methods through browsing the data on its own.

Note that sophisticated vision systems may contain a large number of recipes so that exposing the entire
recipe metadata information in the Address Space may lead to a quite large Address Space.

OPC 40100-1: Control, configuration management, recipe management, result management

 180 Release 1.0

Note, also, that this specification does not require the server to expose this information and that the client thus
cannot rely on the information being present nor on it being complete as it may cover only a subset of existing
recipes, e.g. the list of currently prepared recipes.

Release 1.0 181

OPC 40100-1: Control, configuration management, recipe management, result management

B.1.4 Example for a recipe life cycle

To illustrate the above remarks on recipe management, here is a possible life cycle of a recipe: Note that the
method signatures are not necessarily exact here.

3) A recipe for ProductId-m is created externally (often centrally).

4) The recipe is pushed to the vision system with ExternalId-1, ProductId-m using AddRecipe

– It is stored there with ExternalId-1, InternalId-11.

– It is linked to ProductId-m on the vision system.

5) There are further possible actions on the recipe without any particular order.

– The recipe may be edited locally later, keeping its ExternalId-1 and receiving InternalId-12.

– A (binary) different version of the recipe with the same ExternalId-1 may be pushed to the vision
system later, receiving InternalId-13.

– The recipe may be linked later to ProductId-n on the vision system Note that the external recipe
management does not concern itself with the InternalIds of the recipes on different vision systems. If
there are, due to one of these operations, several recipes on the vision system with identical
ExternalIds but different InternalIds, the vision system/server combination has no means of telling
which of these was targeted by the environment. It may choose to link all of them, or the newest one,
or the latest one pushed (ignoring internally edited ones). This is outside the scope of this
specification.

6) The automation system is undergoing a change-over process to a specific product, namely ProductId-m.
It will re-tool the vision system

– by calling PrepareRecipe on ExternalId-1); the vision system then selects one of the existing recipes
with ExternalId-1 based on its internal rules.

– by calling PrepareRecipe on ProductId-m; the vision system then selects one of the existing recipes
linked to ProductId-m based on its internal rules.

7) The vision system is commanded to process a specific product

– by calling a Start… method with ExternalId-1 the vision system then starts processing with the recipe
prepared for ExternalId-1.

– by calling a Start… method with ProductId-m the vision system then starts processing with the recipe
prepared for ProductId-m.

– by calling a Start… method with ExternalId-2 the vision system then throws an error because no
such recipe has been added or prepared.

– by calling a Start… method with ProductId-p the vision system then throws an error because no such
recipe has been added or prepared.

8) If there is no error, the vision system carries out its task, going through the Executing state to return to
state Ready waiting for further instructions.

There are many other possibilities of errors, e.g. trying to prepare a recipe which is actually a sub-recipe, i.e.,
not capable of being processed by itself.

B.1.5 Recipes and the state of the vision system

B.1.5.1 Types of recipe management

Note that the capabilities of systems with respect to recipe management may be very different. In the following
typical system setups are described without any claim to completeness. Note also that the behavior described
is only one of several possibilities.

– Preconfigured system: a system that is configured outside the scope of this specification, starts
automatically through states Preoperational and Initialized into Ready. It will immediately react to Start
method, ignoring a possible recipe or product argument.

OPC 40100-1: Control, configuration management, recipe management, result management

 182 Release 1.0

– Single recipe system: a system that can hold a single recipe; it may start through Preoperational into
Initialized, then wait for a call to the AddRecipe method and immediately prepare this recipe and transition
into Ready. It can immediately react to a Start method call, ignoring a possible recipe or product argument
(or it will throw an error if this is not the current recipe/product).

– Single program system: a system that can hold several recipes but can have only a single prepared or
active recipe; it starts through Preoperational into Initialized, then waits for one or more AddRecipe
method calls, staying in Initialized. Upon a call to the PrepareRecipe method it will transition into Ready. It
will immediately react to a Start method call with the appropriate recipe or product argument, but throw an
error if this is not the prepared recipe/product.

– Multi program system: a system that can hold several recipes active; it behaves like a single program
system until Ready. It will then allow for several additional recipes to be prepared (state handling is
discussed later). For each of the prepared recipes, it will react to a Start method call immediately if the
recipe or product is prepared and throw an error for a not-prepared recipe or product.

