
Final Report, TDA593

Group 11

Oscar Hansson Josefin Ulfenborg Lisa Karlsson
Adam Grandén Felix Kirchmann Rasmus Jemth

January 2018

Contents

1 Introduction 3
1.1 Social Contract . 3
1.2 Goals and objectives . 3
1.3 Assumptions . 3

2 Assignment 1 4
2.1 Domain Model . 4
2.2 Explanatory text . 4
2.3 Use Case Diagram . 5
2.4 Explanatory text . 5

3 Assignment 2 7
3.1 Component Diagram . 7
3.2 Explanatory text . 7

4 Assignment 3 10
4.1 Class Diagram . 10
4.2 Description of classes, operations and relations 11

5 Assignment 4 16
5.1 Task 1: Synchronization . 16

5.1.1 State machine diagram . 16
5.1.2 Description . 16
5.1.3 Example scenario 1 . 17
5.1.4 Example scenario 2 . 17

5.2 Task 2: Operations . 18
5.2.1 State machine diagram . 18
5.2.2 Description . 18
5.2.3 Example scenario 1 . 19
5.2.4 Example scenario 2 . 20

5.3 Task 3: Formalising a mission . 21
5.3.1 State machine diagram . 21
5.3.2 Description . 22
5.3.3 Why this implementation is correct 22
5.3.4 Example scenario 1 . 23
5.3.5 Example scenario 2 . 24

6 Assignment 5 25
6.1 Change of strategy . 25
6.2 Change of environment . 25
6.3 Change of logic to compute the reward 25
6.4 Sequence diagram . 26

6.4.1 Scenario 1 . 26
6.4.2 Scenario 2 . 27

1

6.4.3 Scenario 3 . 28

7 Reflections 29
7.1 Domain Model . 29
7.2 Use cases . 29
7.3 Component diagram . 30
7.4 Class diagram . 30
7.5 Changes to reward system: . 30
7.6 State machines . 31
7.7 Sequence Diagram . 31
7.8 Responsible and Controller of Use Cases 31
7.9 Usage of Design Patterns . 31
7.10 The social contract . 32
7.11 Future options . 33

8 Results and learning outcome 34
8.1 Results . 34
8.2 Modelling . 34

2

1 Introduction

1.1 Social Contract

To work towards the goal of including all group members and achieving a roughly
equal amount of contribution by every member, we created a social contract
between us. This was also done in order to reduce disagreements as well as
misunderstandings. The following agreements were made:

• Attend weekly meetings

• Do not be late

• Always keep open discussion so we don’t run into any problems

• Everyone should do the task s/he is assigned to do

• Be helpful

• Be friendly with each other! If a problem arises: discuss!

• Goal and objective: We will work towards getting a 5

• Short breaks (few minutes) every half hour

• Longer breaks (10-15 minutes) every hour

1.2 Goals and objectives

During our first session together, we started discussing about our individual
goals and objectives with regards to the course. We agreed rather quickly that
we would strive for a 5/VG grade-wise, but more importantly that everyone
wanted to learn as much as possible and would always work hard during the
course.

1.3 Assumptions

We made some assumptions in cases where details of the application’s behaviour
were not fully specified.

• An area can be nested within any type of area (e.g. a physical area can
be in a logical one)

• All of the mission points have to be visited by the same robot

• All walls are strictly vertical, i.e. at a 90◦ angle to the floor

3

2 Assignment 1

2.1 Domain Model

LogicalArea

Area

EnvironmentPhysicalArea

Obstacle Point

Robot

Mission

Strategy

Scenario

RewardPoints

RewardProcedure

FaultEvent

contains 1

*

** 1 .. *1 .. *

22

11

*1 *1

in

1 .. *1 .. *

1

1

1

1assigned

1

0 .. *

1

0 .. * available

**

11

0 .. 1

1

0 .. 1

1

1 .. 2

1

1 .. 2

1

1

1

1 availableactive

*

1

*

1

has

consistsOf isAt
hashas

hasRooms

0 .. 1
0 .. 1

0 .. 1
0 .. 1

has

1

1

1

1

1

LocationController

*has *has
controls1 controls1 consistsOf2 consistsOf21isAt 1isAt

2.2 Explanatory text

Our problem domain is centered around scenarios. A scenario describes a spe-
cific instance of the robotic domain, solving one (or more) defined problems.
An example for such a scenario would be task 1.3 from assignment 3, where
multiple robots work in a defined four-room environment to achieve the mission
of visiting certain rooms.

Thus, each scenario is associated with one environment. The environment
has any number of robots, which all have one current position within the envi-
ronment.

Each robot can have up to 1 mission, which has one or multiple points,
and every mission can have multiple strategies available to them, but only one
of these strategies is active at any given time. A strategy is simply a specific
ordering of the points from a mission.

The environment also contains any number of areas, that can be either logical
areas or physical areas. Areas can be nested inside other areas. Since we assume
areas to have a rectangular shape, their geometric boundaries consist of two
points - the upper left and lower right coordinates of this rectangle.

To define their physical boundaries, environments have at least one obstacle,
which is a wall or a boundary that goes from one point to another, vertically or
horizontally. Robots cannot move through these static obstacles.

