/* Copyright (c) 2019, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #ifndef OPENSSL_HEADER_TRUST_TOKEN_INTERNAL_H #define OPENSSL_HEADER_TRUST_TOKEN_INTERNAL_H #include <openssl_grpc/base.h> #include <openssl_grpc/ec.h> #include <openssl_grpc/ec_key.h> #include <openssl_grpc/nid.h> #include "../fipsmodule/ec/internal.h" #include <openssl_grpc/trust_token.h> #if defined(__cplusplus) extern "C" { #endif // For the following cryptographic schemes, we use P-384 instead of our usual // choice of P-256. See Appendix I of // https://eprint.iacr.org/2020/072/20200324:214215 which describes two attacks // which may affect smaller curves. In particular, p-1 for P-256 is smooth, // giving a low complexity for the p-1 attack. P-384's p-1 has a 281-bit prime // factor, // 3055465788140352002733946906144561090641249606160407884365391979704929268480326390471. // This lower-bounds the p-1 attack at O(2^140). The p+1 attack is lower-bounded // by O(p^(1/3)) or O(2^128), so we do not need to check the smoothness of p+1. // TRUST_TOKEN_NONCE_SIZE is the size of nonces used as part of the Trust_Token // protocol. #define TRUST_TOKEN_NONCE_SIZE 64 typedef struct { // TODO(https://crbug.com/boringssl/334): These should store |EC_PRECOMP| so // that |TRUST_TOKEN_finish_issuance| can use |ec_point_mul_scalar_precomp|. EC_AFFINE pub0; EC_AFFINE pub1; EC_AFFINE pubs; } TRUST_TOKEN_CLIENT_KEY; typedef struct { EC_SCALAR x0; EC_SCALAR y0; EC_SCALAR x1; EC_SCALAR y1; EC_SCALAR xs; EC_SCALAR ys; EC_AFFINE pub0; EC_PRECOMP pub0_precomp; EC_AFFINE pub1; EC_PRECOMP pub1_precomp; EC_AFFINE pubs; EC_PRECOMP pubs_precomp; } TRUST_TOKEN_ISSUER_KEY; // TRUST_TOKEN_PRETOKEN represents the intermediate state a client keeps during // a Trust_Token issuance operation. typedef struct pmb_pretoken_st { uint8_t t[TRUST_TOKEN_NONCE_SIZE]; EC_SCALAR r; EC_AFFINE Tp; } TRUST_TOKEN_PRETOKEN; // TRUST_TOKEN_PRETOKEN_free releases the memory associated with |token|. OPENSSL_EXPORT void TRUST_TOKEN_PRETOKEN_free(TRUST_TOKEN_PRETOKEN *token); DEFINE_STACK_OF(TRUST_TOKEN_PRETOKEN) // PMBTokens. // // PMBTokens is described in https://eprint.iacr.org/2020/072/20200324:214215 // and provides anonymous tokens with private metadata. We implement the // construction with validity verification, described in appendix H, // construction 6. // The following functions implement the corresponding |TRUST_TOKENS_METHOD| // functions for |TRUST_TOKENS_experiment_v1|'s PMBTokens construction which // uses P-384. int pmbtoken_exp1_generate_key(CBB *out_private, CBB *out_public); int pmbtoken_exp1_client_key_from_bytes(TRUST_TOKEN_CLIENT_KEY *key, const uint8_t *in, size_t len); int pmbtoken_exp1_issuer_key_from_bytes(TRUST_TOKEN_ISSUER_KEY *key, const uint8_t *in, size_t len); STACK_OF(TRUST_TOKEN_PRETOKEN) * pmbtoken_exp1_blind(CBB *cbb, size_t count); int pmbtoken_exp1_sign(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue, uint8_t private_metadata); STACK_OF(TRUST_TOKEN) * pmbtoken_exp1_unblind(const TRUST_TOKEN_CLIENT_KEY *key, const STACK_OF(TRUST_TOKEN_PRETOKEN) * pretokens, CBS *cbs, size_t count, uint32_t key_id); int pmbtoken_exp1_read(const TRUST_TOKEN_ISSUER_KEY *key, uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE], uint8_t *out_private_metadata, const uint8_t *token, size_t token_len); // pmbtoken_exp1_get_h_for_testing returns H in uncompressed coordinates. This // function is used to confirm H was computed as expected. OPENSSL_EXPORT int pmbtoken_exp1_get_h_for_testing(uint8_t out[97]); // The following functions implement the corresponding |TRUST_TOKENS_METHOD| // functions for |TRUST_TOKENS_experiment_v2|'s PMBTokens construction which // uses P-384. int pmbtoken_exp2_generate_key(CBB *out_private, CBB *out_public); int pmbtoken_exp2_client_key_from_bytes(TRUST_TOKEN_CLIENT_KEY *key, const uint8_t *in, size_t len); int pmbtoken_exp2_issuer_key_from_bytes(TRUST_TOKEN_ISSUER_KEY *key, const uint8_t *in, size_t len); STACK_OF(TRUST_TOKEN_PRETOKEN) * pmbtoken_exp2_blind(CBB *cbb, size_t count); int pmbtoken_exp2_sign(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue, uint8_t private_metadata); STACK_OF(TRUST_TOKEN) * pmbtoken_exp2_unblind(const TRUST_TOKEN_CLIENT_KEY *key, const STACK_OF(TRUST_TOKEN_PRETOKEN) * pretokens, CBS *cbs, size_t count, uint32_t key_id); int pmbtoken_exp2_read(const TRUST_TOKEN_ISSUER_KEY *key, uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE], uint8_t *out_private_metadata, const uint8_t *token, size_t token_len); // pmbtoken_exp2_get_h_for_testing returns H in uncompressed coordinates. This // function is used to confirm H was computed as expected. OPENSSL_EXPORT int pmbtoken_exp2_get_h_for_testing(uint8_t out[97]); // VOPRF. // // VOPRFs are described in https://tools.ietf.org/html/draft-irtf-cfrg-voprf-04 // and provide anonymous tokens. This implementation uses TrustToken DSTs and // the DLEQ batching primitive from // https://eprint.iacr.org/2020/072/20200324:214215. // VOPRF only uses the |pub|' field of the TRUST_TOKEN_CLIENT_KEY and // |xs|/|pubs| fields of the TRUST_TOKEN_ISSUER_KEY. // The following functions implement the corresponding |TRUST_TOKENS_METHOD| // functions for |TRUST_TOKENS_experiment_v2|'s VOPRF construction which uses // P-384. int voprf_exp2_generate_key(CBB *out_private, CBB *out_public); int voprf_exp2_client_key_from_bytes(TRUST_TOKEN_CLIENT_KEY *key, const uint8_t *in, size_t len); int voprf_exp2_issuer_key_from_bytes(TRUST_TOKEN_ISSUER_KEY *key, const uint8_t *in, size_t len); STACK_OF(TRUST_TOKEN_PRETOKEN) * voprf_exp2_blind(CBB *cbb, size_t count); int voprf_exp2_sign(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue, uint8_t private_metadata); STACK_OF(TRUST_TOKEN) * voprf_exp2_unblind(const TRUST_TOKEN_CLIENT_KEY *key, const STACK_OF(TRUST_TOKEN_PRETOKEN) * pretokens, CBS *cbs, size_t count, uint32_t key_id); int voprf_exp2_read(const TRUST_TOKEN_ISSUER_KEY *key, uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE], uint8_t *out_private_metadata, const uint8_t *token, size_t token_len); // Trust Tokens internals. struct trust_token_method_st { // generate_key generates a fresh keypair and writes their serialized // forms into |out_private| and |out_public|. It returns one on success and // zero on failure. int (*generate_key)(CBB *out_private, CBB *out_public); // client_key_from_bytes decodes a client key from |in| and sets |key| // to the resulting key. It returns one on success and zero // on failure. int (*client_key_from_bytes)(TRUST_TOKEN_CLIENT_KEY *key, const uint8_t *in, size_t len); // issuer_key_from_bytes decodes a issuer key from |in| and sets |key| // to the resulting key. It returns one on success and zero // on failure. int (*issuer_key_from_bytes)(TRUST_TOKEN_ISSUER_KEY *key, const uint8_t *in, size_t len); // blind generates a new issuance request for |count| tokens. On // success, it returns a newly-allocated |STACK_OF(TRUST_TOKEN_PRETOKEN)| and // writes a request to the issuer to |cbb|. On failure, it returns NULL. The // |STACK_OF(TRUST_TOKEN_PRETOKEN)|s should be passed to |pmbtoken_unblind| when // the server responds. // // This function implements