
EECS151/251A

Fall 2022

Final Project Specification

RISCV151

Version 1.1

TA: Yikuan Chen, Simon Guo, Jennifer Zhou, Paul Kwon, Ella Schwarz, Raghav Gupta

University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Science

Contents

1 Introduction 3
1.1 Tentative Deadlines for All Sections . 3
1.2 General Project Tips . 3

2 Checkpoints 1 & 2 - Three-stage Pipelined RISC-V CPU 5
2.1 Setting up your Code Repository . 5
2.2 Integrate Designs from Labs . 5
2.3 Project Skeleton Overview . 6
2.4 RISC-V 151 ISA . 7

2.4.1 CSR Instructions . 7
2.5 Pipelining . 7
2.6 Hazards . 9
2.7 Register File . 9
2.8 RAMs . 9

2.8.1 Initialization . 9
2.8.2 Endianness + Addressing . 9
2.8.3 Reading from RAMs . 10
2.8.4 Writing to RAMs . 10

2.9 Memory Architecture . 11
2.9.1 Summary of Memory Access Patterns . 11
2.9.2 Unaligned Memory Accesses . 11
2.9.3 Address Space Partitioning . 12
2.9.4 Memory Mapped I/O . 12

2.10 Testing . 13
2.11 How to Succeed in This Checkpoint . 14

2.11.1 How to Get Started . 14
2.12 Checkoff . 15

2.12.1 Checkpoint 1 . 16
2.12.2 Checkpoint 2: Base RISCV151 System . 17
2.12.3 Checkpoints 1 & 2 Deliverables Summary . 17

3 Checkpoint 3 - Cache 19
3.1 Cache overview . 19
3.2 Guidelines and requirements . 19
3.3 Checkoff . 20

4 Checkpoint 4 - Optimization 21
4.1 Grading on Optimization: Frequency vs. CPI . 21
4.2 Clock Generation Info + Changing Clock Frequency 21
4.3 Critical Path Identification . 22

4.3.1 Schematic View . 22
4.3.2 Finding Actual Critical Paths . 23

4.4 Optimization Tips . 23
4.5 Checkoff . 23

1

5 Grading and Extra Credit 24
5.1 Checkpoints . 24
5.2 Style: Organization, Design . 24
5.3 Final Project Report . 24

5.3.1 Report Details . 24
5.4 Extra Credit . 25
5.5 Project Grading . 26

Appendices 27

A Local Development 27
A.1 Linux . 27
A.2 OSX, Windows . 27

B BIOS 28
B.1 Background . 28
B.2 Loading the BIOS . 28
B.3 Loading Your Own Programs . 29
B.4 The BIOS Program . 29
B.5 The UART . 30
B.6 Command List . 31
B.7 Adding Your Own Features . 31

2

1 Introduction

The goal of this project is to familiarize EECS151/251A students with the methods and tools of
digital design. Working alone or in a team of two, you will design and implement a 3-stage pipelined
RISC-V CPU with a UART for tethering and a data cache system.

Finally, you will optimize your CPU for performance (maximizing the Iron Law) and cost (FPGA
resource utilization).

You will use Verilog to implement this system, targeting the Xilinx PYNQ platform (a PYNQ-Z1
development board with a Zynq 7000-series FPGA). The project will give you experience designing
with RTL descriptions, resolving hazards in a simple pipeline, building interfaces, and teach you
how to approach system-level optimization.

In tackling these challenges, your first step will be to map the high level specification to a design
which can be translated into a hardware implementation. After that, you will produce and debug
that implementation. These first steps can take significant time if you have not thought out your
design prior to trying implementation.

As in previous semesters, your EECS151/251A project is probably the largest project you have
faced so far here at Berkeley. Good time management and good design organization is critical to
your success.

1.1 Tentative Deadlines for All Sections

The following is a brief description of each checkpoint and approximately how many weeks will be
alloted to each one. Note that this schedule is tentative and is subjected to change as the semester
progresses.

• Nov 4, 2022 - Checkpoint 1 (2 weeks) - Draw a schematic of your processor’s datapath
and pipeline stages, and provide a brief write-up of your answers to the questions in 2.12.1.
In addition, push all of your IO-circuit Verilog modules that you have implemented in the
labs to your assigned GitHub repository under hardware/src/io_circuits (see 2.2). Also
commit your design documents (block diagram + write-up) to docs.

• Nov 18, 2022 - Checkpoint 2 (2 weeks) - Implement a fully functional RISC-V processor
core in Verilog. Your processor core should be able to run the mmult demo successfully.

• Dec 02, 2021 - Checkpoint 3 (2 weeks) - Implement a data cache in Verilog.
• Dec 09, 2022 - Final Checkoff + Demo - Final processor optimization and checkoff
• Dec 12, 2022 - Project Report - Final report due.

1.2 General Project Tips

Document your project as you go. You should comment your Verilog and keep your diagrams up
to date. Aside from the final project report (you will need to turn in a report documenting your
project), you can use your design documents to help the debugging process.

Finish the required features first. Attempt extra features after everything works well. If your
submitted project does not work by the final deadline, you will not get any credit for
any extra credit features you have implemented.

3

This project, as has been done in past semesters, will be divided into checkpoints. The following
sections will specify the objectives for each checkpoint.

4

2 Checkpoints 1 & 2 - Three-stage Pipelined RISC-V CPU

The first checkpoint in this project is designed to guide the development of a three-stage pipelined
RISC-V CPU that will be used as a base system in subsequent checkpoints.

2.1 Setting up your Code Repository

The project skeleton files are available on GitHub. Your (private) project repo will be created by
GSIs and assigned to your group. Its name will be in the format of ”fa22 fpga teamXX.git”.
The suggested way for initializing your repository with the skeleton files is as follows:

git clone https://github.com/EECS150/fpga_project_skeleton_fa22

cd fpga_project_skeleton_fa22

git submodule init

git submodule update

git remote add my_repo_name https://github.com/EECS150/fa22_fpga_teamXX

git push my_repo_name master

Then reclone your repo and add the skeleton repo as a remote:

cd ..

rm -rf fpga_project_skeleton_fa22

git clone https://github.com/EECS150/fa22_fpga_teamXX

cd fa22_fpga_teamXX

git remote add staff https://github.com/EECS150/fpga_project_skeleton_fa22

Note: The above instructions are for HTTPS authentication. If you are running into HTTPS
authentication errors, you can use SSH authentication by replacing the above Git repo URLs with
the following:

git@github.com:EECS150/fpga_project_skeleton_fa22.git

git@github.com:EECS150/fa22_fpga_teamXX.git

To pull project updates from the skeleton repo, run git pull staff master.

To get a team repo, fill the Google form with your team information (names, GitHub logins). Only
one person in a team is required to fill the form.

You should check frequently for updates to the skeleton files. Whenever you resume your
work on the project, it is highly suggested that you do git pull from the skeleton repo to get the
latest update. Update announcements will be posted to Piazza.