Furthermore, environments can include any number of location controllers
which are based at a fixed position. Each location controller manages one area,
and coordinates that no two robots are in the area simultaneously.

As an optional component, a scenario can also contain a subsystem to cal-

4

culate reward points based on a reward procedure. Either one or two reward
procedures can be available. If two are available, only one of them is active at
any given time.

Additionally, the scenario can react to faults, of which a robot can have any
number.

2.3 Use Case Diagram

2.4 Explanatory text

• The Non-Technical operator can only observe the environment through a
graphical interface.

• The Technical operator is the programmer, which can create areas and
assign mission through code.

• The System handles all the logic.

• The Robot is just a robot inside the simulation, which can report errors
and execute strategies(move to different points).

• Observe Environment: The non-technical operators are supposed to ob-
serve changes in the environment through a user interface. This should
show where the robots are located as well as the reward points.

• Assign Mission: The technical operator can assign missions to the robots.
We have to have a mission for the robot to execute otherwise the system
is useless.

5

• Calculate Reward Points: The system calculates the reward points for
the robots. It will use different strategies to calculate the reward points
depending on the environment the robots are in.

• Execute Strategy: The robot executes a certain strategy over the environ-
ment. The strategy is a part of the execution of the mission.

• Error Handling: In case of an error with the robots they are to turn
themselves off, and the system will react to this event.

• Create Area: This use case will be responsible for constructing the different
environments the robots will be located in.

6

3 Assignment 2

3.1 Component Diagram

3.2 Explanatory text

• WebInterface(c): The web interface is the graphical interface that the
users can use to observe scenarios, including missions, reward points, faults
and positions of the robots within the Simbad environment.

• ExampleScenarios(c): ExampleScenarios is a module containing the
various different scenarios (including environments, robots and missions)
that can be used to run the simulations, e.g the mission from assignment
3.

7

• RuntimeEnvironment(i): Represents all the objects being simulated in
the simulator, which includes static obstacles, location controllers, rooms,
robots and the TimestepSource.

• SimbadAbstraction(c): An abstraction layer on top of Simbad. On
instantiation, it is provided with an immutable environment and a list of
robots with their positions in that environment. It then uses the Simbad
API to simulate the environment and exposes the results through the
RuntimeEnvironment.

• SimbadSimulator(c): This represents the API of the Simbad simulator,
as provided by the course’s GitHub / Maven repository.

• FaultManager(i): Receives faults events and distributes them to a set
of listeners.

• DefaultFaultManager(c): The default implementation of the Fault-
Manager.

• MissionManager(i): The MissionManager contains the business logic
defining robots’ behaviour. It provides public methods to assign a mission
(with a strategy) to a robot and to get the progress of that mission. It
also uses the observer pattern to enable other classes to react to a robot
reaching the next point or the end of its mission.

• DefaultMissionManager(c): Our default implementation of the Mis-
sionManager interface observes a TimestepSource. On each robot’s timestep,
the manager first checks if it has an active mission assignment for that
robot. If that is the case, it sets the robot’s destination to the next point
in the mission. When the robot has reached this point, the manager ad-
vances its internal mission progress counter and notifies its listeners that
the robot has progressed in (or completed) the mission.

While controlling a robot, the DefaultMissionManager also observes the
rooms and location controllers at the robot’s position. When the robot
enters a room, it is stopped for two seconds (by setting its destination to
its current position). When it enters a location-controlled area instead,
the manager makes the robot acquire the location controller responsible
for the area. If this does not succeed on the first try, the robot is stopped
until it has successfully acquired the location controller.

• RewardPoints(i): Calculates the reward points for the robots using
different procedures based on the areas the robots are in.

• DefaultRewardPoints(c): Implementation of the RewardPoints inter-
face.

• Robot(i): Represents a robot with a name and a position, includes getter
methods for its attributes.

8

• CoreData(c): Acts as a collection of immutable implementations for
most of the framework’s data interfaces (such as robot).

• Mission(i): A Mission represents a list of points that a robot has to
reach. It also contains a string for the name of the mission.

• MissionData(c): Implementation of the Mission interface.

• AreaCollection(i): Represents a collection of areas. It has methods to
return all the areas of the collection and a method that takes a point and
returns all areas of the collection that contain the point.

• AreaCollectionData(c): Implementation of the AreaCollection inter-
face as an immutable data class.

9

4 Assignment 3

4.1 Class Diagram

10

4.2 Description of classes, operations and relations

• Area

– AbstractArea: Represents an area in the environment defined by
a bounding box. An area can have any number of areas Areas have
a name identifying them as well as a type, which is used when cal-
culating reward points. An area is either a logical area or a physical
area.

– LogicalArea: Extends the AbstractArea class. Represents a logical
area as defined by the project description.

– PhysicalArea: Extends the AbstractArea class. Represents a phys-
ical area as defined by the project description.

– AreaCollection: Contains a set of areas and can also return which
areas from the set contain a given point. This can be useful to de-
termine e.g. which areas are at a robot’s current position.

– AreaCollectionData: Implements the interface AreaCollection.

• Environment

– Environment: Interface to get the statical objects in the Environ-
ment. Has methods for listing the location controllers, the static ob-
stacles (walls or boundaries) as well as all of the rooms (represented
by areas).