Note that all transitions are under the provision that no error occurs.

B.1.5.2 State handling for recipe management

The following explanation relates to the VisionAutomaticModeStateMachine described in Section 8.3. Vendor-
specific mode state machines may behave differently.

Note that preparing a recipe may be an operation of considerable complexity taking a significant amount of
time. During that time the system may or may not be capable of reacting to a start method. Some recipes may
exclude each other from being prepared at the same time, for example, when there are mechanical
movements involved. Having two such recipes prepared at the same time would mean that an instantaneous
reaction to a Start method call for a prepared recipe would not be possible. However, this is at the discretion
of the vision system. The client may merely notice an unusually long reaction time between calling the Start
method and the actual state change, or the vision system may prevent the simultaneous preparation by
returning an error.

Independent from the system types mentioned in the previous section, (with the exception of the
Preconfigured System, for obvious reasons) is the capability of preparing a recipe in the background. This
refers to the situation where PrepareRecipehas been called, the method has returned, but the preparation of
the recipe is not yet finished. A system may stay in state Ready and react correctly to the previously prepared
recipe or a different prepared recipe.

The server is free to handle PrepareRecipe as a synchronous method, i.e., when it returns it is assumed that
the recipe in question is completely prepared and the IsCompleted output variable must be set to TRUE
unless an error occurred.

Since recipe management is outside the scope of this specification and solely the province of the vision
system itself, the server is entitled to any reaction that fits the internal recipe handling of the vision system.
That means that calling the AddRecipe or PrepareRecipe methods in Ready state may result in

– the system falling back into state Initialized, then returning automatically to state Ready, or (in the case of
AddRecipe) waiting for PrepareRecipe. What recipe is then prepared is system-dependent; the client can
use the GetRecipeListFiltered method with an appropriate filter to determine that.

– the system staying in Ready state but returning an error when the client tries to call a Start method on the
recipe

Thus, vision systems may behave in different ways, depending on their recipe management capabilities, and
therefore exhibit different transitions for calls to the AddRecipe and PrepareRecipe methods. These variations
are difficult to depict graphically; therefore, the state machine diagram shows those transition causes
assumed to be typical.

It follows that the client cannot assume to be able to trigger a particular transition by calling one of these
methods. Without a priori knowledge about the behavior of the vision system/server combination, the only way
for the client to actually force a return to the Initialized state is by going through Preoperational state via a
reset. It must be prepared however that the vision system may fall back to Initialized state upon any call to
AddRecipe or PrepareRecipe methods, even depending on the recipe itself (e.g. when it requires to initialize
or check for additional hardware for a particular recipe).

Release 1.0 183

OPC 40100-1: Control, configuration management, recipe management, result management

The client therefore should not actually be interested in the transition, but only in two questions:

– Is the system Ready?

– Is the recipe/product to be started already prepared?

B.1.5.3 Availability of recipe management methods

There are two possibilities to handle the situation of a preconfigured system not having any recipe
management capabilities:

– Set the Executable flags of the methods permanently to false.

– Omit the methods completely.

It is recommended to use the second method as this makes the capabilities of the system much clearer to a
(generic) client. Therefore, recipe management methods are optional in this specification.

A client should nevertheless always check the executability of a recipe management method before calling it
since, depending on the state of the vision system, any of these methods may not be executable under certain
circumstances.

B.1.6 Recipe-product relation

The basic idea of the operation of a vision system underlying this specification is using it for the inspection of
particular products with settings contained in a recipe related to this product. Thus, there is a relationship
between recipes and products. It may be an n:m relationship, meaning that one recipe can potentially be used
for more than one product and that there may be more than one recipe for a specific product, e.g. depending
on the circumstances of use.

The relationship between recipes and products will typically not be fixed or predefined as the set of available
recipes and products to be processed will change over time. Therefore, some means must exist to establish
links between products and recipes.

This specification uses different parameter combinations of the AddRecipe method of the
RecipeManagementType to achieve the linking between recipes and products in the method-based approach
and a LinkProduct method of the RecipeType in the address-space-based approach.

In the purely method-based approach, these links are only stored within the vision system and can be
retrieved indirectly through the GetRecipeListFiltered method with appropriate filter settings.