2.2 Integrate Designs from Labs

You should copy some modules you designed from the labs. We suggest you keep these with the
provided source files in hardware/src/io_circuits (overwriting any provided skeletons).

Copy these files from the labs:

debouncer.v

synchronizer.v

5

https://forms.gle/7s9dDKWdLRchwKKd9

edge_detector.v

fifo.v

uart_transmitter.v

2.3 Project Skeleton Overview

• hardware

– src

∗ z1top.v: Top level module. The RISC-V CPU is instantiated here.

∗ riscv core/cpu.v: All of your CPU datapath and control should be contained in
this file.

∗ io circuits: Your IO circuits from previous lab exercises.

∗ riscv core/opcode.vh: Constant definitions for various RISC-V opcodes and funct
codes.

– sim

∗ cpu_tb.v: Starting point for testing your CPU. The testbench checks if your CPU
can execute all the RV32I instructions (including CSR ones) correctly, and can
handle some simple hazards. You should make sure that your CPU implementation
passes this testbench before moving on.

∗ asm_tb.v: The testbench works with the software in software/assembly tests.

∗ isa_tb.v: The testbench works with the RISC-V ISA test suite in software/riscv-isa-tests.
The testbench only runs one test at a time. To run multiple tests, use the script we
provide. There is a total of 38 ISA tests in the test suite.

∗ c_tests_tb.v: This testbench verifies the correct execution of the software in
software/c tests. There are 6 C tests provided.

∗ echo_tb.v: The testbench works with the software in software/echo. The CPU
reads a character sent from the serial rx line and echoes it back to the serial tx line.

∗ uart_parse_tb.v: This testbench verifies a few tricky functions from the BIOS in
isolation using the software in software/uart parse.

∗ bios_testbench.v: This testbench simulates the execution of the BIOS program.
It checks if your CPU can execute the instructions stored in the BIOS memory. The
testbench also emulates user input sent over the serial rx line, and checks the BIOS
message output obtained from the serial tx line.

• software

– bios: The BIOS program, which allows us to interact with our CPU via the UART.
You need to compile it before creating a bitstream or running a simulation.

– echo: The echo program, which emulates the echo test of Lab 5 in software.

6

– asm: Use this as a template to write assembly tests for your processor designed to run
in simulation.

– c_tests: Use these as examples to write C programs for testing.

– riscv-isa-tests: A comprehensive test suite for your CPU. Available after doing
git submodule (see ??).

– mmult: This is a program to be run on the FPGA for Checkpoint 2. It generates 2
matrices and multiplies them. Then it returns a checksum to verify the correct result.

To compile software go into a program directory and run make. To build a bitstream run make

write-bitstream in hardware.

2.4 RISC-V 151 ISA

Table 1 contains all of the instructions your processor is responsible for supporting. It contains
most of the instructions specified in the RV32I Base Instruction set, and allows us to maintain a
relatively simple design while still being able to have a C compiler and write interesting programs
to run on the processor. For the specific details of each instruction, refer to sections 2.2 through
2.6 in the RISC-V Instruction Set Manual.

2.4.1 CSR Instructions

You will have to implement 2 CSR instructions to support running the standard RISC-V ISA test
suite. A CSR (or control status register) is some state that is stored independent of the register file
and the memory. While there are 212 possible CSR addresses, you will only use one of them (tohost
= 0x51E). The tohost register is monitored by the RISC-V ISA testbench (isa_testbench.v), and
simulation ends when a non-zero value is written to this register. A CSR value of 1 indicates success,
and a value greater than 1 indicates which test failed.

There are 2 CSR related instructions that you will need to implement:

1. csrw tohost,x2 (short for csrrw x0,csr,rs1 where csr = 0x51E)

2. csrwi tohost,1 (short for csrrwi x0,csr,uimm where csr = 0x51E)

csrw will write the value from rs1 into the addressed CSR. csrwi will write the immediate (stored
in the rs1 field in the instruction) into the addressed CSR. Note that you do not need to write to
rd (writing to x0 does nothing), since the CSR instructions are only used in simulation.

2.5 Pipelining

Your CPUmust implement this instruction set using a 3-stage pipeline. The division of the datapath
into three stages is left unspecified as it is an important design decision with significant performance
implications. We recommend that you begin the design process by considering which elements of
the datapath are synchronous and in what order they need to be placed. After determining the
design blocks that require a clock edge, consider where to place asynchronous blocks to minimize
the critical path. The RAMs we are using for the data, instruction, and BIOS memories are both
synchronous read and synchronous write.

7

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

Table 1: RISC-V ISA

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

RV32I Base Instruction Set
imm[31:12] rd 0110111 LUI
imm[31:12] rd 0010111 AUIPC

imm[20|10:1|11|19:12] rd 1101111 JAL
imm[11:0] rs1 000 rd 1100111 JALR

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

imm[11:0] rs1 000 rd 0000011 LB
imm[11:0] rs1 001 rd 0000011 LH
imm[11:0] rs1 010 rd 0000011 LW
imm[11:0] rs1 100 rd 0000011 LBU
imm[11:0] rs1 101 rd 0000011 LHU

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

imm[11:0] rs1 000 rd 0010011 ADDI
imm[11:0] rs1 010 rd 0010011 SLTI
imm[11:0] rs1 011 rd 0010011 SLTIU
imm[11:0] rs1 100 rd 0010011 XORI
imm[11:0] rs1 110 rd 0010011 ORI
imm[11:0] rs1 111 rd 0010011 ANDI

0000000 shamt rs1 001 rd 0010011 SLLI
0000000 shamt rs1 101 rd 0010011 SRLI
0100000 shamt rs1 101 rd 0010011 SRAI
0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0100000 rs2 rs1 101 rd 0110011 SRA
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND

RV32/RV64 Zicsr Standard Extension
csr rs1 001 rd 1110011 CSRRW
csr uimm 101 rd 1110011 CSRRWI

8

2.6 Hazards

As you have learned in lecture, pipelines create hazards. Your design will have to resolve both
control and data hazards. You must resolve data hazards by implementing forwarding whenever
possible. This means that you must forward data from your data memory instead of stalling your
pipeline or injecting NOPs. All data hazards can be resolved by forwarding in a three-stage pipeline.

You’ll have to deal with the following types of hazards:

1. Read-after-write data hazards Consider carefully how to handle instructions that de-
pend on a preceding load instruction, as well as those that depend on a previous arithmetic
instruction.

2. Control hazards What do you do when you encounter a branch instruction, a jal (jump
and link), or jalr (jump from register and link)? You will have to choose whether to predict
branches as taken or not taken by default and kill instructions that weren’t supposed to
execute if needed. You can begin by resolving branches by stalling the pipeline, and when
your processor is functional, move to naive branch prediction.

2.7 Register File

We have provided a register file module for you in EECS151.v: ASYNC_RAM_1W2R. The register file
has two asynchronous-read ports and one synchronous-write port (positive edge). In addition, you
should ensure that register 0 is not writable in your own logic, i.e. reading from register 0 always
returns 0.