– EnvironmentBuilder: The EnvironmentBuilder implements the
Builder pattern to simplify the construction of certain environments.
It handles adding walls, boundaries, rooms and location controllers.
Furthermore, it allows its consumer to configure a room overlap, caus-
ing the sizes of added rooms to increase by the given number. Having
overlapping rooms can be useful to ensure mutual exclusion such that
a robot needs to acquire the location controllers of both the room it
is in and the one it wants to enter when moving between rooms.

– EnvironmentData: Implements Environment. When creating an
EnvironmentData object it checks that the components of the envi-
ronment (static obstacles, rooms and location controllers) are present
(i.e. not null).

– LocationController: Supplies methods for getting the location and
radius of a LocationController, as well as which area it controls. Also
has a method for checking if another Point is in range of the Loca-
tionController.

– LocationControllerData: Implements LocationController.

– Robot: Contains methods to be able to access the name and the
starting position of a robot.

– RobotData: Implements Robot.

11

– StaticObstacle: Interface which supplies methods for getting the
color, line, and type of an obstacle.

– StaticObstacleData: Implements StaticObstacle.

– StaticObstacleType: Is an enum which is used by StaticObstacle
to identify what type the obstacle is, i.e. a wall or a boundary.

• Fault

– FaultListener: Classes implementing this interface can receive in-
formation about fault events via the onFault method.

– FaultManager: Maintains a list of FaultListeners, to which it dis-
tributes fault events.

– DefaultFaultManager: Implements both FaultManager and Fault-
Listener. It will respond to calls of its onFault method by forwarding
the fault information to all registered listeners.

• Geometry

– BoundingBox: Represents a box, which has two methods, one for
getting the upper left and one for getting the lower right point of the
box.

– BoundingBoxData: Implements the BoundingBox interface. Upon
construction, it checks whether the lower right point is actually lower
and to the right of the upper left point.

– OrthogonalLine: Interface for representing a line. Has methods for
getting the starting X and Z coordinates.

– HorizontalLine: Extends OrthogonalLine. Has a method for get-
ting the Z endpoint.

– HorizontalLineData: Implements HorizontalLine.

– VerticalLine: Extends OrthogonalLine. Has a method for getting
the X endpoint.

– VerticalLineData: Implements VerticalLine.

– Point: Has two methods, getX and getZ, to be able to get the X and
Z coordinates of a point.

– PointData: Implementation of the Point interface. Has double pre-
cision floating point values for the X and Z coordinates.

• Mission

– Mission: Interface which defines a mission by its name and a list of
points.

– MissionData: Implements Mission.

– MissionStrategy: This interface defines the MissionStrategy by a
name, the Mission and a list of (ordered) points.

12

– MissionStrategyData: Implements MissionStrategy. Also verifies
upon construction that the list of ordered points given as the strategy
contains the same points as the mission.

– MissionProgressListener: Interface using the observer pattern to
allow classes to get notified of the mission progress of a robot.

– PrintingMissionProgressListener: Implements MissionProgressLis-
tener, printing a human-readable line to standard output each time
a robot reaches a new point of its mission.

– MissionManager: The MissionManager can assign missions to robots
with a strategy that is given by an instance of the MissionStrategy
class, and it has a method for getting a robot’s MissionStrategy. This
interface also provides functionality to add and remove MissionPro-
gressListeners, as well as getting the current mission progress.

– DefaultMissionManager: Implements MissionManager. The re-
sponsibility of the DefaultMissionManager is to handle the movement
of the robot, making sure it reaches all points in its MissionStrategy.
It accepts a mapping of RuntimeRobot to MissionStrategy and steers
these robots to their destination points in the order specified by the
strategy. While it does this, it observes location controllers as well
as rooms and stops the robot if necessary. This can occur when the
robot has entered a new room or when it needs to wait in order to
acquire a location controller. Robots can also be given new missions
at runtime in order to dynamically change their behaviour.

• Reward

– RewardPoints: Has a method which returns the number of reward
points the system has.

– DefaultRewardPoints: Implements a counter of reward points,
which it exposes by implementing the RewardPoints interface. Has
one or two Procedures, which it calls to do the calculations for in-
creasing the points. These procedures are given as instances of the
RewardProcedure interface. This design uses the strategy pattern
to modularize the reward calculation logic, thus allowing it to be
changed at runtime. This runtime changing of reward logic happens
every 20 seconds of simulated time, which is achieved by implement-
ing the TimestepListener interface. It also uses the EnvironmentRun-
time to get access to the robots, and refers to an AreaCollection to
use as a list of scored areas.

– RewardProcedure: Interface which supplies a method for calcu-
lating the reward points.

– DefaultProcedure: Implements the RewardProcedure interface.
Has a Map <String,Integer>, that given an area type (e.g. ”surgery
room”) returns the value of that room. Also has a valued area type,

13

which is the class of the areas it wants to include in its calculations
(e.g. PhysicalArea). Contains the logic for calculating the reward
points.

– DefaultProcedureA: Extends DefaultProcedure. Used when com-
puting reward points in physical areas. Gives the PhysicalArea class
as an argument to the constructor of its parent.

– DefaultProcedureB: Extends DefaultProcedure. Used when com-
puting reward points in logical areas. Gives the LocigalArea class as
an argument to the constructor of its parent.

