/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include <openssl_grpc/ssl.h> #include <assert.h> #include <stdlib.h> #include <string.h> #include <openssl_grpc/bytestring.h> #include <openssl_grpc/crypto.h> #include <openssl_grpc/err.h> #include <openssl_grpc/lhash.h> #include <openssl_grpc/mem.h> #include <openssl_grpc/rand.h> #include "internal.h" #include "../crypto/internal.h" #if defined(OPENSSL_WINDOWS) #include <sys/timeb.h> #else #include <sys/socket.h> #include <sys/time.h> #endif BSSL_NAMESPACE_BEGIN // |SSL_R_UNKNOWN_PROTOCOL| is no longer emitted, but continue to define it // to avoid downstream churn. OPENSSL_DECLARE_ERROR_REASON(SSL, UNKNOWN_PROTOCOL) // The following errors are no longer emitted, but are used in nginx without // #ifdefs. OPENSSL_DECLARE_ERROR_REASON(SSL, BLOCK_CIPHER_PAD_IS_WRONG) OPENSSL_DECLARE_ERROR_REASON(SSL, NO_CIPHERS_SPECIFIED) // Some error codes are special. Ensure the make_errors.go script never // regresses this. static_assert(SSL_R_TLSV1_ALERT_NO_RENEGOTIATION == SSL_AD_NO_RENEGOTIATION + SSL_AD_REASON_OFFSET, "alert reason code mismatch"); // kMaxHandshakeSize is the maximum size, in bytes, of a handshake message. static const size_t kMaxHandshakeSize = (1u << 24) - 1; static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl = CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl_ctx = CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out) { uint8_t *ptr; size_t len; if (!CBB_finish(cbb, &ptr, &len)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } out->Reset(ptr, len); return true; } void ssl_reset_error_state(SSL *ssl) { // Functions which use |SSL_get_error| must reset I/O and error state on // entry. ssl->s3->rwstate = SSL_ERROR_NONE; ERR_clear_error(); ERR_clear_system_error(); } void ssl_set_read_error(SSL* ssl) { ssl->s3->read_shutdown = ssl_shutdown_error; ssl->s3->read_error.reset(ERR_save_state()); } static bool check_read_error(const SSL *ssl) { if (ssl->s3->read_shutdown == ssl_shutdown_error) { ERR_restore_state(ssl->s3->read_error.get()); return false; } return true; } bool ssl_can_write(const SSL *ssl) { return !SSL_in_init(ssl) || ssl->s3->hs->can_early_write; } bool ssl_can_read(const SSL *ssl) { return !SSL_in_init(ssl) || ssl->s3->hs->can_early_read; } ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed, uint8_t *out_alert, Span<uint8_t> in) { *out_consumed = 0; if (!check_read_error(ssl)) { *out_alert = 0; return ssl_open_record_error; } auto ret = ssl->method->open_handshake(ssl, out_consumed, out_alert, in); if (ret == ssl_open_record_error) { ssl_set_read_error(ssl); } return ret; } ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, uint8_t *out_alert, Span<uint8_t> in) { *out_consumed = 0; if (!check_read_error(ssl)) { *out_alert = 0; return ssl_open_record_error; } auto ret = ssl->method->open_change_cipher_spec(ssl, out_consumed, out_alert, in); if (ret == ssl_open_record_error) { ssl_set_read_error(ssl); } return ret; } ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out, size_t *out_consumed, uint8_t *out_alert, Span<uint8_t> in) { *out_consumed = 0; if (!check_read_error(ssl)) { *out_alert = 0; return ssl_open_record_error; } auto ret = ssl->method->open_app_data(ssl, out, out_consumed, out_alert, in); if (ret == ssl_open_record_error) { ssl_set_read_error(ssl); } return ret; } static bool cbb_add_hex(CBB *cbb, Span<const uint8_t> in) { static const char hextable[] = "0123456789abcdef"; uint8_t *out; if (!CBB_add_space(cbb, &out, in.size() * 2)) { return false; } for (uint8_t b : in) { *(out++) = (uint8_t)hextable[b >> 4]; *(out++) = (uint8_t)hextable[b & 0xf]; } return true; } bool ssl_log_secret(const SSL *ssl, const char *label, Span<const uint8_t> secret) { if (ssl->ctx->keylog_callback == NULL) { return true; } ScopedCBB cbb; Array<uint8_t> line; if (!CBB_init(cbb.get(), strlen(label) + 1 + SSL3_RANDOM_SIZE * 2 + 1 + secret.size() * 2 + 1) || !CBB_add_bytes(cbb.get(), reinterpret_cast<const uint8_t *>(label), strlen(label)) || !CBB_add_u8(cbb.get(), ' ') || !cbb_add_hex(cbb.get(), ssl->s3->client_random) || !CBB_add_u8(cbb.get(), ' ') || !cbb_add_hex(cbb.get(), secret) || !CBB_add_u8(cbb.get(), 0 /* NUL */) || !CBBFinishArray(cbb.get(), &line)) { return false; } ssl->ctx->keylog_callback(ssl, reinterpret_cast<const char *>(line.data())); return true; } void ssl_do_info_callback(const SSL *ssl, int type, int value) { void (*cb)(const SSL *ssl, int type, int value) = NULL; if (ssl->info_callback != NULL) { cb = ssl->info_callback; } else if (ssl->ctx->info_callback != NULL) { cb = ssl->ctx->info_callback; } if (cb != NULL) { cb(ssl, type, value); } } void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type, Span<const uint8_t> in) { if (ssl->msg_callback == NULL) { return; } // |version| is zero when calling for |SSL3_RT_HEADER| and |SSL2_VERSION| for // a V2ClientHello. int version; switch (content_type) { case 0: // V2ClientHello version = SSL2_VERSION; break; case SSL3_RT_HEADER: version = 0; break; default: version = SSL_version(ssl); } ssl->msg_callback(is_write, version, content_type, in.data(), in.size(), const_cast<SSL *>(ssl), ssl->msg_callback_arg); } void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock) { // TODO(martinkr): Change callers to |ssl_ctx_get_current_time| and drop the // |ssl| arg from |current_time_cb| if possible. ssl_ctx_get_current_time(ssl->ctx.get(), out_clock); } void ssl_ctx_get_current_time(const SSL_CTX *ctx, struct OPENSSL_timeval *out_clock) { if (ctx->current_time_cb != NULL) { // TODO(davidben): Update current_time_cb to use OPENSSL_timeval. See // https://crbug.com/boringssl/155. struct timeval clock; ctx->current_time_cb(nullptr /* ssl */, &clock); if (clock.tv_sec < 0) { assert(0); out_clock->tv_sec = 0; out_clock->tv_usec = 0; } else { out_clock->tv_sec = (uint64_t)clock.tv_sec; out_clock->tv_usec = (uint32_t)clock.tv_usec; } return; } #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) out_clock->tv_sec = 