LearningApp / Pods / BoringSSL-GRPC / src / crypto / cipher_extra / e_aesccm.c
e_aesccm.c
Raw
/* ====================================================================
 * Copyright (c) 2008 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==================================================================== */

#include <openssl_grpc/aead.h>

#include <assert.h>

#include <openssl_grpc/cpu.h>
#include <openssl_grpc/cipher.h>
#include <openssl_grpc/err.h>
#include <openssl_grpc/mem.h>

#include "../fipsmodule/cipher/internal.h"


struct ccm128_context {
  block128_f block;
  ctr128_f ctr;
  unsigned M, L;
};

struct ccm128_state {
  union {
    uint64_t u[2];
    uint8_t c[16];
  } nonce, cmac;
};

static int CRYPTO_ccm128_init(struct ccm128_context *ctx, const AES_KEY *key,
                              block128_f block, ctr128_f ctr, unsigned M,
                              unsigned L) {
  if (M < 4 || M > 16 || (M & 1) != 0 || L < 2 || L > 8) {
    return 0;
  }
  ctx->block = block;
  ctx->ctr = ctr;
  ctx->M = M;
  ctx->L = L;
  return 1;
}

static size_t CRYPTO_ccm128_max_input(const struct ccm128_context *ctx) {
  return ctx->L >= sizeof(size_t) ? (size_t)-1
                                  : (((size_t)1) << (ctx->L * 8)) - 1;
}

static int ccm128_init_state(const struct ccm128_context *ctx,
                             struct ccm128_state *state, const AES_KEY *key,
                             const uint8_t *nonce, size_t nonce_len,
                             const uint8_t *aad, size_t aad_len,
                             size_t plaintext_len) {
  const block128_f block = ctx->block;
  const unsigned M = ctx->M;
  const unsigned L = ctx->L;

  // |L| determines the expected |nonce_len| and the limit for |plaintext_len|.
  if (plaintext_len > CRYPTO_ccm128_max_input(ctx) ||
      nonce_len != 15 - L) {
    return 0;
  }

  // Assemble the first block for computing the MAC.
  OPENSSL_memset(state, 0, sizeof(*state));
  state->nonce.c[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3);
  if (aad_len != 0) {
    state->nonce.c[0] |= 0x40;  // Set AAD Flag
  }
  OPENSSL_memcpy(&state->nonce.c[1], nonce, nonce_len);
  for (unsigned i = 0; i < L; i++) {
    state->nonce.c[15 - i] = (uint8_t)(plaintext_len >> (8 * i));
  }

  (*block)(state->nonce.c, state->cmac.c, key);
  size_t blocks = 1;

  if (aad_len != 0) {
    unsigned i;
    // Cast to u64 to avoid the compiler complaining about invalid shifts.
    uint64_t aad_len_u64 = aad_len;
    if (aad_len_u64 < 0x10000 - 0x100) {
      state->cmac.c[0] ^= (uint8_t)(aad_len_u64 >> 8);
      state->cmac.c[1] ^= (uint8_t)aad_len_u64;
      i = 2;
    } else if (aad_len_u64 <= 0xffffffff) {
      state->cmac.c[0] ^= 0xff;
      state->cmac.c[1] ^= 0xfe;
      state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 24);
      state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 16);
      state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 8);
      state->cmac.c[5] ^= (uint8_t)aad_len_u64;
      i = 6;
    } else {
      state->cmac.c[0] ^= 0xff;
      state->cmac.c[1] ^= 0xff;
      state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 56);
      state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 48);
      state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 40);
      state->cmac.c[5] ^= (uint8_t)(aad_len_u64 >> 32);
      state->cmac.c[6] ^= (uint8_t)(aad_len_u64 >> 24);
      state->cmac.c[7] ^= (uint8_t)(aad_len_u64 >> 16);
      state->cmac.c[8] ^= (uint8_t)(aad_len_u64 >> 8);
      state->cmac.c[9] ^= (uint8_t)aad_len_u64;
      i = 10;
    }

    do {
      for (; i < 16 && aad_len != 0; i++) {
        state->cmac.c[i] ^= *aad;
        aad++;
        aad_len--;
      }
      (*block)(state->cmac.c, state->cmac.c, key);
      blocks++;
      i = 0;
    } while (aad_len != 0);
  }