– UniversityProcedureA: Extends DefaultProcedureA. Gives the uni-
versity point map as an argument to the constructor of it’s parent.

– ZooProcedureA: Extends DefaultProcedureA. Gives the zoo point
map as an argument to the constructor of its parent.

– UniversityProcedureB: Extends DefaultProcedureB. Gives the uni-
versity point map as an argument to the constructor of its parent.

– ZooProcedureB: Extends DefaultProcedureB. Gives the zoo point
map as an argument to the constructor of its parent

– HospitalProcedure: Implements Procedure. Calculates points for
both physical and logical areas. Uses the hospital point map.

– RewardPointsMaps: Contains static methods for getting the point
maps for each environment.

• Runtime

– RuntimeEnvironment: Interface that extends the Environment
interface. Whilst Environment contains all the static data of an en-
vironment, the RuntimeEnvironment interface extends this with the
dynamical data provided by a simulation - such as a listing of Run-
timeRobots and a TimestepSource.

– RuntimeFactory: A RuntimeFactory takes an Environment and a
set of Robots as input and initializes a simulation with them, which is
then returned as a RuntimeEnvironment. We use the factory pattern
for this so that different simulation implementations (such as Simbad)
can be easily swapped out just by passing a different RuntimeFactory
implementation.

– RuntimeRobot: RuntimeRobot extends the Robot interface and
is used during simulation runtime. It includes methods for setting
a destination point, acquiring and releasing location controllers, as
well as getting the current position and the RuntimeEnvironment the
robot is in.

– RuntimeScenario: A RuntimeScenario binds together all the dif-
ferent components that are used in a running simulation, such as the
hospital scenario from assignment 5. It has a name as well as getters

14

for instances of RuntimeEnvironment, RewardPoints, MissionMan-
ager and FaultManager (the last three are optional and can be null).
Specific instances of RuntimeScenario are usually created by a Sce-
narioFactory.

– TimestepListener: Following the observer pattern, the TimestepLis-
tener interface enables classes to be notified each time the simulation
has progressed by implementing the onTimestep method. This can
be very useful for tracking how fast time passes in the simulation, as
it can be run at faster (or slower) speeds or be completely paused.

– TimestepSource: Has methods for adding and removing TimestepLis-
teners.

– TimestepDistributor: Implements both the TimestepSource and
the TimestepListener. Any time the onTimestep method is called,
the information about the timestep is distributed to all added TimestepLis-
teners.

– ScenarioFactory: In order to easily extend our framework to use
different kinds of environments, we decided to use the factory method
design pattern. This interface takes a RuntimeFactory as the input of
its only method (createScenario). The interface implementation uses
this RuntimeFactory to create a simulation with obstacles, robots,
missions and faults. These are then collected and returned as a Run-
timeScenario. This approach modularizes different scenarios (such as
hospitals, zoos or the concurrency mission from assignment 3) into
different implementations of the ScenarioFactory interface. Thus,
new scenarios in our framework can be created easily by making a
new implementation of this interface.

• Examples

– HospitalFactory: Implements the ScenarioFactory and constructs
custom environment for the Hospital.

– ZooFactory: Implements the ScenarioFactory and constructs a cus-
tom environment for the Zoo.

– UniversityFactory: Implements the ScenarioFactory and constructs
a custom environment for the University.

– Assignment3Factory: Implements the ScenarioFactory and con-
structs a custom environment for the concurrency mission from as-
signment 3.

15

5 Assignment 4

5.1 Task 1: Synchronization

5.1.1 State machine diagram

5.1.2 Description

There are three states which the rooms can be in, either free, occupied, or
blocked. When a receptionist does a check in the event reception.doCheckIn
is fired, and the room changes state from free to occupied, and when some-
one checks out the state changes from occupied to free, with the help of the
event reception.doCheckOut. If a room is free it can be blocked by an admin,
the event admin.doBlockRoom is fired and so the state changes from free to
blocked. An admin can also change the state from blocked to free with ad-
min.doUnblockRoom. Since you can’t block a room when it’s occupied and
can’t check in to a room that’s blocked there is no transition between occupied
and blocked.

To make sure that only one room is changed at a time we added the guard
[roomNumber == x], where x is either 0 or 1 depending on the room ID. This
way only the selected room will execute the commands.

One of the limitations with this implementation is that we can only switch
between two rooms at the moment, which is not satisfactory for a normal-sized
hotel. Although, if the number of rooms would increase (to say room 10), there
is no functionality at the moment to directly go from room 0 to room 10. Right

16

now we would instead have to cycle through all of the rooms to reach room 10,
which is not ideal.

5.1.3 Example scenario 1

• room.checkIn

• switchRoom

• room.checkOut

• room.block

• room.unblock

• switchRoom

• room.checkOut

We first fire room.checkIn which will change the state for room 0 to ”Occupied”.
switchRoom is then fired which will change the room number to 1. When we
now try to do a room.checkOut, nothing happens since room 1 is currently
”free”. However, then we run room.block and the room then changes state to
”blocked” and then back to ”free” again when we fire room.unblock. We then
fire switchRoom again and finally fire room.checkOut that changes the state of
Room 0 to ”Free”.