2.8 RAMs

In this project, we will be using some memory blocks defined in EECS151.v to implement memories
for the processor. As you may recall in previous lab exercises, the memory blocks can be either
synthesized to Block RAMs or LUTRAMs on FPGA. For the project, our memory blocks will be
mapped to Block RAMs. Therefore, read and write to memory are synchronous.

2.8.1 Initialization

For synthesis, the BIOS memory is initialized with the contents of the BIOS program, and the
other memories are zeroed out.

For simulation, the provided testbenches initialize the BIOS memory with a program specified by
the testbench (see sim/assembly_testbench.v).

2.8.2 Endianness + Addressing

The instruction and data RAMs have 16384 32-bit rows, as such, they accept 14 bit addresses. The
RAMs are word-addressed; this means that every unique 14 bit address refers to one 32-bit row
(word) of memory.

However, the memory addressing scheme of RISC-V is byte-addressed. This means that every
unique 32 bit address the processor computes (in the ALU) points to one 8-bit byte of memory.

9

We consider the bottom 16 bits of the computed address (from the ALU) when accessing the RAMs.
The top 14 bits are the word address (for indexing into one row of the block RAM), and the bottom
two are the byte offset (for indexing to a particular byte in a 32 bit row).

Figure 1: Block RAM organization. The labels for row address should read 14’h0 and 14’h1.

Figure 1 illustrates the 14-bit word addresses and the two bit byte offsets. Observe that the RAM
organization is little-endian, i.e. the most significant byte is at the most significant memory
address (offset ’11’).

2.8.3 Reading from RAMs

Since the RAMs have 32-bit rows, you can only read data out of the RAM 32-bits at a time. This
is an issue when executing an lh or lb instruction, as there is no way to indicate which 8 or 16 of
the 32 bits you want to read out.

Therefore, you will have to shift and mask the output of the RAM to select the appropriate portion
of the 32-bits you read out. For example, if you want to execute a lbu on a byte address ending in
2'b10, you will only want bits [23:16] of the 32 bits that you read out of the RAM (thus storing
{24'b0, output[23:16]} to a register).

2.8.4 Writing to RAMs

To take care of sb and sh, note that the we input to the instruction and data memories is 4 bits
wide. These 4 bits are a byte mask telling the RAM which of the 4 bytes to actually write to. If
we={4’b1111}, then all 32 bits passed into the RAM would be written to the address given.

Here’s an example of storing a single byte:

• Write the byte 0xa4 to address 0x10000002 (byte offset = 2)

• Set we = {4'b0100}

• Set din = {32'hxx_a4_xx_xx} (x means don’t care)

10

2.9 Memory Architecture

The standard RISC pipeline is usually depicted with separate instruction and data memories.
Although this is an intuitive representation, it does not let us modify the instruction memory to
run new programs. Your CPU, by the end of this checkpoint, will be able to receive compiled RISC-
V binaries though the UART, store them into instruction memory, then jump to the downloaded
program. To facilitate this, we will adopt a modified memory architecture shown in Figure 2.

IMEM
addrb[13:0]

doutb[31:0]

BIOS
PC

douta[31:0]

addra[11:0]

PC

inst

PC[30]

DMEM
addra[13:0]

douta[31:0]

BIOS
ALU

doutb[31:0]

addrb[11:0]

ALU

data
out
from
memory

addr

IMEM

dina[31:0]
wea[3:0]

rs2
b/h/w

addra[13:0]ALU
dina[31:0]
wea[3:0]

rs2
b/h/w

Figure 2: The Riscv151 memory architecture. There is only 1 IMEM and DMEM instance in
Riscv151 but their ports are shown separately in this figure for clarity. The left half of the figure
shows the instruction fetch logic and the right half shows the memory load/store logic.

2.9.1 Summary of Memory Access Patterns

The memory architecture will consist of three RAMs (instruction, data, and BIOS). The RAMs
are memory resources (block RAMs) contained within the FPGA chip, and no external (off-chip,
DRAM) memory will be used for this project.

The processor will begin execution from the BIOS memory, which will be initialized with the BIOS
program (in software/bios). The BIOS program should be able to read from the BIOS memory
(to fetch static data and instructions), and read and write the instruction and data memories. This
allows the BIOS program to receive user programs over the UART from the host PC and load them
into instruction memory.

You can then instruct the BIOS program to jump to an instruction memory address, which begins
execution of the program that you loaded. At any time, you can press the reset button on the
board to return your processor to the BIOS program.

2.9.2 Unaligned Memory Accesses

In the official RISC-V specification, unaligned loads and stores are supported. However, in your
project, you can ignore instructions that request an unaligned access. Assume that the compiler
will never generate unaligned accesses.

11

2.9.3 Address Space Partitioning

Your CPU will need to be able to access multiple sources for data as well as control the destination of
store instructions. In order to do this, we will partition the 32-bit address space into four regions:
data memory read and writes, instruction memory writes, BIOS memory reads, and memory-
mapped I/O. This will be encoded in the top nibble (4 bits) of the memory address generated in
load and store operations, as shown in Table 2. In other words, the target memory/device of a load
or store instruction is dependent on the address. The reset signal should reset the PC to the value
defined by the parameter RESET_PC which is by default the base of BIOS memory (0x40000000).

Table 2: Memory Address Partitions

Address[31:28] Address Type Device Access Notes

4’b00x1 Data Data Memory Read/Write
4’b0001 PC Instruction Memory Read-only
4’b001x Data Instruction Memory Write-Only Only if PC[30] == 1’b1
4’b0100 PC BIOS Memory Read-only
4’b0100 Data BIOS Memory Read-only
4’b1000 Data I/O Read/Write

Each partition specified in Table 2 should be enabled based on its associated bit in the address
encoding. This allows operations to be applied to multiple devices simultaneously, which will be
used to maintain memory consistency between the data and instruction memory.

For example, a store to an address beginning with 0x3 will write to both the instruction memory
and data memory, while storing to addresses beginning with 0x2 or 0x1 will write to only the
instruction or data memory, respectively. For details about the BIOS and how to run programs on
your CPU, see Section ??.

Please note that a given address could refer to a different memory depending on which address type
it is. For example the address 0x10000000 refers to the data memory when it is a data address
while a program counter value of 0x10000000 refers to the instruction memory.

The note in the table above (referencing PC[30]), specifies that you can only write to instruction
memory if you are currently executing in BIOS memory. This prevents programs from being self-
modifying, which would drastically complicate your processor.

2.9.4 Memory Mapped I/O

At this stage in the project the only way to interact with your CPU is through the UART. The
UART from Lab 5 accomplishes the low-level task of sending and receiving bits from the serial
lines, but you will need a way for your CPU to send and receive bytes to and from the UART. To
accomplish this, we will use memory-mapped I/O, a technique in which registers of I/O devices are
assigned memory addresses. This enables load and store instructions to access the I/O devices as
if they were memory.