  // Per RFC 3610, section 2.6, the total number of block cipher operations done
  // must not exceed 2^61. There are two block cipher operations remaining per
  // message block, plus one block at the end to encrypt the MAC.
  size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1;
  if (plaintext_len + 15 < plaintext_len ||
      remaining_blocks + blocks < blocks ||
      (uint64_t) remaining_blocks + blocks > UINT64_C(1) << 61) {
    return 0;
  }

  // Assemble the first block for encrypting and decrypting. The bottom |L|
  // bytes are replaced with a counter and all bit the encoding of |L| is
  // cleared in the first byte.
  state->nonce.c[0] &= 7;
  return 1;
}

static int ccm128_encrypt(const struct ccm128_context *ctx,
                          struct ccm128_state *state, const AES_KEY *key,
                          uint8_t *out, const uint8_t *in, size_t len) {
  // The counter for encryption begins at one.
  for (unsigned i = 0; i < ctx->L; i++) {
    state->nonce.c[15 - i] = 0;
  }
  state->nonce.c[15] = 1;

  uint8_t partial_buf[16];
  unsigned num = 0;
  if (ctx->ctr != NULL) {
    CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce.c, partial_buf,
                                &num, ctx->ctr);
  } else {
    CRYPTO_ctr128_encrypt(in, out, len, key, state->nonce.c, partial_buf, &num,
                          ctx->block);
  }
  return 1;
}

static int ccm128_compute_mac(const struct ccm128_context *ctx,
                              struct ccm128_state *state, const AES_KEY *key,
                              uint8_t *out_tag, size_t tag_len,
                              const uint8_t *in, size_t len) {
  block128_f block = ctx->block;
  if (tag_len != ctx->M) {
    return 0;
  }

  // Incorporate |in| into the MAC.
  union {
    uint64_t u[2];
    uint8_t c[16];
  } tmp;
  while (len >= 16) {
    OPENSSL_memcpy(tmp.c, in, 16);
    state->cmac.u[0] ^= tmp.u[0];
    state->cmac.u[1] ^= tmp.u[1];
    (*block)(state->cmac.c, state->cmac.c, key);
    in += 16;
    len -= 16;
  }
  if (len > 0) {
    for (size_t i = 0; i < len; i++) {
      state->cmac.c[i] ^= in[i];
    }
    (*block)(state->cmac.c, state->cmac.c, key);
  }

  // Encrypt the MAC with counter zero.
  for (unsigned i = 0; i < ctx->L; i++) {
    state->nonce.c[15 - i] = 0;
  }
  (*block)(state->nonce.c, tmp.c, key);
  state->cmac.u[0] ^= tmp.u[0];
  state->cmac.u[1] ^= tmp.u[1];

  OPENSSL_memcpy(out_tag, state->cmac.c, tag_len);
  return 1;
}

static int CRYPTO_ccm128_encrypt(const struct ccm128_context *ctx,
                                 const AES_KEY *key, uint8_t *out,
                                 uint8_t *out_tag, size_t tag_len,
                                 const uint8_t *nonce, size_t nonce_len,
                                 const uint8_t *in, size_t len,
                                 const uint8_t *aad, size_t aad_len) {
  struct ccm128_state state;
  return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len,
                           len) &&
         ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) &&
         ccm128_encrypt(ctx, &state, key, out, in, len);
}

static int CRYPTO_ccm128_decrypt(const struct ccm128_context *ctx,
                                 const AES_KEY *key, uint8_t *out,
                                 uint8_t *out_tag, size_t tag_len,
                                 const uint8_t *nonce, size_t nonce_len,
                                 const uint8_t *in, size_t len,
                                 const uint8_t *aad, size_t aad_len) {
  struct ccm128_state state;
  return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len,
                           len) &&
         ccm128_encrypt(ctx, &state, key, out, in, len) &&
         ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len);
}

#define EVP_AEAD_AES_CCM_MAX_TAG_LEN 16

struct aead_aes_ccm_ctx {
  union {
    double align;
    AES_KEY ks;
  } ks;
  struct ccm128_context ccm;
};

OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
                          sizeof(struct aead_aes_ccm_ctx),
                      "AEAD state is too small");
#if defined(__GNUC__) || defined(__clang__)
OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >=
                          alignof(struct aead_aes_ccm_ctx),
                      "AEAD state has insufficient alignment");
#endif

static int aead_aes_ccm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
                             size_t key_len, size_t tag_len, unsigned M,
                             unsigned L) {
  assert(M == EVP_AEAD_max_overhead(ctx->aead));
  assert(M == EVP_AEAD_max_tag_len(ctx->aead));
  assert(15 - L == EVP_AEAD_nonce_length(ctx->aead));

  if (key_len != EVP_AEAD_key_length(ctx->aead)) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
    return 0;  // EVP_AEAD_CTX_init should catch this.
  }

  if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
    tag_len = M;
  }

  if (tag_len != M) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
    return 0;
  }

  struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state;

  block128_f block;
  ctr128_f ctr = aes_ctr_set_key(&ccm_ctx->ks.ks, NULL, &block, key, key_len);
  ctx->tag_len = tag_len;
  if (!CRYPTO_ccm128_init(&ccm_ctx->ccm, &ccm_ctx->ks.ks, block, ctr, M, L)) {
    OPENSSL_PUT_ERROR(CIPHER, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  return 1;
}

static void aead_aes_ccm_cleanup(EVP_AEAD_CTX *ctx) {}

static int aead_aes_ccm_seal_scatter(
    const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
    size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
    size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
    size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
  const struct aead_aes_ccm_ctx *ccm_ctx =
      (struct aead_aes_ccm_ctx *)&ctx->state;

  if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
    return 0;
  }

  if (max_out_tag_len < ctx->tag_len) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
    return 0;
  }

  if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
    return 0;
  }

  if (!CRYPTO_ccm128_encrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, out_tag,
                             ctx->tag_len, nonce, nonce_len, in, in_len, ad,
                             ad_len)) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
    return 0;
  }

  *out_tag_len = ctx->tag_len;
  return 1;
}

static int aead_aes_ccm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
                                    const uint8_t *nonce, size_t nonce_len,
                                    const uint8_t *in, size_t in_len,
                                    const uint8_t *in_tag, size_t in_tag_len,
                                    const uint8_t *ad, size_t ad_len) {
  const struct aead_aes_ccm_ctx *ccm_ctx =
      (struct aead_aes_ccm_ctx *)&ctx->state;

  if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
    return 0;
  }

  if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
    return 0;
  }

  if (in_tag_len != ctx->tag_len) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
    return 0;
  }

  uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN];
  assert(ctx->tag_len <= EVP_AEAD_AES_CCM_MAX_TAG_LEN);
  if (!CRYPTO_ccm128_decrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, tag,
                             ctx->tag_len, nonce, nonce_len, in, in_len, ad,
                             ad_len)) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
    return 0;
  }

  if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) {
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
    return 0;
  }

  return 1;
}

static int aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
                                       size_t key_len, size_t tag_len) {
  return aead_aes_ccm_init(ctx, key, key_len, tag_len, 4, 2);
}

static const EVP_AEAD aead_aes_128_ccm_bluetooth = {
    16,  // key length (AES-128)
    13,  // nonce length
    4,   // overhead
    4,   // max tag length
    0,   // seal_scatter_supports_extra_in

    aead_aes_ccm_bluetooth_init,
    NULL /* init_with_direction */,
    aead_aes_ccm_cleanup,
    NULL /* open */,
    aead_aes_ccm_seal_scatter,
    aead_aes_ccm_open_gather,
    NULL /* get_iv */,
    NULL /* tag_len */,
};

const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth(void) {
  return &aead_aes_128_ccm_bluetooth;
}

static int aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
                                         size_t key_len, size_t tag_len) {
  return aead_aes_ccm_init(ctx, key, key_len, tag_len, 8, 2);
}

static const EVP_AEAD aead_aes_128_ccm_bluetooth_8 = {
    16,  // key length (AES-128)
    13,  // nonce length
    8,   // overhead
    8,   // max tag length
    0,   // seal_scatter_supports_extra_in

    aead_aes_ccm_bluetooth_8_init,
    NULL /* init_with_direction */,
    aead_aes_ccm_cleanup,
    NULL /* open */,
    aead_aes_ccm_seal_scatter,
    aead_aes_ccm_open_gather,
    NULL /* get_iv */,
    NULL /* tag_len */,
};

const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth_8(void) {
  return &aead_aes_128_ccm_bluetooth_8;
}