import torch import torch.nn as nn import math class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe, persistent=False) def forward(self, x): x = x + self.pe[:, :x.size(1)] return x class TransformerModel(nn.Module): def __init__(self, ntoken, d_model, nhead, num_layers, dropout=0.0): super().__init__() self.model_type = 'Transformer' self.pos_encoder = PositionalEncoding(d_model) encoder_layers = nn.TransformerEncoderLayer(d_model, nhead, batch_first=True, dropout=dropout, dim_feedforward=128) self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers) self.embedding = nn.Embedding(ntoken, d_model) self.d_model = d_model self.linear = nn.Linear(d_model, ntoken) def forward(self, src, src_mask=None): src = self.embedding(src) * math.sqrt(self.d_model) src = self.pos_encoder(src) output = self.transformer_encoder(src, src_key_padding_mask=src_mask) return output