To determine CPI (cycles per instruction) for a given program, the I/O memory map is also used
to include instruction and cycle counters.

12

Table 3 shows the memory map for this stage of the project.

Table 3: I/O Memory Map

Address Function Access Data Encoding

32'h80000000 UART control Read {30'b0, uart_rx_data_out_valid, uart_tx_data_in_ready}

32'h80000004 UART receiver data Read {24'b0, uart_rx_data_out}

32'h80000008 UART transmitter data Write {24'b0, uart_tx_data_in}

32'h80000010 Cycle counter Read Clock cycles elapsed
32'h80000014 Instruction counter Read Number of instructions executed
32'h80000018 Reset counters to 0 Write N/A

You will need to determine how to translate the memory map into the proper ready-valid handshake
signals for the UART. Your UART should respond to sw, sh, and sb for the transmitter data
address, and should also respond to lw, lh, lb, lhu, and lbu for the receiver data and control
addresses.

You should treat I/O such as the UART just as you would treat the data memory. This means
that you should assert the equivalent write enable (i.e. valid) and data signals at the end of the
execute stage, and read in data during the memory stage. The CPU itself should not check the
uart_rx_data_out_valid and uart_tx_data_in_ready signals; this check is handled in software.
The CPU needs to drive uart_rx_data_out_ready and uart_tx_data_in_valid correctly.

The cycle counter should be incremented every cycle, and the instruction counter should be in-
cremented for every instruction that is committed (you should not count bubbles injected into
the pipeline or instructions run during a branch mispredict). From these counts, the CPI of the
processor can be determined for a given benchmark program.

2.10 Testing

The design specified for this project is a complex system and debugging can be very difficult without
tests that increase visibility of certain areas of the design. In assigning partial credit at the end
for incomplete projects, we will look at testing as an indicator of progress. A reasonable order in
which to complete your testing is as follows:

1. Test that your modules work in isolation via Verilog testbenches that you write yourself

2. Test that your CPU pipeline works with the sim/cpu_tb.v

3. Test the entire CPU one instruction at a time with hand-written assembly — see sim/asm_tb.v

4. Run the riscv-tests ISA test suite (make isa-tests)

5. Some extra tests with other software C program, such as c_tests and uart_parse. They
could help reveal more bugs – see c_tests_tb.v and uart_parse_tb.v

6. Test the CPU’s memory mapped I/O — see echo_tb.v

7. Test the CPU’s memory mapped I/O with BIOS software program — see bios_tb.v

For more information on testing, please see the README at hardware/README.md.

13

2.11 How to Succeed in This Checkpoint

Start early and work on your design incrementally. Draw up a very detailed and organised block
diagram and keep it up to date as you begin writing Verilog. Unit test independent modules such
as the control unit, ALU, and regfile. Write thorough and complex assembly tests by hand, and
don’t solely rely on the RISC-V ISA test suite. The final BIOS program is several 1000 lines of
assembly and will be nearly impossible to debug by just looking at the waveform.

The most valuable asset for this checkpoint will not be your GSIs but will be your fellow peers who
you can compare notes with and discuss design aspects with in detail. However, do NOT under
any circumstances share source code.

Once you’re tired, go home and sleep. When you come back you will know how to solve your
problem.

2.11.1 How to Get Started

It might seem overwhelming to implement all the functionality that your processor must support.
The best way to implement your processor is in small increments, checking the correctness of your
processor at each step along the way. Here is a guide that should help you plan out Checkpoint 1
and 2:

1. Design. You should start with a comprehensive and detailed design/schematic. Enumerate
all the control signals that you will need. Be careful when designing the memory fetch stage
since all the memories we use (BIOS, instruction, data, IO) are synchronous.

2. First steps. Implementing some modules that are easy to write and test.

3. Control Unit + other small modules. Implement the control unit, ALU, and any other small
independent modules. Unit test them.

4. Memory. In the beginning, only use the BIOS memory in the instruction fetch stage and only
use the data memory in the memory stage. This is enough to run assembly tests.

5. Connect stages and pipeline. Connect your modules together and pipeline them. At this
point, you should be able to run integration tests using assembly tests for most R and I type
instructions.

6. Implement handling of control hazards. Insert bubbles into your pipeline to resolve control
hazards associated with JAL, JALR, and branch instructions. Don’t worry about data hazard
handling for now. Test that control instructions work properly with assembly tests.

7. Implement data forwarding for data hazards. Add forwarding muxes and forward the outputs
of the ALU and memory stage. Remember that you might have to forward to ALU input A,
ALU input B, and data to write to memory. Test forwarding aggressively; most of your bugs
will come from incomplete or faulty forwarding logic. Test forwarding from memory and from
the ALU, and with control instructions.

8. Add BIOS memory reads. Add the BIOS memory block RAM to the memory stage to be
able to load data from the BIOS memory. Write assembly tests that contain some static data
stored in the BIOS memory and verify that you can read that data.

14

9. Add Inst memory writes and reads. Add the instruction memory block RAM to the memory
stage to be able to write data to it when executing inside the BIOS memory. Also add the
instruction memory block RAM to the instruction fetch stage to be able to read instructions
from the inst memory. Write tests that first write instructions to the instruction memory, and
then jump (using jalr) to instruction memory to see that the right instructions are executed.

10. Run Riscv151 testbench. The testbench verifies if your Riscv151 is able to read the RV32I
instructions from instruction memory block RAM, execute, and write data to either the
Register File or data memory block RAM.

11. Run isa testbench. The testbench works with the RISCV ISA tests. This comprehensive test
suites verifies the functionality of your processor.

12. Run software testbench. The testbench works with the software programs under software

using the CSR check mechanism as similar to the isa_testbench. Try testing with all the
supported software programs since they could expose more hazard bugs.

13. Add instruction and cycle counters. Begin to add the memory mapped IO components, by
first adding the cycle and instruction counters. These are just 2 32-bit registers that your
CPU should update on every cycle and every instruction respectively. Write tests to verify
that your counters can be reset with a sw instruction, and can be read from using a lw

instruction.

14. Integrate UART. Add the UART to the memory stage, in parallel with the data, instruction,
and BIOS memories. Detect when an instruction is accessing the UART and route the data
to the UART accordingly. Make sure that you are setting the UART ready/valid control
signals properly as you are feeding or retrieving data from it. We have provided you with the
echo_testbench which performs a test of the UART. In addition, also test with c_testbench

and bios_testbench.

15. Run the BIOS. If everything so far has gone well, program the FPGA. Verify that the BIOS
performs as expected. As a precursor to this step, you might try to build a bitstream with
the BIOS memory initialized with the echo program.

16. Run matrix multiply. Load the mmult program with the hex_to_serial utility (located under
scripts/), and run mmult on the FPGA. Verify that it returns the correct checksum.

17. Check CPI. Compute the CPI when running the mmult program. If you achieve a CPI 1.2 or
smaller, that is acceptable, but if your CPI is larger than that, you should think of ways to
reduce it.