1234; out_clock->tv_usec = 1234; #elif defined(OPENSSL_WINDOWS) struct _timeb time; _ftime(&time); if (time.time < 0) { assert(0); out_clock->tv_sec = 0; out_clock->tv_usec = 0; } else { out_clock->tv_sec = time.time; out_clock->tv_usec = time.millitm * 1000; } #else struct timeval clock; gettimeofday(&clock, NULL); if (clock.tv_sec < 0) { assert(0); out_clock->tv_sec = 0; out_clock->tv_usec = 0; } else { out_clock->tv_sec = (uint64_t)clock.tv_sec; out_clock->tv_usec = (uint32_t)clock.tv_usec; } #endif } void SSL_CTX_set_handoff_mode(SSL_CTX *ctx, bool on) { ctx->handoff = on; } static bool ssl_can_renegotiate(const SSL *ssl) { if (ssl->server || SSL_is_dtls(ssl)) { return false; } if (ssl->s3->have_version && ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return false; } // The config has already been shed. if (!ssl->config) { return false; } switch (ssl->renegotiate_mode) { case ssl_renegotiate_ignore: case ssl_renegotiate_never: return false; case ssl_renegotiate_freely: case ssl_renegotiate_explicit: return true; case ssl_renegotiate_once: return ssl->s3->total_renegotiations == 0; } assert(0); return false; } static void ssl_maybe_shed_handshake_config(SSL *ssl) { if (ssl->s3->hs != nullptr || ssl->config == nullptr || !ssl->config->shed_handshake_config || ssl_can_renegotiate(ssl)) { return; } ssl->config.reset(); } void SSL_set_handoff_mode(SSL *ssl, bool on) { if (!ssl->config) { return; } ssl->config->handoff = on; } bool SSL_get_traffic_secrets(const SSL *ssl, Span<const uint8_t> *out_read_traffic_secret, Span<const uint8_t> *out_write_traffic_secret) { if (SSL_version(ssl) < TLS1_3_VERSION) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); return false; } if (!ssl->s3->initial_handshake_complete) { OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE); return false; } *out_read_traffic_secret = Span<const uint8_t>( ssl->s3->read_traffic_secret, ssl->s3->read_traffic_secret_len); *out_write_traffic_secret = Span<const uint8_t>( ssl->s3->write_traffic_secret, ssl->s3->write_traffic_secret_len); return true; } BSSL_NAMESPACE_END using namespace bssl; int SSL_library_init(void) { CRYPTO_library_init(); return 1; } int OPENSSL_init_ssl(uint64_t opts, const OPENSSL_INIT_SETTINGS *settings) { CRYPTO_library_init(); return 1; } static uint32_t ssl_session_hash(const SSL_SESSION *sess) { return ssl_hash_session_id( MakeConstSpan(sess->session_id, sess->session_id_length)); } static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) { if (a->session_id_length != b->session_id_length) { return 1; } return OPENSSL_memcmp(a->session_id, b->session_id, a->session_id_length); } ssl_ctx_st::ssl_ctx_st(const SSL_METHOD *ssl_method) : method(ssl_method->method), x509_method(ssl_method->x509_method), retain_only_sha256_of_client_certs(false), quiet_shutdown(false), ocsp_stapling_enabled(false), signed_cert_timestamps_enabled(false), channel_id_enabled(false), grease_enabled(false), permute_extensions(false), allow_unknown_alpn_protos(false), false_start_allowed_without_alpn(false), handoff(false), enable_early_data(false) { CRYPTO_MUTEX_init(&lock); CRYPTO_new_ex_data(&ex_data); } ssl_ctx_st::~ssl_ctx_st() { // Free the internal session cache. Note that this calls the caller-supplied // remove callback, so we must do it before clearing ex_data. (See ticket // [openssl.org #212].) SSL_CTX_flush_sessions(this, 0); CRYPTO_free_ex_data(&g_ex_data_class_ssl_ctx, this, &ex_data); CRYPTO_MUTEX_cleanup(&lock); lh_SSL_SESSION_free(sessions); x509_method->ssl_ctx_free(this); } SSL_CTX *SSL_CTX_new(const SSL_METHOD *method) { if (method == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_METHOD_PASSED); return nullptr; } UniquePtr<SSL_CTX> ret = MakeUnique<SSL_CTX>(method); if (!ret) { return nullptr; } ret->cert = MakeUnique<CERT>(method->x509_method); ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); ret->client_CA.reset(sk_CRYPTO_BUFFER_new_null()); if (ret->cert == nullptr || ret->sessions == nullptr || ret->client_CA == nullptr || !ret->x509_method->ssl_ctx_new(ret.get())) { return nullptr; } if (!SSL_CTX_set_strict_cipher_list(ret.get(), SSL_DEFAULT_CIPHER_LIST) || // Lock the SSL_CTX to the specified version, for compatibility with // legacy uses of SSL_METHOD. !SSL_CTX_set_max_proto_version(ret.get(), method->version) || !SSL_CTX_set_min_proto_version(ret.get(), method->version)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return nullptr; } return ret.release(); } int SSL_CTX_up_ref(SSL_CTX *ctx) { CRYPTO_refcount_inc(&ctx->references); return 1; } void SSL_CTX_free(SSL_CTX *ctx) { if (ctx == NULL || !CRYPTO_refcount_dec_and_test_zero(&ctx->references)) { return; } ctx->~ssl_ctx_st(); OPENSSL_free(ctx); } ssl_st::ssl_st(SSL_CTX *ctx_arg) : method(ctx_arg->method), max_send_fragment(ctx_arg->max_send_fragment), msg_callback(ctx_arg->msg_callback), msg_callback_arg(ctx_arg->msg_callback_arg), ctx(UpRef(ctx_arg)), session_ctx(UpRef(ctx_arg)), options(ctx->options), mode(ctx->mode), max_cert_list(ctx->max_cert_list), server(false), quiet_shutdown(ctx->quiet_shutdown), enable_early_data(ctx->enable_early_data) { CRYPTO_new_ex_data(&ex_data); } ssl_st::~ssl_st() { CRYPTO_free_ex_data(&g_ex_data_class_ssl, this, &ex_data); // |config| refers to |this|, so we must release it earlier. config.reset(); if (method != NULL) { method->ssl_free(this); } } SSL *SSL_new(SSL_CTX *ctx) { if (ctx == nullptr) { OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_CTX); return nullptr; } UniquePtr<SSL> ssl = MakeUnique<SSL>(ctx); if (ssl == nullptr) { return nullptr; } ssl->config = MakeUnique<SSL_CONFIG>(ssl.get()); if (ssl->config == nullptr) { return nullptr; } ssl->config->conf_min_version = ctx->conf_min_version; ssl->config->conf_max_version = ctx->conf_max_version; ssl->config->cert = ssl_cert_dup(ctx->cert.get()); if (ssl->config->cert == nullptr) { return nullptr; } ssl->config->verify_mode = ctx->verify_mode; ssl->config->verify_callback = ctx->default_verify_callback; ssl->config->custom_verify_callback = ctx->custom_verify_callback; ssl->config->retain_only_sha256_of_client_certs = ctx->retain_only_sha256_of_client_certs; ssl->config->permute_extensions = ctx->permute_extensions; if (!ssl->config->supported_group_list.CopyFrom(ctx->supported_group_list) || !ssl->config->alpn_client_proto_list.CopyFrom( ctx->alpn_client_proto_list) || !ssl->config->verify_sigalgs.CopyFrom(ctx->verify_sigalgs)) { return nullptr; } if (ctx->psk_identity_hint) { ssl->config->psk_identity_hint.reset( OPENSSL_strdup(ctx->psk_identity_hint.get())); if (ssl->config->psk_identity_hint == nullptr) { return nullptr; } } ssl->config->psk_client_callback = ctx->psk_client_callback; ssl->config->psk_server_callback = ctx->psk_server_callback; ssl->config->channel_id_enabled = ctx->channel_id_enabled; ssl->config->channel_id_private = UpRef(ctx->channel_id_private); ssl->config->signed_cert_timestamps_enabled = ctx->signed_cert_timestamps_enabled; ssl->config->ocsp_stapling_enabled = ctx->ocsp_stapling_enabled; ssl->config->handoff = ctx->handoff; ssl->quic_method = ctx->quic_method; if (!ssl->method->ssl_new(ssl.get()) || !ssl->ctx->x509_method->ssl_new(ssl->s3->hs.get())) { return nullptr; } return ssl.release(); } SSL_CONFIG::SSL_CONFIG(SSL *ssl_arg) : ssl(ssl_arg), ech_grease_enabled(false), signed_cert_timestamps_enabled(false), ocsp_stapling_enabled(false), channel_id_enabled(false), enforce_rsa_key_usage(false), retain_only_sha256_of_client_certs(false), handoff(false), shed_handshake_config(false), jdk11_workaround(false), quic_use_legacy_codepoint(false), permute_extensions(false) { assert(ssl); } SSL_CONFIG::~SSL_CONFIG() { if (ssl->ctx != nullptr) { ssl->ctx->x509_method->ssl_config_free(this); } } void SSL_free(SSL *ssl) { Delete(ssl); } void SSL_set_connect_state(SSL *ssl) { ssl->server = false; ssl->do_handshake = ssl_client_handshake; } void SSL_set_accept_state(SSL *ssl) { ssl->server = true; ssl->do_handshake = ssl_server_handshake; } void SSL_set0_rbio(SSL *ssl, BIO *rbio) { ssl->rbio.reset(rbio); } void SSL_set0_wbio(SSL *ssl, BIO *wbio) { ssl->wbio.reset(wbio); } void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio) { // For historical reasons, this function has many different cases in ownership // handling. // If nothing has changed, do nothing if (rbio == SSL_get_rbio(ssl) && wbio == SSL_get_wbio(ssl)) { return; } // If the two arguments are equal, one fewer reference is granted than // taken. if (rbio != NULL && rbio == wbio) { BIO_up_ref(rbio); } // If only the wbio is changed, adopt only one reference. if (rbio == SSL_get_rbio(ssl)) { SSL_set0_wbio(ssl, wbio); return; } // There is an asymmetry here for historical reasons. If only the rbio is // changed AND the rbio and wbio were originally different, then we only adopt // one reference. if (wbio == SSL_get_wbio(ssl) && SSL_get_rbio(ssl) != SSL_get_wbio(ssl)) { SSL_set0_rbio(ssl, rbio); return; } // Otherwise, adopt both references. SSL_set0_rbio(ssl, rbio); SSL_set0_wbio(ssl, wbio); } BIO *SSL_get_rbio(const SSL *ssl) { return ssl->rbio.get(); } BIO *SSL_get_wbio(const SSL *ssl) { return ssl->wbio.get(); } size_t SSL_quic_max_handshake_flight_len(const SSL *ssl, enum ssl_encryption_level_t level) { // Limits flights to 16K by default when there are no large // (certificate-carrying) messages. static const size_t kDefaultLimit = 16384; switch (level) { case ssl_encryption_initial: return kDefaultLimit; case ssl_encryption_early_data: // QUIC does not send EndOfEarlyData. return 0; case ssl_encryption_handshake: if (ssl->server) { // Servers may receive Certificate message if configured to request // client certificates. if (!!(ssl->config->verify_mode & SSL_VERIFY_PEER) && ssl->max_cert_list > kDefaultLimit) { return ssl->max_cert_list; } } else { // Clients may receive both Certificate message and a CertificateRequest // message. if (2*ssl->max_cert_list > kDefaultLimit) { return 2*ssl->max_cert_list; } } return kDefaultLimit; case ssl_encryption_application: // Note there is not actually a bound on the number of NewSessionTickets // one may send in a row. This level may need more involved flow // control. See https://github.com/quicwg/base-drafts/issues/1834. return kDefaultLimit; } return 0; } enum ssl_encryption_level_t SSL_quic_read_level(const SSL *ssl) { return ssl->s3->read_level; } enum ssl_encryption_level_t SSL_quic_write_level(const SSL *ssl) { return ssl->s3->write_level; } int SSL_provide_quic_data(SSL *ssl, enum ssl_encryption_level_t level, const uint8_t *data, size_t len) { if (ssl->quic_method == nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (level != ssl->s3->read_level) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_ENCRYPTION_LEVEL_RECEIVED); return 0; } size_t new_len = (ssl->s3->hs_buf ? ssl->s3->hs_buf->length : 0) + len; if (new_len < len || new_len > SSL_quic_max_handshake_flight_len(ssl, level)) { OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); return 0; } return tls_append_handshake_data(ssl, MakeConstSpan(data, len)); } int SSL_do_handshake(SSL *ssl) { ssl_reset_error_state(ssl); if (ssl->do_handshake == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_TYPE_NOT_SET); return -1; } if (!SSL_in_init(ssl)) { return 1; } // Run the handshake. SSL_HANDSHAKE *hs = ssl->s3->hs.get(); bool early_return = false; int ret = ssl_run_handshake(hs, &early_return); ssl_do_info_callback( ssl, ssl->server ? SSL_CB_ACCEPT_EXIT : SSL_CB_CONNECT_EXIT, ret); if (ret <= 0) { return ret; } // Destroy the handshake object if the handshake has completely finished. if (!early_return) { ssl->s3->hs.reset(); ssl_maybe_shed_handshake_config(ssl); } return 1; } int SSL_connect(SSL *ssl) { if (ssl->do_handshake == NULL) { // Not properly initialized yet SSL_set_connect_state(ssl); } return SSL_do_handshake(ssl); } int SSL_accept(SSL *ssl) { if (ssl->do_handshake == NULL) { // Not properly initialized yet SSL_set_accept_state(ssl); } return SSL_do_handshake(ssl); } static