In the address-space-based approach, the products a recipe is linked to are stored as a list within the
RecipeType.

B.1.7 Recipe transfer

B.1.7.1 Introduction

This specification defines two fundamental methods of exchanging the actual recipe content between the
client and the server/vision system combination, depending on whether the server exposes recipe information
in the Address Space or not.

B.1.7.2 Method-based recipe management

As stated in Section B.1.3.3, Recipes in the , the RecipeManagementType has mandatory methods which
allow for the management of recipes by the client, including data transfer of the recipe content in both
directions.

In principle, this works as follows:

9) The client either creates a recipe entry with a new ExternalId on the vision system (using the AddRecipe
method) or retrieves existing ExternalIds using the GetRecipeListFiltered or similar method and selects
one of these.

OPC 40100-1: Control, configuration management, recipe management, result management

 184 Release 1.0

10) The client uses the new or selected ExternalId in the generateOptions of the call to GenerateFileForRead
or GenerateFileForWrite method of the RecipeTransferType component of the RecipeManagementType
object to create a temporary file object for the transfer.

11) The client uses the NodeId and FileHandle of the created temporary file object to call its Read and Write
methods to transfer the recipe content.

12) The client uses the Close or CloseAndCommit methods of the temporary file object to end the data
transfer and close the temporary file object.

Note that this does not imply that the recipe is actually represented as a single file. In what way the vision
system/server component uses and persists the transmitted data is implementation-defined.

B.1.7.3 Address Space-based recipe management

For a recipe exposed in the Address Space as an entry in the optional Recipes folder of the
RecipeManagementType object, the client can perform the data transfer as follows:

13) The client browses through the Recipes folder to find the recipe with the desired ExternalId, or it uses the
AddRecipe method to create a new recipe entry and uses the returned NodeId.

14) It uses Open method of the FileType component of the detected Recipe object to open the pertaining file
object for reading or writing.

15) It uses the Read and Write methods of said component to transfer the data.

16) It uses the Close method of said component to end the data transfer.

Note that this does not imply that the recipe is actually represented as a single file. In what way the vision
system/server component uses and persists the transmitted data is implementation-defined.

	Contents
	Figures
	Tables
	Foreword
	1 Scope
	2 Normative references
	3 Terms, definitions and conventions
	3.1 Terms
	3.2 Abbreviations
	3.3 Conventions used in this document
	3.3.1 Conventions for Node descriptions
	3.3.2 NodeIds and BrowseNames
	3.3.2.1 NodeIds
	3.3.2.2 BrowseNames

	3.3.3 Common Attributes
	3.3.3.1 General
	3.3.3.2 Objects
	3.3.3.3 Variables
	3.3.3.4 VariableTypes
	3.3.3.5 Methods

	4 General information on Machine Vision and OPC UA
	4.1 Introduction to Machine Vision systems
	4.2 Introduction to OPC Unified Architecture
	4.2.1 What is OPC UA?
	4.2.2 Basics of OPC UA
	4.2.3 Information modelling in OPC UA
	4.2.3.1 Concepts
	4.2.3.2 Namespaces
	4.2.3.3 Companion Specifications

	5 Use cases
	6 OPC Machine Vision information model overview
	7 ObjectTypes for the Vision System in General
	7.1 VisionSystemType
	7.2 ConfigurationManagementType
	7.2.1 Overview
	7.2.2 ConfigurationManagementType methods
	7.2.2.1 AddConfiguration
	7.2.2.1.1 Overview
	7.2.2.1.2 New ExternalId
	7.2.2.1.3 Identically Existing ExternalId with identical configuration
	7.2.2.1.4 Identically Existing ExternalId with different configuration
	7.2.2.1.5 Local creation or editing of configurations

	7.2.2.2 GetConfigurationById
	7.2.2.3 GetConfigurationList
	7.2.2.4 ReleaseConfigurationHandle
	7.2.2.5 RemoveConfiguration
	7.2.2.6 ActivateConfiguration

	7.3 ConfigurationFolderType
	7.4 ConfigurationTransferType
	7.4.1 Overview
	7.4.2 ConfigurationTransferType methods
	7.4.2.1 GenerateFileForRead
	7.4.2.2 GenerateFileForWrite

