/* * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2014, Intel Corporation. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center, Haifa, Israel * (2) University of Haifa, Israel * * Reference: * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with * 256 Bit Primes" */ #ifndef OPENSSL_HEADER_EC_P256_X86_64_H #define OPENSSL_HEADER_EC_P256_X86_64_H #include <openssl_grpc/base.h> #include <openssl_grpc/bn.h> #include "../bn/internal.h" #if defined(__cplusplus) extern "C" { #endif #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ !defined(OPENSSL_SMALL) // P-256 field operations. // // An element mod P in P-256 is represented as a little-endian array of // |P256_LIMBS| |BN_ULONG|s, spanning the full range of values. // // The following functions take fully-reduced inputs mod P and give // fully-reduced outputs. They may be used in-place. #define P256_LIMBS (256 / BN_BITS2) // ecp_nistz256_neg sets |res| to -|a| mod P. void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); // ecp_nistz256_mul_mont sets |res| to |a| * |b| * 2^-256 mod P. void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]); // ecp_nistz256_sqr_mont sets |res| to |a| * |a| * 2^-256 mod P. void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); // ecp_nistz256_from_mont sets |res| to |in|, converted from Montgomery domain // by multiplying with 1. static inline void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG in[P256_LIMBS]) { static const BN_ULONG ONE[P256_LIMBS] = { 1 }; ecp_nistz256_mul_mont(res, in, ONE); } // ecp_nistz256_to_mont sets |res| to |in|, converted to Montgomery domain // by multiplying with RR = 2^512 mod P precomputed for NIST P256 curve. static inline void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG in[P256_LIMBS]) { static const BN_ULONG RR[P256_LIMBS] = { TOBN(0x00000000, 0x00000003), TOBN(0xfffffffb, 0xffffffff), TOBN(0xffffffff, 0xfffffffe), TOBN(0x00000004, 0xfffffffd)}; ecp_nistz256_mul_mont(res, in, RR); } // P-256 scalar operations. // // The following functions compute modulo N, where N is the order of P-256. They // take fully-reduced inputs and give fully-reduced outputs. // ecp_nistz256_ord_mul_mont sets |res| to |a| * |b| where inputs and outputs // are in Montgomery form. That is, |res| is |a| * |b| * 2^-256 mod N. void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]); // ecp_nistz256_ord_sqr_mont sets |res| to |a|^(2*|rep|) where inputs and // outputs are in Montgomery form. That is, |res| is // (|a| * 2^-256)^(2*|rep|) * 2^256 mod N. void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], BN_ULONG rep); // beeu_mod_inverse_vartime sets out = a^-1 mod p using a Euclidean algorithm. // Assumption: 0 < a < p < 2^(256) and p is odd. int beeu_mod_inverse_vartime(BN_ULONG out[P256_LIMBS], const BN_ULONG a[P256_LIMBS], const BN_ULONG p[P256_LIMBS]); // P-256 point operations. // // The following functions may be used in-place. All coordinates are in the // Montgomery domain. // A P256_POINT represents a P-256 point in Jacobian coordinates. typedef struct { BN_ULONG X[P256_LIMBS]; BN_ULONG Y[P256_LIMBS]; BN_ULONG Z[P256_LIMBS]; } P256_POINT; // A P256_POINT_AFFINE represents a P-256 point in affine coordinates. Infinity // is encoded as (0, 0). typedef struct { BN_ULONG X[P256_LIMBS]; BN_ULONG Y[P256_LIMBS]; } P256_POINT_AFFINE; // ecp_nistz256_select_w5 sets |*val| to |in_t[index-1]| if 1 <= |index| <= 16 // and all zeros (the point at infinity) if |index| is 0. This is done in // constant time. void ecp_nistz256_select_w5(P256_POINT *val, const P256_POINT in_t[16], int index); // ecp_nistz256_select_w7 sets |*val| to |in_t[index-1]| if 1 <= |index| <= 64 // and all zeros (the point at infinity) if |index| is 0. This is done in // constant time. void ecp_nistz256_select_w7(P256_POINT_AFFINE *val, const P256_POINT_AFFINE in_t[64], int index); // ecp_nistz256_point_double sets |r| to |a| doubled. void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a); // ecp_nistz256_point_add adds |a| to |b| and places the result in |r|. void ecp_nistz256_point_add(P256_POINT *r, const P256_POINT *a, const P256_POINT *b); // ecp_nistz256_point_add_affine adds |a| to |b| and places the result in // |r|. |a| and |b| must not represent the same point unless they are both // infinity. void ecp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a, const P256_POINT_AFFINE *b); #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ !defined(OPENSSL_SMALL) */ #if defined(__cplusplus) } // extern C++ #endif #endif // OPENSSL_HEADER_EC_P256_X86_64_H