2.12 Checkoff

The checkoff is divided into two stages: block diagram/design and implementation. The second
part will require significantly more time and effort than the first one. As such, completing the block
diagram in time for the design review is crucial to your success in this project.

15

2.12.1 Checkpoint 1

Block Diagram
The first checkpoint requires a detailed block diagram of your datapath. The diagram should
have a greater level of detail than a high level RISC datapath diagram. You may complete this
electronically or by hand.

If working by hand, we recommend working in pencil and combining several sheets of paper for a
larger workspace. If doing it electronically, you can use Inkscape, Google Drawings, draw.io or any
program you want.

You should be able to describe in detail any smaller sub-blocks in your diagram. Though the
diagrams from textbooks/lecture notes are a decent starting place, remember that
they often use asynchronous-read RAMs for the instruction and data memories, and
we will be using synchronous-read block RAMs.

Additionally, you will be asked to provide short answers to the following questions based on how
you structure your block diagram. The questions are intended to make you consider all possible
cases that might happen when your processor execute instructions, such as data or control hazards.
It might be a good idea to take a moment to think of the questions first, then draw your diagram
to address them.

Questions

1. How many stages is the datapath you’ve drawn? (i.e. How many cycles does it take to execute
1 instruction?)

2. How do you handle ALU → ALU hazards?

addi x1, x2, 100

addi x2, x1, 100

3. How do you handle ALU → MEM hazards?

addi x1, x2, 100

sw x1, 0(x3)

4. How do you handle MEM → ALU hazards?

lw x1, 0(x3)

addi x1, x1, 100

5. How do you handle MEM → MEM hazards?

lw x1, 0(x2)

sw x1, 4(x2)

also consider:

lw x1, 0(x2)

sw x3, 0(x1)

16

6. Do you need special handling for 2 cycle apart hazards?

addi x1, x2, 100

nop

addi x1, x1, 100

7. How do you handle branch control hazards? (What is the mispredict latency, what prediction
scheme are you using, are you just injecting NOPs until the branch is resolved, what about
data hazards in the branch?)

8. How do you handle jump control hazards? Consider jal and jalr separately. What optimiza-
tions can be made to special-case handle jal?

9. What is the most likely critical path in your design?

10. Where do the UART modules, instruction, and cycle counters go? How are you going to drive
uart_tx_data_in_valid and uart_rx_data_out_ready (give logic expressions)?

11. What is the role of the CSR register? Where does it go?

12. When do we read from BIOS for instructions? When do we read from IMem for instructions?
How do we switch from BIOS address space to IMem address space? In which case can
we write to IMem, and why do we need to write to IMem? How do we know if a memory
instruction is intended for DMem or any IO device?

Commit your block diagram and your writeup to your team repository under fa22_fpga_teamXX/docs
by Nov 4, 2022. Please also remember to push your working IO circuits to your GitHub repository.

2.12.2 Checkpoint 2: Base RISCV151 System

This checkpoint requires a fully functioning three stage RISC-V CPU as described in this specifica-
tion. Checkoff will consist of a demonstration of the BIOS functionality, loading a program (echo
and mmult) over the UART, and successfully jumping to and executing the program.

Additionally, please find the maximum achievable frequency of your CPU implementation. To do so,
lower the CPU_CLOCK_PERIOD (starting at 20, with a step size of 1) in hardware/src/z1top.v until
the Implementation fails to meet timing. Please report the critical path in your implementation.

Checkpoint 2 materials should be committed to your project repository by Nov 18,
2022.

2.12.3 Checkpoints 1 & 2 Deliverables Summary

17

Deliverable
Due Date
(for all sections)

Description

Block Diagram, RISC-V
ISA Questions, IO code

Nov 4, 2022

Push your block diagram, your write-up,
and IO code to your GitHub repository.
In-lab Checkoff: Sit down with a GSI and
go over your design in detail.

RISC-V CPU, Fmax and
Crit. path

Nov 18, 2022

Check in code to GitHub.
In-lab Checkoff: Demonstrate that the
BIOS works, you can use hex_to_serial

to load the echo program, jal to it
from the BIOS, and have that program
successfully execute. Load the mmult
program with hex_to_serial, jal to
it, and have it execute successfully and
return the benchmarking results and
correct checksum. Your CPI should not
be greater than 1.2

18

3 Checkpoint 3 - Cache

A processor operates on data in memory. Memory can hold billions of bits, which can either be
instructions or data. In a VLSI design, it is a very bad idea to store this many bits close to the
processor. The chip area required would be huge - consider how many DRAM chips your PC has,
and that SRAM cells (which can actually be implemented in the same CMOS process) are much
bigger than DRAM cells. Moreover, the entire processor would have to slow down to accommodate
delays in the large memory array. Instead, caches are used to create the illusion of a large memory
with low latency.

Your task is to implement a (relatively) simple data cache for your RISC-V processor, based on
the interface specified below.

3.1 Cache overview

When you request data at a given address, the cache will see if it is stored locally. If it is (cache
hit), it is returned immediately. Otherwise if it is not found (cache miss), the cache fetches the bits
from the main memory. Caches store data in “ways.” A way is a logical element which contains
valid bits, tag bits, and data. The simplest type of cache is direct-mapped (a 1-way cache). A
cache stores data in larger units (lines) than single words. In each way, a given address may only
occupy a single location, determined by the lowest bits of the cache line address. The remaining
address bits are called the “tag” and are stored so that we can check if a given cache line belongs
to a given address. The valid bit indicates which lines contain valid data. Multi-way caches allow
more flexibility in what data is stored in the cache, since there are multiple locations for a line to
occupy (the number of ways). For this reason, a ”replacement policy” is needed. This is used to
decide which way’s data to evict when fetching new data. For this project you may use any policy
you wish, but pseudo-random is recommended.

3.2 Guidelines and requirements

You have been given the interface of a cache (Cache.v) and your next task is to implement the
cache. EECS151 students should build a direct-mapped cache, and EECS251 students are required
to implement a cache that either:

• is configurable to be either direct-mapped or at least 2-way set associative; or

• is set-associative with configurable associativity.

You are welcome to implement a more performant cache if you desire.

You should develop a state machine that covers all the events that your cache needs to handle for
both hits and misses. You can do it without an explicit state machine, but this is not recommended.
Keep in mind you will need to write any valid data back to main memory before you start refilling
the cache (you can use a write-back or a write-through policy). Both of these transactions will take
multiple cycles.

19

3.3 Checkoff

Checkpoint 3 materials should be committed to your project repository by Dec 02,
2021.

20

4 Checkpoint 4 - Optimization

Checkpoint 4 is an optimization checkpoint lumped with the final checkoff. This part of the project
is designed to give students freedom to implement the optimizations of their choosing to improve the
performance of their processor. 251 students must implement branch prediction (details
listed in section 4).

The optimization goal for this project is to minimize the execution time on the mmult program,
as defined by the ’Iron Law’ of Processor Performance.