5.1.4 Example scenario 2

• room.checkIn

• room.checkOut

We first fire room.checkIn which changes the state of room 0 to ”Occupied” and
then we fire room.checkOut which changes it back to ”Free”.

17

5.2 Task 2: Operations

5.2.1 State machine diagram

5.2.2 Description

The counter consists of five states, from 0 to 4, which represents the current
counter value. Each transition occurs as we increment the value of the counter.

18

If we are in state ”counter0” and increment, the ”always” statement will fire
and check if the current counter value is 1 and then change state to ”counter1”
if this is true. The same goes for the following counter states but with different
counter values as conditions for switching states. In order to change state to
”toggled” the condition display.isToggled() == true must be satisfied which is
true when we fire the event usr.toggle. While the current state is ”toggled”,
incrementing the counter does nothing. The counter value is calculated using
modulus so that when we reach 5, the counter will reset to 0 and change state
from ”counter4” to ”counter0” and thus restart the counter cycle.

One limitation regarding this implementation is that it does not follow the
open-closed principle. If we would like to add more counters we would both
have to add another state to the state machine (and thus change around the
transitions), but also change the code since it at the moment is restricted to
only five counters. However, it can also be argued that this implementation is
not that suitable for this type of counter, unless you know for sure that it won’t
have to be extended in the future.

5.2.3 Example scenario 1

• usr.increase

• usr.increase

• usr.toggle

• usr.increase

• usr.toggle

• usr.increase

• usr.increase

• usr.increase

Our starting state is ”counter0”. We fire the increment event and the machine
will switch to state ”counter1” as it satisfies the condition always[display.getCounter()
== 1]. The same goes when we increment another time and it switches to state
”counter2”. In ”counter2” we fire the toggle event which will cause a change
in state to ”toggled” as it satisfies the condition always[display.isToggled() ==
true]. Here we try to, once again, increment the counter value but since we are
in the state ”toggled” the if-statement in the increment method is not satisfied
and thus the incrementation will not take place. Next, we fire the toggle event
once again and return to state ”counter2” from which we continue to fire the in-
crement event until the counter value modulus 5 results in a reset of the counter
and thus a return to state ”counter0”.

19

5.2.4 Example scenario 2

• usr.increase

• usr.increase

• usr.increase

• usr.increase

• usr.increase

Our starting state is once again ”counter0”. We fire increment event and thus
changes state to ”counter1”. We do this continuously until we arrive in the
starting state ”counter0” when the modulus causes the counter to reset to 0.

20

5.3 Task 3: Formalising a mission

5.3.1 State machine diagram

21

5.3.2 Description

Every robot has three different states, Outside, In room 1 and In room 2. The
’In room 1/2’ state is different to every robot, e.g. Robot 1 has In A and In
B. It represents the mission for each robot. When a robot tries to enter the
first room, the tryAcquire method is called to see if that room is occupied. If
it isn’t, the robot goes from state Outside to In Room 1. If the room already
is occupied then the robot stays in the Outside state. When the robot tries to
continue to state In room 2, it calls tryAcquire method again, and if it succeeds,
then the robots releases the room it was in.

To make sure that all the robots don’t enter their first room at the same
time, and thus causing a deadlock, we have put restrictions on the last robot so
that it can only enter its first room if another robot is done with its mission.
When a robot leaves they have accomplished their mission and is therefore done
executing, and end up in a final state.

We chose to only let the robot visit the rooms it needs to complete its mission,
which is why there are only two rooms for each robot. In this scenario/mission
it is enough for the robots to be able to move in the mission rooms. They are
all still able to complete their mission, given the restriction so that all of the
robots can’t enter the rooms at the same time.

A limitation of this kind of solution is that if a robot with an arbitrary
mission is added there is a high risk that the robots would deadlock (one robot
wants to go from A to B, the other from B to A). To fix this we would need to
either somehow make sure that two robots with conflicting routes are not sent
into the rooms at the same time, or give the robots permission to go into rooms
not included in their mission. If they can move through all of the rooms then
there will always be possible movement and the robots will eventually be able
to finish their mission.

If any more robots are added to the mission they would also have to wait in
the beginning, and when a robot is done, only one of the waiting robots will be
allowed entry.

If there were to be any more rooms added, or any removed, one would have
to look at how many of the robots are permitted to enter the rooms.

5.3.3 Why this implementation is correct

Based on the description above, specially regarding avoiding deadlocks, this
implementation works. Because we have restricted the path for each robot, we
know that they will always enter the rooms in the specified order. Also, because
the fourth robot won’t enter until another one has finished we will always, in
this mission, have a situation where there is at least one robot that is able to
make it’s move.

If we remove the movement restriction that we have and let the robots go
to all of the rooms, then as long as at least one of the rooms is left empty,
no matter how many rooms there are, the robots will be able to finish their
missions. This is the same principle that is used with a sliding picture puzzle,

22

were you use the empty slot to slide squares around until you have formed the
correct picture.

Finally, there are several different approaches to this problem and many
different solutions. Another implementation that we thought about doing was
to have a counter that keeps track on the amount of robots that enters their
first room. If there are already three robots in the rooms the fourth one is not
allowed to enter. This counter increments when a robot enters their first room
and decrements when they leave. This way we can add more robots and be sure
that no deadlock will occur, as long as they all want to visit two rooms and are
going in the same direction.