	7.5 RecipeManagementType
	7.5.1 Overview
	7.5.2 RecipeManagementType Methods
	7.5.2.1 AddRecipe
	7.5.2.1.1 Overview
	7.5.2.1.2 New ExternalId
	7.5.2.1.3 Identically Existing ExternalId with identical recipe
	7.5.2.1.4 Identically Existing ExternalId with different recipe
	7.5.2.1.5 Local creation or editing of recipes

	7.5.2.2 PrepareRecipe
	7.5.2.3 UnprepareRecipe
	7.5.2.4 GetRecipeListFiltered
	7.5.2.5 ReleaseRecipeHandle
	7.5.2.6 RemoveRecipe
	7.5.2.7 PrepareProduct
	7.5.2.8 UnprepareProduct
	7.5.2.9 UnlinkProduct

	7.6 RecipeTransferType
	7.6.1 Overview
	7.6.2 RecipeTransferType Methods
	7.6.2.1 GenerateFileForRead
	7.6.2.2 GenerateFileForWrite

	7.7 RecipeType
	7.7.1 Overview
	7.7.2 RecipeType Methods
	7.7.2.1 Overview
	7.7.2.2 LinkProduct
	7.7.2.3 UnlinkProduct
	7.7.2.4 Prepare
	7.7.2.5 Unprepare
	7.7.2.6 Recipe transfer

	7.8 RecipeFolderType
	7.9 ProductFolderType
	7.10 ResultManagementType
	7.10.1 Overview
	7.10.2 ResultManagementType methods
	7.10.2.1 GetResultById
	7.10.2.2 GetResultComponentsById
	7.10.2.3 GetResultListFiltered
	7.10.2.4 ReleaseResultHandle

	7.11 ResultFolderType
	7.12 ResultTransferType
	7.12.1 Overview
	7.12.2 ResultTransferType methods
	7.12.2.1 GenerateFileForRead

	7.13 SafetyStateManagementType
	7.13.1 Overview
	7.13.2 SafetyStateManagementType methods
	7.13.2.1 ReportSafetyState

	8 ObjectTypes for Vision System State Handling
	8.1 State Machine overview
	8.1.1 Introduction
	8.1.2 Hierarchical state machines
	8.1.2.1 Entering a SubStateMachine
	8.1.2.2 Leaving a SubStateMachine

	8.1.3 Automatic and triggered transitions and events
	8.1.4 Preventing transitions

	8.2 VisionStateMachineType
	8.2.1 Introduction
	8.2.2 Operation of the VisionStateMachineType
	8.2.2.1 Basic operation
	8.2.2.2 Resetting the system
	8.2.2.3 Halting the system
	8.2.2.4 Error handling

	8.2.3 VisionStateMachineType Overview
	8.2.4 Modes of operation
	8.2.5 VisionStateMachineType Definition
	8.2.6 VisionStateMachineType States
	8.2.6.1 Introduction
	8.2.6.2 Preoperational State
	8.2.6.3 Halted State
	8.2.6.4 Error State
	8.2.6.5 Operational State

	8.2.7 VisionStateMachineType Transitions
	8.2.8 VisionStateMachineType Methods
	8.2.8.1 Halt method
	8.2.8.2 Reset method
	8.2.8.3 SelectModeAutomatic method
	8.2.8.4 ConfirmAll method

	8.2.9 VisionStateMachineType EventTypes
	8.2.9.1 StateChangedEventType
	8.2.9.2 ErrorEventType
	8.2.9.3 ErrorResolvedEventType

	8.3 VisionAutomaticModeStateMachineType
	8.3.1 Introduction
	8.3.2 Operation of the “AutomaticMode” state machine.
	8.3.2.1 Introduction
	8.3.2.2 Single job operation
	8.3.2.3 Continuous operation
	8.3.2.4 General remarks on Stop and Abort methods
	8.3.2.5 Entering the “AutomaticMode” state machine

	8.3.3 VisionAutomaticModeStateMachineType Overview
	8.3.4 VisionAutomaticModeStateMachineType Definition
	8.3.5 VisionAutomaticModeStateMachineType States
	8.3.5.1 Introduction
	8.3.5.2 Initialized State
	8.3.5.3 Ready State
	8.3.5.4 SingleExecution State
	8.3.5.5 ContinuousExecution State