Time

Program
=

Instructions

Program
× Cycles

Instruction
× Time

Cycle

The number of instructions is fixed, but you have freedom to change the CPI and the CPU clock
frequency. Often you will find that you will have to sacrifice CPI to achieve a higher clock frequency,
but there also will exist opportunities to improve one or both of the variables without compromises.

4.1 Grading on Optimization: Frequency vs. CPI

The bare minimum is that you should improve the achievable frequency of your existing implemen-
tation since Checkpoint 2.

You must demonstrate that your processor has a working BIOS, can load and execute mmult (CPI
does not need to be less than 1.2).

Full credit will be awarded if you’re able to evaluate different design trade-off points (at least
three) between frequency and CPI of mmult (especially if you have implemented some interesting
optimization for CPI and increase the frequency further would degrade the performance instead of
helping).

Also note that your final optimized design does not need to be strictly three-stage pipeline. Extra
credit will be awarded based on additional optimizations listed in the extra credit section, please
check with a GSI ahead of time if you are expanding to include these. If you have other ideas please
check with a GSI to see if it can be awarded extra credit.

A very minor component of the optimization grade is based total FPGA resource utilization,
with the best designs using as few resources as possible. Credit for your area optimizations will be
calculated using a cost function. At a high level, the cost function will look like:

Cost = CLUT×# of LUTs+CBRAM×# of Block RAMs+CFF×# of FFs+CDSP×# of DSP Blocks

where CLUT, CBRAM, CFF, and CDSP are constant value weights that will be decided upon based on
how much each resource that you use should cost. As part of your final grade we will evaluate the
cost of your design based on this metric. Keep in mind that cost is only one very small component
of your project grade. Correct functionality is far more important.

4.2 Clock Generation Info + Changing Clock Frequency

Open up z1top.v. There’s top level input called CLK_125MHZ_FPGA. It’s a 125 MHz clock signal,
which is used to derive the CPU clock.

21

Scrolling down, there’s an instantiation of clock_wizard generated from Vivado, which is a wrapper
module of PLL (phase locked loop) primitive on the FPGA. This is a circuit that can create a new
clock from an existing clock with a user-specified multiply-divide ratio.

The clk_in1 input clock of the PLL is driven by the 125 MHz CLK_125MHZ_FPGA. The frequency
of clk_out1 is calculated as:

clk out1 f = clk in1 f × CLKFBOUT MULTF

DIVCLK DIVIDE× CLKOUT0 DIVIDE

In our case we get:

clk out1 f = 125 MHz× 8

1× 20
= 50 MHz

You just need to change the local parameter CPU_CLOCK_PERIOD in z1top.v to set the target clock
frequency for your CPU.

4.3 Critical Path Identification

After running make write-bitstream, timing analysis will be performed to determine the critical
path(s) of your design. The timing tools will automatically figure out the CPU’s clock timing
constraint based on CPU_CLOCK_PERIOD in z1top.v.

The critical path can be found by looking in

z1top_proj/z1top_proj.runs/impl_1/z1top_timing_summary_routed.rpt.

Look for the paths within your CPU.

For each timing path look for the attribute called “slack”. Slack describes how much extra time the
combinational delay of the path has before the rising edge of the receiving clock. It is a setup time
attribute. Positive slack means that this timing path resolves and settles before the rising edge of
the clock, and negative slack indicates a setup time violation.

There are some common delay types that you will encounter. LUT delays are combinational delays
through a LUT. net delays are from wiring delays. They come with a fanout attribute which you
should aim to minimize. Notice that your logic paths are usually dominated by routing delay;
as you optimize, you should reach the point where the routing and LUT delays are about equal
portions of the total path delay.

4.3.1 Schematic View

To visualize the path, you can open the Vivado project z1top_proj/z1top_proj.xpr. Click Open
Implemented Design after the implementation to open the Device Floorplan view. Navigate (on the
Timing pane at the bottom) to Intra-Clock Paths → cpu_clk → Setup. You can double-click
any path to see the logic elements along it, or you can right-click and select Schematic to see a
schematic view of the path.

The paths in post-PAR timing report may be hard to decipher since Vivado does some optimization
to move/merge registers and logic across module boundaries. You can also use the keep hierarchy

attribute to prevent Vivado from

22

https://www.xilinx.com/support/answers/54778.html
https://www.xilinx.com/support/answers/54778.html

// in z1top.v

(* keep_hierarchy="yes" *) Riscv151 #() cpu ();

4.3.2 Finding Actual Critical Paths

When you first check the timing report with a 50 MHz clock, you might not see your ’actual’ critical
path. 50 MHz is easy to meet and the tools will only attempt to optimize routing until timing is
met, and will then stop.

You should increase the clock frequency slowly and rerun make write-bitstream until you fail to
meet timing. At this point, the critical paths you see in the report are the ’actual’ ones you need
to work on.

Don’t try to increase the clock speed up all the way to 100 MHz initially, since that will cause the
routing tool to give up even before it tried anything.

4.4 Optimization Tips

As you optimize your design, you will want to try running mmult on your newly optimized designs
as you go along. You don’t want to make a lot of changes to your processor, get a better clock
speed, and then find out you broke something along the way.

You will find that sacrificing CPI for a better clock speed is a good bet to make in some cases, but
will worsen performance in others. You should keep a record of all the different optimizations you
tried and the effect they had on CPI and minimum clock period; this will be useful for the final
report when you have to justify your optimization and architecture decisions.

There is no limit to what you can do in this section. The only restriction is that you have to run the
original, unmodified mmult program so that the number of instructions remain fixed. You can add
as many pipeline stages as you want, stall as much or as little as desired, add a branch predictor,
or perform any other optimizations. If you decide to do a more advanced optimization (like a 5
stage pipeline), ask the staff to see if you can use it as extra credit in addition to the optimization.

Keep notes of your architecture modifications in the process of optimization. Consider, but don’t
obsess, over area usage when optimizing (keep records though).

4.5 Checkoff

Refer to 4.1. You will run your new implementation on the FPGA again and will be graded based
on the best mmult performance you were able to achieve, but more critically on how many design
points you explored.

23

5 Grading and Extra Credit

All groups must complete the final checkoff by Dec 09, 2022. If you are unable to make
the deadline for any of the checkpoints, it is still in your best interest to complete the design late,
as you can still receive most of the credit if you get a working design by the final checkoff.

5.1 Checkpoints

We have divided the project up into checkpoints so that you (and the staff) can pace your progress.

5.2 Style: Organization, Design

Your code should be modular, well documented, and consistently styled. Projects with incompre-
hensible code will upset the graders.

5.3 Final Project Report

Upon completing the project, you will be required to submit a report detailing the progress of your
EECS151/251A project. The report should document your final circuit at a high level, and describe
the design process that led you to your implementation. We expect you to document and justify
any tradeoffs you have made throughout the semester, as well as any pitfalls and lessons learned.
Additionally, you will document any optimizations made to your system, the system’s performance
in terms of area (resource use), clock period, and CPI, and other information that sets your project
apart from other submissions.