int ssl_do_post_handshake(SSL *ssl, const SSLMessage &msg) { if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return tls13_post_handshake(ssl, msg); } // Check for renegotiation on the server before parsing to use the correct // error. Renegotiation is triggered by a different message for servers. if (ssl->server) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION); return 0; } if (msg.type != SSL3_MT_HELLO_REQUEST || CBS_len(&msg.body) != 0) { ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HELLO_REQUEST); return 0; } if (ssl->renegotiate_mode == ssl_renegotiate_ignore) { return 1; // Ignore the HelloRequest. } ssl->s3->renegotiate_pending = true; if (ssl->renegotiate_mode == ssl_renegotiate_explicit) { return 1; // Handle it later. } if (!SSL_renegotiate(ssl)) { ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION); return 0; } return 1; } int SSL_process_quic_post_handshake(SSL *ssl) { ssl_reset_error_state(ssl); if (SSL_in_init(ssl)) { OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } // Replay post-handshake message errors. if (!check_read_error(ssl)) { return 0; } // Process any buffered post-handshake messages. SSLMessage msg; while (ssl->method->get_message(ssl, &msg)) { // Handle the post-handshake message and try again. if (!ssl_do_post_handshake(ssl, msg)) { ssl_set_read_error(ssl); return 0; } ssl->method->next_message(ssl); } return 1; } static int ssl_read_impl(SSL *ssl) { ssl_reset_error_state(ssl); if (ssl->do_handshake == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return -1; } // Replay post-handshake message errors. if (!check_read_error(ssl)) { return -1; } while (ssl->s3->pending_app_data.empty()) { if (ssl->s3->renegotiate_pending) { ssl->s3->rwstate = SSL_ERROR_WANT_RENEGOTIATE; return -1; } // Complete the current handshake, if any. False Start will cause // |SSL_do_handshake| to return mid-handshake, so this may require multiple // iterations. while (!ssl_can_read(ssl)) { int ret = SSL_do_handshake(ssl); if (ret < 0) { return ret; } if (ret == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE); return -1; } } // Process any buffered post-handshake messages. SSLMessage msg; if (ssl->method->get_message(ssl, &msg)) { // If we received an interrupt in early read (EndOfEarlyData), loop again // for the handshake to process it. if (SSL_in_init(ssl)) { ssl->s3->hs->can_early_read = false; continue; } // Handle the post-handshake message and try again. if (!ssl_do_post_handshake(ssl, msg)) { ssl_set_read_error(ssl); return -1; } ssl->method->next_message(ssl); continue; // Loop again. We may have begun a new handshake. } uint8_t alert = SSL_AD_DECODE_ERROR; size_t consumed = 0; auto ret = ssl_open_app_data(ssl, &ssl->s3->pending_app_data, &consumed, &alert, ssl->s3->read_buffer.span()); bool retry; int bio_ret = ssl_handle_open_record(ssl, &retry, ret, consumed, alert); if (bio_ret <= 0) { return bio_ret; } if (!retry) { assert(!ssl->s3->pending_app_data.empty()); ssl->s3->key_update_count = 0; } } return 1; } int SSL_read(SSL *ssl, void *buf, int num) { int ret = SSL_peek(ssl, buf, num); if (ret <= 0) { return ret; } // TODO(davidben): In DTLS, should the rest of the record be discarded? DTLS // is not a stream. See https://crbug.com/boringssl/65. ssl->s3->pending_app_data = ssl->s3->pending_app_data.subspan(static_cast<size_t>(ret)); if (ssl->s3->pending_app_data.empty()) { ssl->s3->read_buffer.DiscardConsumed(); } return ret; } int SSL_peek(SSL *ssl, void *buf, int num) { if (ssl->quic_method != nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return -1; } int ret = ssl_read_impl(ssl); if (ret <= 0) { return ret; } if (num <= 0) { return num; } size_t todo = std::min(ssl->s3->pending_app_data.size(), static_cast<size_t>(num)); OPENSSL_memcpy(buf, ssl->s3->pending_app_data.data(), todo); return static_cast<int>(todo); } int SSL_write(SSL *ssl, const void *buf, int num) { ssl_reset_error_state(ssl); if (ssl->quic_method != nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return -1; } if (ssl->do_handshake == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return -1; } int ret = 0; bool needs_handshake = false; do { // If necessary, complete the handshake implicitly. if (!ssl_can_write(ssl)) { ret = SSL_do_handshake(ssl); if (ret < 0) { return ret; } if (ret == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE); return -1; } } ret = ssl->method->write_app_data(ssl, &needs_handshake, (const uint8_t *)buf, num); } while (needs_handshake); return ret; } int SSL_key_update(SSL *ssl, int request_type) { ssl_reset_error_state(ssl); if (ssl->do_handshake == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return 0; } if (ssl->ctx->quic_method != nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ssl->s3->initial_handshake_complete) { OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE); return 0; } if (ssl_protocol_version(ssl) < TLS1_3_VERSION) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); return 0; } if (!ssl->s3->key_update_pending && !tls13_add_key_update(ssl, request_type)) { return 0; } return 1; } int SSL_shutdown(SSL *ssl) { ssl_reset_error_state(ssl); if (ssl->do_handshake == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return -1; } // If we are in the middle of a handshake, silently succeed. Consumers often // call this function before |SSL_free|, whether the handshake succeeded or // not. We assume the caller has already handled failed handshakes. if (SSL_in_init(ssl)) { return 1; } if (ssl->quiet_shutdown) { // Do nothing if configured not to send a close_notify. ssl->s3->write_shutdown = ssl_shutdown_close_notify; ssl->s3->read_shutdown = ssl_shutdown_close_notify; return 1; } // This function completes in two stages. It sends a close_notify and then it // waits for a close_notify to come in. Perform exactly one action and return // whether or not it succeeds. if (ssl->s3->write_shutdown != ssl_shutdown_close_notify) { // Send a close_notify. if (ssl_send_alert_impl(ssl, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY) <= 0) { return -1; } } else if (ssl->s3->alert_dispatch) { // Finish sending the close_notify. if (ssl->method->dispatch_alert(ssl) <= 0) { return -1; } } else if (ssl->s3->read_shutdown != ssl_shutdown_close_notify) { if (SSL_is_dtls(ssl)) { // Bidirectional shutdown doesn't make sense for an unordered // transport. DTLS alerts also aren't delivered reliably, so we may even // time out because the peer never received our close_notify. Report to // the caller that the channel has fully shut down. if (ssl->s3->read_shutdown == ssl_shutdown_error) { ERR_restore_state(ssl->s3->read_error.get()); return -1; } ssl->s3->read_shutdown = ssl_shutdown_close_notify; } else { // Process records until an error, close_notify, or application data. if (ssl_read_impl(ssl) > 0) { // We received some unexpected application data. OPENSSL_PUT_ERROR(SSL, SSL_R_APPLICATION_DATA_ON_SHUTDOWN); return -1; } if (ssl->s3->read_shutdown != ssl_shutdown_close_notify) { return -1; } } } // Return 0 for unidirectional shutdown and 1 for bidirectional shutdown. return ssl->s3->read_shutdown == ssl_shutdown_close_notify; } int SSL_send_fatal_alert(SSL *ssl, uint8_t alert) { if (ssl->s3->alert_dispatch) { if (ssl->s3->send_alert[0] != SSL3_AL_FATAL || ssl->s3->send_alert[1] != alert) { // We are already attempting to write a different alert. OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); return -1; } return ssl->method->dispatch_alert(ssl); } return ssl_send_alert_impl(ssl, SSL3_AL_FATAL, alert); } int SSL_set_quic_transport_params(SSL *ssl, const uint8_t *params, size_t params_len) { return ssl->config && ssl->config->quic_transport_params.CopyFrom( MakeConstSpan(params, params_len)); } void SSL_get_peer_quic_transport_params(const SSL *ssl, const uint8_t **out_params, size_t *out_params_len) { *out_params = ssl->s3->peer_quic_transport_params.data(); *out_params_len = ssl->s3->peer_quic_transport_params.size(); } int SSL_set_quic_early_data_context(SSL *ssl, const uint8_t *context, size_t context_len) { return ssl->config && ssl->config->quic_early_data_context.CopyFrom( MakeConstSpan(context, context_len)); } void SSL_CTX_set_early_data_enabled(SSL_CTX *ctx, int enabled) { ctx->enable_early_data = !!enabled; } void SSL_set_early_data_enabled(SSL *ssl, int enabled) { ssl->enable_early_data = !!enabled; } int SSL_in_early_data(const SSL *ssl) { if (ssl->s3->hs == NULL) { return 0; } return ssl->s3->hs->in_early_data; } int SSL_early_data_accepted(const SSL *ssl) { return ssl->s3->early_data_accepted; } void SSL_reset_early_data_reject(SSL *ssl) { SSL_HANDSHAKE *hs = ssl->s3->hs.get(); if (hs == NULL || hs->wait != ssl_hs_early_data_rejected) { abort(); } hs->wait = ssl_hs_ok; hs->in_early_data = false; hs->early_session.reset(); // Discard any unfinished writes from the perspective of |SSL_write|'s // retry. The handshake will transparently flush out the pending record // (discarded by the server) to keep the framing correct. ssl->s3->wpend_pending = false; } enum ssl_early_data_reason_t SSL_get_early_data_reason(const SSL *ssl) { return ssl->s3->early_data_reason; } const char *SSL_early_data_reason_string(enum ssl_early_data_reason_t reason) { switch (reason) { case ssl_early_data_unknown: return "unknown"; case ssl_early_data_disabled: return "disabled"; case ssl_early_data_accepted: return "accepted"; case ssl_early_data_protocol_version: return "protocol_version"; case ssl_early_data_peer_declined: return "peer_declined"; case ssl_early_data_no_session_offered: return "no_session_offered"; case ssl_early_data_session_not_resumed: return "session_not_resumed"; case ssl_early_data_unsupported_for_session: return "unsupported_for_session"; case ssl_early_data_hello_retry_request: return "hello_retry_request"; case ssl_early_data_alpn_mismatch: return "alpn_mismatch"; case ssl_early_data_channel_id: return "channel_id"; case ssl_early_data_ticket_age_skew: return "ticket_age_skew"; case ssl_early_data_quic_parameter_mismatch: return "quic_parameter_mismatch"; case ssl_early_data_alps_mismatch: return "alps_mismatch"; } return nullptr; } static int bio_retry_reason_to_error(int reason) { switch (reason) { case BIO_RR_CONNECT: return SSL_ERROR_WANT_CONNECT; case BIO_RR_ACCEPT: return SSL_ERROR_WANT_ACCEPT; default: return SSL_ERROR_SYSCALL; } } int SSL_get_error(const SSL *ssl, int ret_code) { if (ret_code > 0) { return SSL_ERROR_NONE; } // Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, // where we do encode the error uint32_t err = ERR_peek_error(); if (err != 0) { if (ERR_GET_LIB(err) == ERR_LIB_SYS) { return SSL_ERROR_SYSCALL; } return SSL_ERROR_SSL; } if (ret_code == 0) { if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) { return SSL_ERROR_ZERO_RETURN; } // An EOF was observed which violates the protocol, and the underlying // transport does not participate in the error queue. Bubble up to the // caller. return SSL_ERROR_SYSCALL; } switch (ssl->s3->rwstate) { case SSL_ERROR_PENDING_SESSION: case SSL_ERROR_PENDING_CERTIFICATE: case SSL_ERROR_HANDOFF: case SSL_ERROR_HANDBACK: case SSL_ERROR_WANT_X509_LOOKUP: case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: case SSL_ERROR_PENDING_TICKET: case SSL_ERROR_EARLY_DATA_REJECTED: case SSL_ERROR_WANT_CERTIFICATE_VERIFY: case SSL_ERROR_WANT_RENEGOTIATE: case SSL_ERROR_HANDSHAKE_HINTS_READY: return ssl->s3->rwstate; case SSL_ERROR_WANT_READ: { if (ssl->quic_method) { return SSL_ERROR_WANT_READ; } BIO *bio = SSL_get_rbio(ssl); if (BIO_should_read(bio)) { return SSL_ERROR_WANT_READ; } if (BIO_should_write(bio)) { // TODO(davidben): OpenSSL historically checked for writes on the read // BIO. Can this be removed? return SSL_ERROR_WANT_WRITE; } if (BIO_should_io_special(bio)) { return bio_retry_reason_to_error(BIO_get_retry_reason(bio)); } break; } case SSL_ERROR_WANT_WRITE: { BIO *bio = SSL_get_wbio(ssl); if (BIO_should_write(bio)) { return SSL_ERROR_WANT_WRITE; } if (BIO_should_read(bio)) { // TODO(davidben): OpenSSL historically checked for reads on the write // BIO. Can this be removed? return SSL_ERROR_WANT_READ; } if (BIO_should_io_special(bio)) { return bio_retry_reason_to_error(BIO_get_retry_reason(bio)); } break; } } return SSL_ERROR_SYSCALL; } const char *SSL_error_description(int err) { switch (err) { case SSL_ERROR_NONE: return "NONE"; case SSL_ERROR_SSL: return "SSL"; case SSL_ERROR_WANT_READ: return "WANT_READ"; case SSL_ERROR_WANT_WRITE: return "WANT_WRITE"; case SSL_ERROR_WANT_X509_LOOKUP: return "WANT_X509_LOOKUP"; case SSL_ERROR_SYSCALL: return "SYSCALL"; case SSL_ERROR_ZERO_RETURN: return "ZERO_RETURN"; case SSL_ERROR_WANT_CONNECT: return "WANT_CONNECT"; case SSL_ERROR_WANT_ACCEPT: return "WANT_ACCEPT"; case SSL_ERROR_PENDING_SESSION: return "PENDING_SESSION"; case SSL_ERROR_PENDING_CERTIFICATE: return "PENDING_CERTIFICATE"; case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: return "WANT_PRIVATE_KEY_OPERATION"; case SSL_ERROR_PENDING_TICKET: return "PENDING_TICKET"; case SSL_ERROR_EARLY_DATA_REJECTED: return "EARLY_DATA_REJECTED"; case SSL_ERROR_WANT_CERTIFICATE_VERIFY: return "WANT_CERTIFICATE_VERIFY"; case SSL_ERROR_HANDOFF: return "HANDOFF"; case SSL_ERROR_HANDBACK: return "HANDBACK"; case SSL_ERROR_WANT_RENEGOTIATE: return "WANT_RENEGOTIATE"; case SSL_ERROR_HANDSHAKE_HINTS_READY: return "HANDSHAKE_HINTS_READY"; default: return nullptr; } } uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options) { ctx->options |= options; return ctx->options; } uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options) { ctx->options &= ~options; return ctx->options; } uint32_t SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; } uint32_t SSL_set_options(SSL *ssl, uint32_t options) { ssl->options |= options; return ssl->options; } uint32_t SSL_clear_options(SSL *ssl, uint32_t options) { ssl->options &= ~options; return ssl->options; } uint32_t SSL_get_options(const SSL *ssl) { return ssl->options; } uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode) { ctx->mode |= mode; return ctx->mode; } uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode) { ctx->mode &= ~mode; return ctx->mode; } uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx) { return ctx->mode; } uint32_t SSL_set_mode(SSL *ssl, uint32_t mode) { ssl->mode |= mode; return ssl->mode; } uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode) { ssl->mode &= ~mode; return ssl->mode; } uint32_t SSL_get_mode(const SSL *ssl) { return ssl->mode; } void SSL_CTX_set0_buffer_pool(SSL_CTX *ctx, CRYPTO_BUFFER_POOL *pool) { ctx->pool = pool; } int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { *out_len = 0; OPENSSL_memset(out, 0, max_out); // tls-unique is not defined for TLS 1.3. if (!ssl->s3->initial_handshake_complete || ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return 0; } // The tls-unique value is the first Finished message in the handshake, which // is the client's in a full handshake and the server's for a resumption. See // https://tools.ietf.org/html/rfc5929#section-3.1. const uint8_t *finished = ssl->s3->previous_client_finished; size_t finished_len = ssl->s3->previous_client_finished_len; if (ssl->session != NULL) { // tls-unique is broken for resumed sessions unless EMS is used. if (!ssl->session->extended_master_secret) { return 0; } finished = ssl->s3->previous_server_finished; finished_len = ssl->s3->previous_server_finished_len; } *out_len = finished_len; if (finished_len > max_out) { *out_len = max_out; } OPENSSL_memcpy(out, finished, *out_len); return 1; } static int set_session_id_context(CERT *cert, const uint8_t *sid_ctx, size_t sid_ctx_len) { if (sid_ctx_len > sizeof(cert->sid_ctx)) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); return 0; } static_assert(sizeof(cert->sid_ctx) < 256, "sid_ctx too large"); cert->sid_ctx_length = (uint8_t)sid_ctx_len; OPENSSL_memcpy(cert->sid_ctx, sid_ctx, sid_ctx_len); return 1; } int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const uint8_t *sid_ctx, size_t sid_ctx_len) { return set_session_id_context(ctx->cert.get(), sid_ctx, sid_ctx_len); } int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx, size_t sid_ctx_len) { if (!ssl->config) { return 0; } return set_session_id_context(ssl->config->cert.get(), sid_ctx, sid_ctx_len); } const uint8_t *SSL_get0_session_id_context(const SSL *ssl, size_t *out_len) { if (!ssl->config) { assert(ssl->config); *out_len = 0; return NULL; } *out_len = ssl->config->cert->sid_ctx_length; return ssl->config->cert->sid_ctx; } void SSL_certs_clear(SSL *ssl) { if (!ssl->config) { return; } ssl_cert_clear_certs(ssl->config->cert.get()); } int SSL_get_fd(const SSL *ssl) { return SSL_get_rfd(ssl); } int SSL_get_rfd(const SSL *ssl) { int ret = -1; BIO *b = BIO_find_type(SSL_get_rbio(ssl), BIO_TYPE_DESCRIPTOR); if (b != NULL) { BIO_get_fd(b, &ret); } return ret; } int SSL_get_wfd(const SSL *ssl) { int ret = -1; BIO *b = BIO_find_type(SSL_get_wbio(ssl), BIO_TYPE_DESCRIPTOR); if (b != NULL) { BIO_get_fd(b, &ret); } return ret; } int SSL_set_fd(SSL *ssl, int fd) { BIO *bio = BIO_new(BIO_s_socket()); if (bio == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); return 0; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set_bio(ssl, bio, bio); return 1; } int SSL_set_wfd(SSL *ssl, int fd) { BIO *rbio = SSL_get_rbio(ssl); if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET || BIO_get_fd(rbio, NULL) != fd) { BIO *bio = BIO_new(BIO_s_socket()); if (bio == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); return 0; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set0_wbio(ssl, bio); } else { // Copy the rbio over to the wbio. BIO_up_ref(rbio); SSL_set0_wbio(ssl, rbio); } return 1; } int SSL_set_rfd(SSL *ssl, int fd) { BIO *wbio = SSL_get_wbio(ssl); if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET || BIO_get_fd(wbio, NULL) != fd) { BIO *bio = BIO_new(BIO_s_socket()); if (bio == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); return 0; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set0_rbio(ssl, bio); } else { // Copy the wbio over to the rbio. BIO_up_ref(wbio); SSL_set0_rbio(ssl, wbio); } return 1; } static size_t copy_finished(void *out, size_t out_len, const uint8_t *in, size_t in_len) { if (out_len > in_len) { out_len = in_len; } OPENSSL_memcpy(out, in, out_len); return in_len; } size_t SSL_get_finished(const SSL *ssl, void *buf, size_t count) { if (!ssl->s3->initial_handshake_complete || ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return 0; } if (ssl->server) { return copy_finished(buf, count, ssl->s3->previous_server_finished, ssl->s3->previous_server_finished_len); } return copy_finished(buf, count, ssl->s3->previous_client_finished, ssl->s3->previous_client_finished_len); } size_t SSL_get_peer_finished(const SSL *ssl, void *buf, size_t count) { if (!ssl->s3->initial_handshake_complete || ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return 0; } if (ssl->server) { return copy_finished(buf, count, ssl->s3->previous_client_finished, ssl->s3->previous_client_finished_len); } return copy_finished(buf, count, ssl->s3->previous_server_finished, ssl->s3->previous_server_finished_len); } int SSL_get_verify_mode(const SSL *ssl) { if (!ssl->config) { assert(ssl->config); return -1; } return ssl->config->verify_mode; } int SSL_get_extms_support(const SSL *ssl) { // TLS 1.3 does not require extended master secret and always reports as // supporting it. if (!ssl->s3->have_version) { return 0; } if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return 1; } // If the initial handshake completed, query the established session. if (ssl->s3->established_session != NULL) { return ssl->s3->established_session->extended_master_secret; } // Otherwise, query the in-progress handshake. if (ssl->s3->hs != NULL) { return ssl->s3->hs->extended_master_secret; } assert(0); return 0; } int SSL_CTX_get_read_ahead(const SSL_CTX *ctx) { return 0; } int SSL_get_read_ahead(const SSL *ssl) { return 0; } int SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes) { return 1; } int SSL_set_read_ahead(SSL *ssl, int yes) { return 1; } int SSL_pending(const SSL *ssl) { return static_cast<int>(ssl->s3->pending_app_data.size()); } int SSL_has_pending(const SSL *ssl) { return SSL_pending(ssl) != 0 || !ssl->s3->read_buffer.empty(); } int SSL_CTX_check_private_key(const SSL_CTX *ctx) { return ssl_cert_check_private_key(ctx->cert.get(), ctx->cert->privatekey.get()); } int SSL_check_private_key(const SSL *ssl) { if (!ssl->config) { return 0; } return ssl_cert_check_private_key(ssl->config->cert.get(), ssl->config->cert->privatekey.get()); } long SSL_get_default_timeout(const SSL *ssl) { return SSL_DEFAULT_SESSION_TIMEOUT; } int SSL_renegotiate(SSL *ssl) { // Caller-initiated renegotiation is not supported. if (!ssl->s3->renegotiate_pending) { OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ssl_can_renegotiate(ssl)) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); return 0; } // We should not have told the caller to release the private key. assert(!SSL_can_release_private_key(ssl)); // Renegotiation is only supported at quiescent points in the application // protocol, namely in HTTPS, just before reading the HTTP response. // Require the record-layer be idle and avoid complexities of sending a // handshake record while an application_data record is being written. if (!ssl->s3->write_buffer.empty() || ssl->s3->write_shutdown != ssl_shutdown_none) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); return 0; } // Begin a new handshake. if (ssl->s3->hs != nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } ssl->s3->hs = ssl_handshake_new(ssl); if (ssl->s3->hs == nullptr) { return 0; } ssl->s3->renegotiate_pending = false; ssl->s3->total_renegotiations++; return 1; } int SSL_renegotiate_pending(SSL *ssl) { return SSL_in_init(ssl) && ssl->s3->initial_handshake_complete; } int SSL_total_renegotiations(const SSL *ssl) { return ssl->s3->total_renegotiations; } size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx) { return ctx->max_cert_list; } void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, size_t max_cert_list) { if (max_cert_list > kMaxHandshakeSize) { max_cert_list = kMaxHandshakeSize; } ctx->max_cert_list = (uint32_t)max_cert_list; } size_t SSL_get_max_cert_list(const SSL *ssl) { return ssl->max_cert_list; } void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list) { if (max_cert_list > kMaxHandshakeSize) { max_cert_list = kMaxHandshakeSize; } ssl->max_cert_list = (uint32_t)max_cert_list; } int SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, size_t max_send_fragment) { if (max_send_fragment < 512) { max_send_fragment = 512; } if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) { max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; } ctx->max_send_fragment = (uint16_t)max_send_fragment; return 1; } int SSL_set_max_send_fragment(SSL *ssl, size_t max_send_fragment) { if (max_send_fragment < 512) { max_send_fragment = 512; } if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) { max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; } ssl->max_send_fragment = (uint16_t)max_send_fragment; return 1; } int SSL_set_mtu(SSL *ssl, unsigned mtu) { if (!SSL_is_dtls(ssl) || mtu < dtls1_min_mtu()) { return 0; } ssl->d1->mtu = mtu; return 1; } int SSL_get_secure_renegotiation_support(const SSL *ssl) { if (!ssl->s3->have_version) { return 0; } return ssl_protocol_version(ssl) >= TLS1_3_VERSION || ssl->s3->send_connection_binding; } size_t SSL_CTX_sess_number(const SSL_CTX *ctx) { MutexReadLock lock(const_cast<CRYPTO_MUTEX *>(&ctx->lock)); return lh_SSL_SESSION_num_items(ctx->sessions); } unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, unsigned long size) { unsigned long ret = ctx->session_cache_size; ctx->session_cache_size = size; return ret; } unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx) { return