	8.3.6 VisionAutomaticModeStateMachineType Transitions
	8.3.7 VisionAutomaticModeStateMachineType Methods
	8.3.7.1 StartSingleJob method
	8.3.7.2 StartContinuous method
	8.3.7.3 Abort method
	8.3.7.4 Stop method
	8.3.7.5 SimulationMode method

	8.3.8 VisionAutomaticModeStateMachineType Events
	8.3.8.1 RecipePreparedEventType
	8.3.8.2 JobStartedEventType
	8.3.8.3 ReadyEventType
	8.3.8.4 ResultReadyEventType
	8.3.8.5 AcquisitionDoneEventType

	8.3.9 Adding an operation mode

	8.4 VisionStepModelStateMachineType
	8.4.1 Operation of the VisionStepModelStateMachine
	8.4.1.1 Entering the step model SubStateMachine
	8.4.1.2 Executing a step sequence
	8.4.1.3 Completing the SubStateMachine
	8.4.1.4 Leaving the superior state

	8.4.2 VisionStepModelStateMachineType Overview
	8.4.3 VisionStepModelStateMachineType Definition
	8.4.4 VisionStepModelStateMachineType States
	8.4.5 VisionStepModelStateMachineType Transitions
	8.4.6 VisionStepModelStateMachineType Methods
	8.4.6.1 Sync method

	8.4.7 VisionStepModelStateMachine Events
	8.4.7.1 EnterStepSequenceEventType
	8.4.7.2 NextStepEventType
	8.4.7.3 LeaveStepSequenceEventType

	9 VariableTypes for the Vision System
	9.1 ResultType

	10 EventTypes for the Vision System
	10.1 VisionStateMachineType EventTypes
	10.2 VisionAutomaticModeStateMachineType EventTypes
	10.3 VisionStepModelStateMachineType EventTypes
	10.4 Vision System State EventTypes and ConditionTypes

	11 System States and Conditions for the Vision System
	11.1 Introduction
	11.2 Client interaction
	11.2.1 Introduction
	11.2.2 No Interaction
	11.2.3 Acknowledgement
	11.2.4 Confirmation
	11.2.5 Confirm All

	11.3 Classes of Informational Elements
	11.3.1 Overview
	11.3.2 Diagnostic Information
	11.3.3 Information
	11.3.4 Warning
	11.3.5 Error
	11.3.6 Persistent Error

	11.4 EventTypes for Informational Elements
	11.4.1 VisionEventType
	11.4.1.1 Overview
	11.4.1.2 Usage of inherited properties
	11.4.1.3 Usage of additional properties

	11.4.2 VisionDiagnosticInfoEventType
	11.4.3 VisionInformationEventType
	11.4.4 VisionConditionType
	11.4.4.1 Overview
	11.4.4.2 Usage of properties in common with VisionEventType
	11.4.4.3 Usage of additional properties

	11.4.5 VisionWarningConditionType
	11.4.6 VisionErrorConditionType
	11.4.7 VisionPersistentErrorConditionType
	11.4.8 VisionSafetyEventType

	11.5 Interaction between Messages, State Machine, and Vision System
	11.6 Structuring of Vision System State information
	11.6.1 Overview
	11.6.2 Production (PRD)
	11.6.3 Standby (SBY)
	11.6.4 Engineering (ENG)
	11.6.5 Scheduled Downtime (SDT)
	11.6.6 Unscheduled Downtime (UDT)
	11.6.7 Nonscheduled Time (NST)

	12 DataTypes for the Vision System
	12.1 Handle
	12.2 TrimmedString
	12.3 TriStateBooleanDataType
	12.4 ProcessingTimesDataType
	12.5 MeasIdDataType
	12.6 PartIdDataType
	12.7 JobIdDataType
	12.8 BinaryIdBaseDataType
	12.9 RecipeIdExternalDataType
	12.10 RecipeIdInternalDataType
	12.11 RecipeTransferOptions
	12.12 ConfigurationDataType
	12.13 ConfigurationIdDataType
	12.14 ConfigurationTransferOptions
	12.15 ProductDataType
	12.16 ProductIdDataType
	12.17 ResultDataType
	12.18 ResultIdDataType
	12.19 ResultStateDataType
	12.20 ResultTransferOptions
	12.21 SystemStateDataType
	12.22 SystemStateDescriptionDataType