Also, one could use concurrent programming in order to solve these tasks.
However, since it was not a requirement in the course, as well as only half of
the group knows how it works, so we chose to stick with the solution presented
above.

5.3.4 Example scenario 1

• r1.enterA

• r3.enterC

• r4.enterD

• r4.enterA

• r2.enterB

• r1.enterB

• r1.leave

• r2.enterB

• r4.enterA

• r3.enterD

• r4.leave

• r2.enterC

• r2.leave

• r3.leave

Robot 1 tries to enter room A and succeeds since the room is not occupied,
and the robot limit isn’t reached. Then Robot 3 enters room C, Robot 4 enters
room D. Robot 4 then tries to enter room A but fails, since it’s occupied and
thus stays in room D. Now Robot 2 tries to enter room B, but is unable to do
so since the limit for the number of robots allowed inside the rooms has been
reached. Robot 1 enters room B, then exits the rooms. Robot 2 now tries to

23

enter room B again, and succeeds. Robot 4 enters room A. Robot 3 enters room
D. Robot 4 leaves the rooms. Robot 2 enters room C, then exits. And lastly
Robot 3 leaves.

5.3.5 Example scenario 2

• r2.enterB

• r3.enterC

• r2.enterC

• r4.enterD

• r4.enterA

• r1.enterA

• r3.enterD

• r2.enterC

• r4.leave

• r1.enterA

• r1.enterB

• r3.leave

• r2.leave

• r1.leave

Robot2 enters Room B. Robot3 enters Room C. Robot 2 tries to enter the Room
C, but fails due to Robot 3 already occupied that room. Robot 4 enters Room
D. Robot 4 enters Room A. Robot 1 tries to enter Room A, but fails due to that
the room is already occupied by Robot 4. Robot 3 enters Room D. Robot 2
enters Room C. Robot 4 leaves. Robot 1 enters Room A. Robot 1 enters Room
B. Robot 3 leaves. Robot 2 leaves. Robot 1 leaves.

24

6 Assignment 5

6.1 Change of strategy

To achieve the requirement of when a robot enters a room it has to stop for two
seconds, we added an AreaCollection to our Environment class that represents
its rooms. The DefaultMissionManager, while controlling a robot, then checks
if that robot has entered a room and stops it if necessary.

6.2 Change of environment

To simplify the creation of new environments, we added an EnvironmentBuilder
that unifies the creation of environments with static obstacles, robots, rooms
and location controllers using the builder pattern. On top of that, we use a
factory interface to modularize the creation of specific environments (such as
hospitals, zoos and universities) into factory implementations. Because of these
design patterns it will be much easier to extend our program in the future

6.3 Change of logic to compute the reward

To get the required behaviour when operating in a Hospital we created a new
class that implements Procedure. This class always uses all of the areas (both
logical and physical, i.e. running both Procedure A and Procedure B where
they apply) when calculating the points. It also has its own map that maps
room type (”surgery room”) to the value it’s worth (20 points).

The DefaultRewardPoints is now constructed with two procedures (A and
B) given individually. When a Hospital is created it should only provide the
DefaultRewardPoints one procedure, leaving the second as null. When this hap-
pens the DefaultRewardPoints knows not to try switching between procedures,
and simply uses the one it is given.

25

6.4 Sequence diagram

6.4.1 Scenario 1

26

6.4.2 Scenario 2

27

6.4.3 Scenario 3

28

7 Reflections

In this section we will specify the changes that we have made to the models and
what these changes have resulted in, as well as the reasoning behind them.

7.1 Domain Model

There were no drastic changes to the domain model but there were some details
we added or removed. For instance, because of robots not being able to be in
the same area at the same time, we added a LocationController to the diagram.
In order for the location controller to operate, it needs a location, and it needs
to control a room. Because all areas are in an Environment, this means an
Environment can have any number of location controllers.

Moreover, since both walls and boundaries are counted as obstacles, we
changed our diagram from just having Boundary to Obstacle. Rather than
having both Boundary and Wall, which would make it more difficult to extend
should other obstacles arises.

The biggest change we had to make to the domain model was to remove the
MissionChange component. Before this component was meant to represent the
operator pushing a button to stop the mission. At the moment, changing the
mission would merely be a call to our assignMission method call, where the list
of points to visit would only consist of the current position the robot is currently
in. However, because of lack of time we did not have time to implement this
further, meaning there is currently no GUI for performing this. Hence, we chose
to remove the component.

Finally, we merely changed the name from Fault to FaultEvent to better
reflect what the component stands for.

7.2 Use cases

Since we got a new group member, but only for a short period of time, we had
to add another use case (Create area) so that everyone would have one each.
However, when she left we decided to keep the one we added and instead remove
one of the old ones (Terminate procedure) which we realised was too vague and
not really a use case itself, but a part of another use case (Error handling).

It’s possible that rather than have the use case Create area, we should have
named it Create environment, since that would have covered both creating the
area but also all of the robots and their missions. Besides these, we have fulfilled
all of the other use cases and they have been implemented into the program.
Calculate reward points uses the different procedures as in the project descrip-
tion and Observe environment notifies the observer how the missions are going.
Finally, we have a way to handle errors in the robots with the help of listeners,
and Assign mission and Execute strategy together handles the logic of managing
the missions of the robots. Execute strategy would in our program correspond
to the Mission package.