The staff emphasizes the importance of the project report because it is the product you are able
to take with you after completing the course. All of your hard work should reflect in the project
report. Employers may (and have) ask to examine your EECS151/251A project report during
interviews. Put effort into this document and be proud of the results. You may consider the report
to be your medal for surviving EECS151/251A.

5.3.1 Report Details

You will turn in your project report PDF file on Gradescope by Dec 12, 2022, 11:59PM. The
report should be around 8 pages total with around 5 pages of text and 3 pages of figures (± a
few pages on each), though this is not a strict limit. Ideally you should mix the text and figures
together.

Here is a suggested outline and page breakdown for your report. You do not need to strictly follow
this outline, it is here just to give you an idea of what we will be looking for.

• Project Functional Description and Design Requirements. Describe the design ob-
jectives of your project. You don’t need to go into details about the RISC-V ISA, but you
need to describe the high-level design parameters (pipeline structure, memory hierarchy, etc.)
for this version of the RISC-V. (≈ 0.5 page)

• High-level organization. How is your project broken down into pieces. Block diagram
level-description. We are most interested in how you broke the CPU datapath and control

24

down into submodules, since the code for the later checkpoints will be pretty consistent across
all groups. Please include an updated block diagram (≈ 1 page).

• Detailed Description of Sub-pieces. Describe how your circuits work. Concentrate here
on novel or non-standard circuits. Also, focus your attention on the parts of the design that
were not supplied to you by the teaching staff. (≈ 2 pages).

• Status and Results. What is working and what is not? At what frequency (50MHz or
greater) does your design run? Do certain checkpoints work at a higher clock speed while
others only run at 50 MHz? Please also provide the area utilization. Also include the CPI
and minimum clock period of running mmult for the various optimizations you made to your
processor. This section is particularly important for non-working designs (to help us assign
partial credit). (≈ 1-2 pages).

• Conclusions. What have you learned from this experience? How would you do it different
next time? (≈ 0.5 page).

• Division of Labor. This section is mandatory. Each team member will turn in
a separate document from this part only. The submission for this document will also
be on Gradescope. How did you organize yourselves as a team. Exactly who did what? Did
both partners contribute equally? Please note your team number next to your name at the
top. (≈ 0.5 page).

When we grade your report, we will grade for clarity, organization, and grammar. Both team
members need to submit the Final Report assignment (same report content, but with different
writeup for division of labor) to Gradescope. We require your final report to be typeset
using tools like LATEX, or Markdown, or Google Docs/MS Word/Apple Pages etc.,
but the file that you turn in must be a single PDF file.

5.4 Extra Credit

Teams that have completed the base set of requirements are eligible to receive extra credit worth
up to 10% of the project grade by adding extra functionality and demonstrating it at the time of
the final checkoff.

The following are suggested projects that may or may not be feasible in one week.

• Branch Predictor (required for 251 students): Implement a two bit (or more complicated)
branch predictor with a branch history table (BHT) to replace the naive ’always taken’
predictor used in the project

• 5-Stage Pipeline: Add more pipeline stages and push the clock frequency past 100MHz

• RISC-V M Extension: Extend the processor with a hardware multiplier and divider

• Everything 100MHz or beyond: Push the frequency of the full z1top to 100MHz or better.

When the time is right, if you are interested in implementing any of these, see the staff for more
details.

25

5.5 Project Grading

70% Functionality at project due date. You will demonstrate the functionality of your processor
during the final interview.

15% Optimization at final project due date. This score is contingent on implementing all the
required functionality. An incomplete project will receive a zero in this category.

5% Checkpoint functionality. You are graded on functionality for each completed checkpoint at
the checkpoint deadline. The total of these scores makes up 5% of your project grade. The
weight of each checkpoint’s score may vary.

10% Final report and style demonstrated throughout the project.

Not included in the above tabulations are point assignments for extra credit as discussed above.
Extra credit is discussed below:

Up to 10% Additional functionality. Credit based on additional functionality will be qualified
on a case by case basis. Students interested in expanding the functionality of their project
must meet with a GSI well ahead of time to be qualified for extra credit. Point value will be
decided by the course staff on a case by case basis, and will depend on the complexity of your
proposal, the creativity of your idea, and relevance to the material taught.

26

Appendices

Appendix A Local Development

You can build the project on your laptop but there are a few dependencies to install. In addition
to Vivado and Icarus Verilog, you need a RISC-V GCC cross compiler and an elf2hex utility.

A.1 Linux

A system package provides the RISC-V GCC toolchain (Ubuntu): sudo apt install gcc-riscv64-linux-gnu.
There are packages for other distros too.

To install elf2hex:

git clone git@github.com:sifive/elf2hex.git

cd elf2hex

autoreconf -i

./configure --target=riscv64-linux-gnu

make

vim elf2hex # Edit line 7 to remove 'unknown'

sudo make install

A.2 OSX, Windows

Download SiFive’s GNU Embedded Toolchain from here. See the ’Prebuilt RISC-V GCC Toolchain
and Emulator’ section.

After downloading and extracting the tarball, add the bin folder to your PATH. For Windows, make
sure you can execute riscv64-unknown-elf-gcc -v in a Cygwin terminal. Do the same for OSX,
using the regular terminal.

For Windows, re-run the Cygwin installer and install the packages
git, python3, python2, autoconf, automake, libtool. See this StackOverflow question if
you need help selecting the exact packages to install.

Clone the elf2hex repo git clone git@github.com:sifive/elf2hex. Follow the instructions in
the elf2hex repo README to build it from git. You should be able to run riscv64-unknown-elf-elf2hex
in a terminal.

27

https://www.sifive.com/boards
https://stackoverflow.com/questions/47168311/cygwin-and-failed-to-run-aclocal-no-such-file-or-directory
https://github.com/sifive/elf2hex

Appendix B BIOS

This section was written by Vincent Lee, Ian Juch, and Albert Magyar.

B.1 Background

For the first checkpoint we have provided you a BIOS written in C that your processor is instantiated
with. BIOS stands for Basic Input/Output System and forms the bare bones of the CPU system
on initial boot up. The primary function of the BIOS is to locate, and initialize the system and
peripheral devices essential to the PC operation such as memories, hard drives, and the CPU cores.

Once these systems are online, the BIOS locates a boot loader that initializes the operating system
loading process and passes control to it. For our project, we do not have to worry about loading the
BIOS since the FPGA eliminates that problem for us. Furthermore, we will not deal too much with
boot loaders, peripheral initialization, and device drivers as that is beyond the scope of this class.
The BIOS for our project will simply allow you to get a taste of how the software and hardware
layers come together.

The reason why we instantiate the memory with the BIOS is to avoid the problem of bootstrap-
ping the memory which is required on most computer systems today. Throughout the next few
checkpoints we will be adding new memory mapped hardware that our BIOS will interface with.
This document is intended to explain the BIOS for checkpoint 1 and how it interfaces with the
hardware. In addition, this document will provide you pointers if you wish to modify the BIOS at
any point in the project.