the AT.Usr0 operation. STACK_OF(TRUST_TOKEN_PRETOKEN) * (*blind)(CBB *cbb, size_t count); // sign parses a request for |num_requested| tokens from |cbs| and // issues |num_to_issue| tokens with |key| and a private metadata value of // |private_metadata|. It then writes the response to |cbb|. It returns one on // success and zero on failure. // // This function implements the AT.Sig operation. int (*sign)(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, size_t num_requested, size_t num_to_issue, uint8_t private_metadata); // unblind processes an issuance response for |count| tokens from |cbs| // and unblinds the signed tokens. |pretokens| are the pre-tokens returned // from the corresponding |blind| call. On success, the function returns a // newly-allocated |STACK_OF(TRUST_TOKEN)| containing the resulting tokens. // Each token's serialization will have |key_id| prepended. Otherwise, it // returns NULL. // // This function implements the AT.Usr1 operation. STACK_OF(TRUST_TOKEN) * (*unblind)(const TRUST_TOKEN_CLIENT_KEY *key, const STACK_OF(TRUST_TOKEN_PRETOKEN) * pretokens, CBS *cbs, size_t count, uint32_t key_id); // read parses a PMBToken from |token| and verifies it using |key|. On // success, it returns one and stores the nonce and private metadata bit in // |out_nonce| and |*out_private_metadata|. Otherwise, it returns zero. Note // that, unlike the output of |unblind|, |token| does not have a // four-byte key ID prepended. int (*read)(const TRUST_TOKEN_ISSUER_KEY *key, uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE], uint8_t *out_private_metadata, const uint8_t *token, size_t token_len); // whether the construction supports private metadata. int has_private_metadata; // max keys that can be configured. size_t max_keys; // whether the SRR is part of the protocol. int has_srr; }; // Structure representing a single Trust Token public key with the specified ID. struct trust_token_client_key_st { uint32_t id; TRUST_TOKEN_CLIENT_KEY key; }; // Structure representing a single Trust Token private key with the specified // ID. struct trust_token_issuer_key_st { uint32_t id; TRUST_TOKEN_ISSUER_KEY key; }; struct trust_token_client_st { const TRUST_TOKEN_METHOD *method; // max_batchsize is the maximum supported batchsize. uint16_t max_batchsize; // keys is the set of public keys that are supported by the client for // issuance/redemptions. struct trust_token_client_key_st keys[6]; // num_keys is the number of keys currently configured. size_t num_keys; // pretokens is the intermediate state during an active issuance. STACK_OF(TRUST_TOKEN_PRETOKEN)* pretokens; // srr_key is the public key used to verify the signature of the SRR. EVP_PKEY *srr_key; }; struct trust_token_issuer_st { const TRUST_TOKEN_METHOD *method; // max_batchsize is the maximum supported batchsize. uint16_t max_batchsize; // keys is the set of private keys that are supported by the issuer for // issuance/redemptions. The public metadata is an index into this list of // keys. struct trust_token_issuer_key_st keys[6]; // num_keys is the number of keys currently configured. size_t num_keys; // srr_key is the private key used to sign the SRR. EVP_PKEY *srr_key; // metadata_key is the secret material used to encode the private metadata bit // in the SRR. uint8_t *metadata_key; size_t metadata_key_len; }; #if defined(__cplusplus) } // extern C extern "C++" { BSSL_NAMESPACE_BEGIN BORINGSSL_MAKE_DELETER(TRUST_TOKEN_PRETOKEN, TRUST_TOKEN_PRETOKEN_free) BSSL_NAMESPACE_END } // extern C++ #endif #endif // OPENSSL_HEADER_TRUST_TOKEN_INTERNAL_H