29

7.3 Component diagram

The component diagram had to be made from scratch based on the feedback
from the supervisor. This was due to the component diagram being extremely
detailed, mostly because of us misunderstanding the assignment. We most likely
thought too much into what it should look like and partly mixing the idea of a
class diagram into it. Now, the updated version of the component diagram is
much less detailed and gives a better overview than the one before.

We have removed a lot of interfaces and components but kept the MVC
pattern in the diagram. Before, we more or less had each class as its own com-
ponent with corresponding interface which resulted in a cluttered diagram with
excessive details about the program. For instance, we included mostly every-
thing covering areas as well as a lot of data types, whereas now we have replaced
all of that with just the component AreaCollection. Since AreaCollection uses
the areas, which uses the bounding boxes and such, we still have all of those
details covered but it doesn’t show directly in the diagram, as intended.

7.4 Class diagram

When we started with the class diagram it was a helpful tool for us to reach
common ground with how we wanted the program to be structured, though we
tried a little too hard to make a prescriptive diagram. Thus we got a bit lost
in the details, which we had problems envisioning, and it took a bit too long
since we ended up changing quite a bit anyway. For us it would probably have
worked better if we had first made a general class diagram, so that we could
see what parts of the program would be communicating and where would could
use design patterns in an effective way, and after doing so start implementing.
Lastly we could have made a more detailed diagram describing our system. The
class diagram is generally a good way of documenting the code but in our case
we feel that our class diagram is too big, making it hard to read. It might be
more useful if we had split it up in smaller parts, either by package or maybe
by use case, making it easier to read and getting an overview of said parts.

7.5 Changes to reward system:

At first we were going to give the DefualtRewardPoints a map <AbstractArea,
Long> that would contain mapping from an area to the amount of points the
area should give. By doing this we would have had to create the map when
creating the reward points and for each area assign it a value individually, then
pass it down to the procedure. We changed it so that the procedures have
the a reference to a map, <String,Int>, instead. By having String instead of
AbstractArea (and adding a String type, e.g. ”surgery room”, to AbstractArea)
we are able to give all of the rooms of the same type the same value. This way
we can have the same map regardless of the number of areas in the environment.
If you want to add new types of areas you only need to add them in the right
environment in the RewardPointsMap class, which provides the procedures with

30

their respective maps. Adding a new environment type is also easy this way.
We also added DefaultProcedure, DefaultProcedureA, DefaultProcedureB,

and specific procedures for the different environment types. The DefaultProce-
dure contains the logic for calculating the reward points since the only difference
between Procedure A and B are what areas to take into account. DefaultPro-
cedureA and -B tells the DefaultProcedure what Class to value (the variable
valuedAreaType), and then the environment specific procedure gets the map to
use from the RewardPointsMaps (the variable pointMap).

7.6 State machines

Since the way we chose to solve the problem that we modelled with this diagram
was a fairly simple one, and some of the members in our group has some experi-
ence with concurrent programming, we were quite sure that we had thought of
the ways that it could go wrong and that they wouldn’t happen in our program.
We can see how and why they would be useful when solving more complex prob-
lems. It is a good way to make sure that the program can reach all the desired
states, and that it doesn’t get stuck. We also think that it can be of help when
trying to come up with a solution, both that you can try them out and see what
happens and that it can give a different perspective, one based in states, from
which to approach the problem.

7.7 Sequence Diagram

Similarly to the State machines, nothing was changed for this diagram (except
for one return arrow not being dashed). However, the heavier part of this
assignment was to also make certain changes to the system (which has already
been discussed in that section).

7.8 Responsible and Controller of Use Cases

For each use case we chose one responsible and one controller. Even though
the responsible didn’t have to be responsible for implementing the use case, in
some cases this is what happened anyway. However, besides this we did not
keep it consciously in mind during the project who was responsible or controller
for which use case but rather tried the most efficient way to distribute the work
load. A lot of parts in the project are dependent of each other which is why we
found it difficult to split up the work in any other way.

Furthermore, it did not seem necessary in our case, because everyone was
eager to participate during all parts of this course and so getting assignments
done was rarely a big issue.

7.9 Usage of Design Patterns

• Factory pattern was used for the creation of RuntimeEnvironments and
Scenarios. We used the factory pattern for the creation of scenarios be-

31

cause it would allow us easily to add new scenarios in the future if needed.
However, a scenario factory must instantiate the simulation itself with the
required obstacles and robots, since these elements can not be added once
the simulation is running. Having the scenario factory directly instantiate
e.g. the SimbadRuntime would not be desirable though, as this would
make each scenario directly dependant on a specific simulator implemen-
tation. To fix this, we introduced the RuntimeFactory interface, which is
implemented by the SimbadRuntimeFactory class. This allows the Scenar-
ioFactory implementations to accept any implementation of RuntimeFac-
tory as their input, thus decoupling them from simulator implementations.