B.2 Loading the BIOS

For the first checkpoint, the BIOS is loaded into the Instruction memory when you first build it.
As shown in the Checkpoint 1 specification, this is made possible by instantiating your instruction
memory to the BIOS file by building the block RAM with the bios151v3.hex file. If you want to
instantiate a modified BIOS you will have to change this .hex file in your block RAM directory and
rebuild your design and the memory.

To do this, simply cd to the software/bios151v3 directory and make the .hex file by running
“make”. This should generate the .hex file using the compiler tailored to our ISA. The block RAM
will be instantiated with the contents of the .hex file. When you get your design to synthesize and
program the board, open up screen using the same command from Lab 5:

screen $SERIALTTY 115200

or

screen /dev/ttyUSB0 115200

Once you are in screen, if you CPU design is working correctly you should be able to hit Enter
and a carrot prompt '>' will show up on the screen. If this doesn’t work, try hitting the reset
button on the FPGA which is the center compass switch and hit enter. If you can’t get the BIOS
carrot to come up, then your design is not working and you will have to fix it.

28

B.3 Loading Your Own Programs

The BIOS that we provide you is written so that you can actually load your own programs for testing
purposes and benchmarking. Once you instantiate your BIOS block RAM with the bios151v3.hex
file and synthesize your design, you can transfer your own program files over the serial line.

To load you own programs into the memory, you need to first have the .hex file for the program
compiled. You can do this by copying the software directory of one of our C programs folders in
/software directory and editing the files. You can write your own MIPS program by writing test
code to the .s file or write your own c code by modifying the .c file. Once you have the .hex file for
your program, impact your board with your design and run:

hex_to_serial <file name> <target address>

The <file name> field corresponds to the .hex file that you are to uploading to the instruction
memory. The <target address> field corresponds to the location in memory you want to write
your program to.

Once you have uploaded the file, you can fire up screen and run the command:

jal <target hex address>

Where the <target hex address> is where you stored the location of the hex file over serial. Note
that our design does not implement memory protection so try to avoid storing your program over
your BIOS memory. Also note that the instruction memory size for the first checkpoint is limited
in address size so large programs may fail to load. The jal command will change the PC to where
your program is stored in the instruction memory.

B.4 The BIOS Program

The BIOS itself is a fairly simple program and composes of a glorified infinite loop that waits for
user input. If you open the bios151v3.c file, you will see that the main method composes of a large
for loop that prints a prompt and gets user input by calling the read_token method. If at any time
your program execution or BIOS hangs or behaves unexpected, you can hit the reset button on your
board to reset the program execution to the main method. The read_token method continuously
polls the UART for user input from the keyboard until it sees the character specified by ds. In the
case of the BIOS, the termination character read_token is called with is the 0xd character which
corresponds to Enter. The read_token method will then return the values that it received from
the user. Note that there is no backspace option so if you make a mistake you will have to wait
until the next command to fix it.

29

Figure 3: BIOS Execution Flow

The buffer returned from the read_token method with the user input is then parsed by comparing
the returned buffer against commands that the BIOS recognizes. If the BIOS parses a command
successfully it will execute the appropriate subroutine or commands. Otherwise it will tell you that
the command you input is not recognized. If you want to add commands to the BIOS at any time
in the project, you will have to add to the comparisons that follow after the read_token subroutine
in the BIOS.

B.5 The UART

You will notice that some of the BIOS execution calls will call subroutines in the uart.c file which
takes care of the transmission and reception of byte over the serial line. The uart.c file contains
three subroutines. The first subroutine, uwrite_int8 executes a UART transmission for a single
byte by writing to the output data register. The second subroutine uwrite_int8s allows you to
process an array of type int8_t or chars and send them over the serial line. The third routine
uread_int8 polls the UART for valid data and reads a byte from the serial line.

In essence, these three routines are operating the UART on your design from a software view using
the memory mapped I/O. Therefore, in order for the software to operate the memory map correctly,
the uart.c module must store and load from the correct addresses as defined by out memory map.
You will find the necessary memory map addresses in the uart.h file that conforms to the design
specification.

30

B.6 Command List

The following commands are built into the BIOS that we provide for you. All values are interpreted
in hexadecimal and do not require any radix prefix (ex. “0x”). Note that there is not backspace
command.

jal <hexadecimal address> - Moves program execution to the specified address

lw <hexadecimal address> - Displays word at specified address to screen

lhu <hexadecimal address> - Displays half at specified address to screen

lbu <hexadecimal address> - Displays byte at specified address to screen

sw <value> <hexadecimal address> - Stores specified word to address in memory

sh <value> <hexadecimal address> - Stores specified half to address in memory

sb <value> <hexadecimal address> - Stores specified byte to address in memory

There is another command file in the main() method that is used only when you execute hex_to_serial.
When you execute hex_to_serial, your workstation will initiate a byte transfer by calling this
command in the BIOS. Therefore, don’t mess with this command too much as it is one of the more
critical components of your BIOS.

B.7 Adding Your Own Features

Feel free to modify the BIOS code if you want to add your own features during the project for fun
or to make your life easier. If you do choose to modify the BIOS, make sure to preserve essential
functionality such as the I/O and the ability to store programs. In order to add features, you can
either add to the code in the bios151v3.c file or create your own c source and header files. Note
that you do not have access to standard c libraries so you will have to add them yourself if you
need additional library functionality.

31

	Introduction
	Tentative Deadlines for All Sections
	General Project Tips

	Checkpoints 1 & 2 - Three-stage Pipelined RISC-V CPU
	Setting up your Code Repository
	Integrate Designs from Labs
	Project Skeleton Overview
	RISC-V 151 ISA
	CSR Instructions

	Pipelining
	Hazards
	Register File
	RAMs
	Initialization
	Endianness + Addressing
	Reading from RAMs
	Writing to RAMs

	Memory Architecture
	Summary of Memory Access Patterns
	Unaligned Memory Accesses
	Address Space Partitioning
	Memory Mapped I/O

	Testing
	How to Succeed in This Checkpoint
	How to Get Started

	Checkoff
	Checkpoint 1
	Checkpoint 2: Base RISCV151 System
	Checkpoints 1 & 2 Deliverables Summary

	Checkpoint 3 - Cache
	Cache overview
	Guidelines and requirements
	Checkoff

	Checkpoint 4 - Optimization
	Grading on Optimization: Frequency vs. CPI
	Clock Generation Info + Changing Clock Frequency
	Critical Path Identification
	Schematic View
	Finding Actual Critical Paths

	Optimization Tips
	Checkoff

	Grading and Extra Credit
	Checkpoints
	Style: Organization, Design
	Final Project Report
	Report Details

	Extra Credit
	Project Grading

	Appendices
	Local Development
	Linux
	OSX, Windows

	BIOS
	Background
	Loading the BIOS
	Loading Your Own Programs
	The BIOS Program
	The UART
	Command List
	Adding Your Own Features