	13 Profiles and Namespaces
	13.1 Namespace Metadata
	13.2 Conformance Units
	13.2.1 Overview
	13.2.2 Server
	13.2.3 Client

	13.3 Facets and Profiles
	13.3.1 Overview
	13.3.2 Server
	13.3.2.1 Overview
	13.3.2.2 Facets
	13.3.2.2.1 Basic Vision System Server Facet
	13.3.2.2.2 Inline Vision System Server Facet
	13.3.2.2.3 Automatic Mode Server Facet
	13.3.2.2.4 Processing Times Server Facet
	13.3.2.2.5 File Transfer Server Facet
	13.3.2.2.6 Basic Result Handling Server Facet
	13.3.2.2.7 Inline Result Handling Server Facet
	13.3.2.2.8 Full Result Handling Server Facet
	13.3.2.2.9 Standard Configuration Handling Server Facet
	13.3.2.2.10 Full Configuration Handling Server Facet
	13.3.2.2.11 Standard Recipe Handling Server Facet
	13.3.2.2.12 Full Recipe Handling Server Facet

	13.3.2.3 Profiles
	13.3.2.3.1 Basic Vision System Server Profile
	13.3.2.3.2 Basic Vision System Server Profile without OPC UA Security
	13.3.2.3.3 Simple Inline Vision System Server Profile
	13.3.2.3.4 Simple Inline Vision System with File Transfer Profile
	13.3.2.3.5 Simple Inline Vision System with File Revisioning Server Profile
	13.3.2.3.6 Inline Vision System with File Transfer Server Profile
	13.3.2.3.7 Inline Vision System with File Revisioning Server Profile
	13.3.2.3.8 Full Vision System Server Profile

	13.3.3 Client
	13.3.3.1 Overview
	13.3.3.2 Facets
	13.3.3.2.1 Basic Control Client Facet
	13.3.3.2.2 Full Control Client Facet
	13.3.3.2.3 Basic Result Content Client Facet
	13.3.3.2.4 Simple Result Content Client Facet
	13.3.3.2.5 Full Result Content Client Facet
	13.3.3.2.6 Result Meta Data Client Facet
	13.3.3.2.7 Configuration Handling Client Facet
	13.3.3.2.8 Recipe Handling Client Facet
	13.3.3.2.9 Vision State Monitoring Client Facet
	13.3.3.2.10 Production Quality Monitoring Client Facet
	13.3.3.2.11 Data Backup Client Facet

	13.3.3.3 Profiles
	13.3.3.3.1 Basic Control Client Profile
	13.3.3.3.2 Simple Control Client Profile
	13.3.3.3.3 Full Control Client Profile
	13.3.3.3.4 Result Content Client Profile
	13.3.3.3.5 Monitoring Client Profile
	13.3.3.3.6 Configuration Management Client Profile

	13.4 Handling of OPC UA Namespaces

	Annex A (normative) Machine Vision Namespace and mappings
	A.1 Namespace and identifiers for Machine Vision Information Model
	A.2 Profile URIs for Machine Vision Information Model

	Annex B (informative) Conceptual Model
	B.1 Recipe management
	B.1.1 Terms used in recipe management
	B.1.2 Recipes in general
	B.1.2.1 Definition
	B.1.2.2 Structure and management
	B.1.2.3 Identification

	B.1.3 Recipes on the vision system
	B.1.3.1 Existing and prepared recipes
	B.1.3.2 Recipe identification
	B.1.3.3 Recipes in the Address Space
	B.1.3.4 Client-side recipe handling

	B.1.4 Example for a recipe life cycle
	B.1.5 Recipes and the state of the vision system
	B.1.5.1 Types of recipe management
	B.1.5.2 State handling for recipe management
	B.1.5.3 Availability of recipe management methods

	B.1.6 Recipe-product relation
	B.1.7 Recipe transfer
	B.1.7.1 Introduction
	B.1.7.2 Method-based recipe management
	B.1.7.3 Address Space-based recipe management