• The builder pattern is used in the EnvironmentBuilder class. The Envi-
ronmentBuilder is used by the different ScenarioFactories to simplify the
creation of specific environments with obstacles, rooms and location con-
trollers. Since the instantiation of an Environment with its contents is
otherwise very verbose, this realization of the builder pattern helps us to
avoid the telescoping constructor anti-pattern.

• We used the Strategy pattern for reward procedures. This allows the
DefaultRewardPoints class to easily switch between different methods for
calculating reward points. It also simplifies the process of extending the
framework with new logic for reward points calculation.

• The simbad abstraction relies on the adapter pattern to decouple the sim-
bad simulator from our framework. For example, the SimbadRobot class
adapts Simbad’s API to expose robot information via our framework’s
RuntimeRobot interface. This means that if Simbad’s API ever changes,
the changes within our framework can usually be contained within the sim-
bad abstraction module. It has also allowed us to implement a workaround
for a bug in Simbad within the abstraction, thus making it completely
transparent to the rest of the framework. In the future, this abstrac-
tion layer may also enable our framework to switch to different simulator
implementations.

• The observer pattern is used in the interfaces MissionProgressListener,
TimestepListener and FaultListener. The MissionProgressListener is used
by the DefaultMissionManager to be able to broadcast how much progress
the robots have done (how many mission points they have visited). The
FaultListener is used by the FaultManager for it to be able to report
faults. The TimestepListener is used by the TimestepDistributor, which
is used for knowing when/how often the simulation updates. For example,
DefaultMissionManager and DefaultRewardPoints use this for updating
robot destinations and timing the calculation of reward points.

7.10 The social contract

In the beginning of this course we established a social contract in order for us
to work more efficient together. We feel that we have upheld the contract by

32

not being late and always be up to help each other. The breaks have been very
good in giving us some rest in between our work so not to exhaust ourselves
in the process. We feel that a successful project or team will benefit from a
social contract and it acts as a template for how a team should behave and
work together and in our case it has worked out well.

7.11 Future options

Because of the given time frame we did not have the time to fix everything we
intended to do.

One thing that we would like to change is to remove the unnecessary inter-
faces from the data classes, such as Point and BoundingBox, and change the
names from PointData to Point (same for BoundingBox).

Furthermore, as our program works now, we do not use the strategies for
missions with any design pattern. When we first thought about the strategies
we had a different opinion of how to construct it that differed from the teachers
view but had we had the time to reconstruct it we would have used the strategy
design pattern. Lastly, as we mentioned earlier we never had any time to fully
implement the GUI for changing the mission. Had we had more time this
implementation would be completed. There would be a button to stop the
mission, and when pressed it would assign a new mission to the robot. The
current destination of the robot would be the only point in the list of points for
it to visit, meaning it would stop moving.

33

8 Results and learning outcome

8.1 Results

The result of our work consists of our six different diagrams as well as the Java
implementation. The finished product consists of any number of robots in an
environment, with missions consisting of destination points the robots need to
visit. The criteria from the description stated that any two robots cannot be in
the same room at the same time, as well as when a robot enters a new room it
has to stop for two seconds and both of these things are working properly.

The use cases and the domain model together represent the problem domain
the simulation has been based on. The component diagram as well as the class
diagram together forms the complete overview of the program’s structure and
was the foundation on which the program was built.

Additionally, the behavioural models, the state machines and sequence dia-
grams, became the assurance that the simulation reacted to certain event prop-
erly.

8.2 Modelling

Structuring a program with the help of models will give a better understanding
and it will also make it simpler to extend the program later on. However, as
clear as this sounds, there are several factors to take into account when using
models in order to not over-complicate nor miss important aspects.

During this course we have been introduced to many new ways of modelling
software where some models have been more useful in a certain context, and
other models useful in another.

For documenting a software system then the domain model, component and
class diagram have been more useful. In different ways these provide context
and explanation for how the system should be structured, which is useful both
for the engineer but also for someone on the outside who wants an understanding
of the project. However, in our case we had the least use for the component
diagram due to our misunderstanding of it, as discussed above.

Concerning the behaviour of the system, however, the state machines and
sequence diagram provide better information. Their contribution lies in to show
how the program would respond to certain actions, which can be an important
insight in case it does not respond the way it was supposed to.

When models are appropriate for modelling a system very much depends on
the situation and the project. For smaller projects it is unlikely that you will
need big, complex diagrams to represent the system. The use case diagrams and
domain model are probably always useful to some extent. They are not overly
complicated to create and they give a clear and concise summary of what the
system should be able to do. However, for smaller projects it is less likely that
you will need both component and class diagram, unless it is for an outsider who
wishes to understand the work flow. Nevertheless, there is more work required
for these and should thus be more carefully chosen.

34

Regarding both state machines and the sequence diagram these might also
seem redundant for smaller projects with less complexity. However, given a
project with more interactions and logic it is probably wise to include either one
of them at least since they are the only behavioural models that give insight in
how the program will behave when used in different contexts.

To summarise, whether or not to use a certain model is highly individual
but they should be chosen with regard to the size and complexity of the project.
Documentation should always be available for a system, whether it is in the form
of plain text or models. Models give a better understanding of both the structure
and behaviour of the system but it should also be taken into consideration
that each individual will have a vision of how a model should look like and be
structured. Hence, there is not simply one correct way to construct them.

35