ctx->session_cache_size; } int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode) { int ret = ctx->session_cache_mode; ctx->session_cache_mode = mode; return ret; } int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx) { return ctx->session_cache_mode; } int SSL_CTX_get_tlsext_ticket_keys(SSL_CTX *ctx, void *out, size_t len) { if (out == NULL) { return 48; } if (len != 48) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH); return 0; } // The default ticket keys are initialized lazily. Trigger a key // rotation to initialize them. if (!ssl_ctx_rotate_ticket_encryption_key(ctx)) { return 0; } uint8_t *out_bytes = reinterpret_cast<uint8_t *>(out); MutexReadLock lock(&ctx->lock); OPENSSL_memcpy(out_bytes, ctx->ticket_key_current->name, 16); OPENSSL_memcpy(out_bytes + 16, ctx->ticket_key_current->hmac_key, 16); OPENSSL_memcpy(out_bytes + 32, ctx->ticket_key_current->aes_key, 16); return 1; } int SSL_CTX_set_tlsext_ticket_keys(SSL_CTX *ctx, const void *in, size_t len) { if (in == NULL) { return 48; } if (len != 48) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH); return 0; } auto key = MakeUnique<TicketKey>(); if (!key) { return 0; } const uint8_t *in_bytes = reinterpret_cast<const uint8_t *>(in); OPENSSL_memcpy(key->name, in_bytes, 16); OPENSSL_memcpy(key->hmac_key, in_bytes + 16, 16); OPENSSL_memcpy(key->aes_key, in_bytes + 32, 16); // Disable automatic key rotation for manually-configured keys. This is now // the caller's responsibility. key->next_rotation_tv_sec = 0; ctx->ticket_key_current = std::move(key); ctx->ticket_key_prev.reset(); return 1; } int SSL_CTX_set_tlsext_ticket_key_cb( SSL_CTX *ctx, int (*callback)(SSL *ssl, uint8_t *key_name, uint8_t *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, int encrypt)) { ctx->ticket_key_cb = callback; return 1; } int SSL_CTX_set1_curves(SSL_CTX *ctx, const int *curves, size_t curves_len) { return tls1_set_curves(&ctx->supported_group_list, MakeConstSpan(curves, curves_len)); } int SSL_set1_curves(SSL *ssl, const int *curves, size_t curves_len) { if (!ssl->config) { return 0; } return tls1_set_curves(&ssl->config->supported_group_list, MakeConstSpan(curves, curves_len)); } int SSL_CTX_set1_curves_list(SSL_CTX *ctx, const char *curves) { return tls1_set_curves_list(&ctx->supported_group_list, curves); } int SSL_set1_curves_list(SSL *ssl, const char *curves) { if (!ssl->config) { return 0; } return tls1_set_curves_list(&ssl->config->supported_group_list, curves); } uint16_t SSL_get_curve_id(const SSL *ssl) { // TODO(davidben): This checks the wrong session if there is a renegotiation // in progress. SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL) { return 0; } return session->group_id; } int SSL_CTX_set_tmp_dh(SSL_CTX *ctx, const DH *dh) { return 1; } int SSL_set_tmp_dh(SSL *ssl, const DH *dh) { return 1; } STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) { return ctx->cipher_list->ciphers.get(); } int SSL_CTX_cipher_in_group(const SSL_CTX *ctx, size_t i) { if (i >= sk_SSL_CIPHER_num(ctx->cipher_list->ciphers.get())) { return 0; } return ctx->cipher_list->in_group_flags[i]; } STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl) { if (ssl == NULL) { return NULL; } if (ssl->config == NULL) { assert(ssl->config); return NULL; } return ssl->config->cipher_list ? ssl->config->cipher_list->ciphers.get() : ssl->ctx->cipher_list->ciphers.get(); } const char *SSL_get_cipher_list(const SSL *ssl, int n) { if (ssl == NULL) { return NULL; } STACK_OF(SSL_CIPHER) *sk = SSL_get_ciphers(ssl); if (sk == NULL || n < 0 || (size_t)n >= sk_SSL_CIPHER_num(sk)) { return NULL; } const SSL_CIPHER *c = sk_SSL_CIPHER_value(sk, n); if (c == NULL) { return NULL; } return c->name; } int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) { return ssl_create_cipher_list(&ctx->cipher_list, str, false /* not strict */); } int SSL_CTX_set_strict_cipher_list(SSL_CTX *ctx, const char *str) { return ssl_create_cipher_list(&ctx->cipher_list, str, true /* strict */); } int SSL_set_cipher_list(SSL *ssl, const char *str) { if (!ssl->config) { return 0; } return ssl_create_cipher_list(&ssl->config->cipher_list, str, false /* not strict */); } int SSL_set_strict_cipher_list(SSL *ssl, const char *str) { if (!ssl->config) { return 0; } return ssl_create_cipher_list(&ssl->config->cipher_list, str, true /* strict */); } const char *SSL_get_servername(const SSL *ssl, const int type) { if (type != TLSEXT_NAMETYPE_host_name) { return NULL; } // Historically, |SSL_get_servername| was also the configuration getter // corresponding to |SSL_set_tlsext_host_name|. if (ssl->hostname != nullptr) { return ssl->hostname.get(); } return ssl->s3->hostname.get(); } int SSL_get_servername_type(const SSL *ssl) { if (SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) == NULL) { return -1; } return TLSEXT_NAMETYPE_host_name; } void SSL_CTX_set_custom_verify( SSL_CTX *ctx, int mode, enum ssl_verify_result_t (*callback)(SSL *ssl, uint8_t *out_alert)) { ctx->verify_mode = mode; ctx->custom_verify_callback = callback; } void SSL_set_custom_verify( SSL *ssl, int mode, enum ssl_verify_result_t (*callback)(SSL *ssl, uint8_t *out_alert)) { if (!ssl->config) { return; } ssl->config->verify_mode = mode; ssl->config->custom_verify_callback = callback; } void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx) { ctx->signed_cert_timestamps_enabled = true; } void SSL_enable_signed_cert_timestamps(SSL *ssl) { if (!ssl->config) { return; } ssl->config->signed_cert_timestamps_enabled = true; } void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx) { ctx->ocsp_stapling_enabled = true; } void SSL_enable_ocsp_stapling(SSL *ssl) { if (!ssl->config) { return; } ssl->config->ocsp_stapling_enabled = true; } void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, const uint8_t **out, size_t *out_len) { SSL_SESSION *session = SSL_get_session(ssl); if (ssl->server || !session || !session->signed_cert_timestamp_list) { *out_len = 0; *out = NULL; return; } *out = CRYPTO_BUFFER_data(session->signed_cert_timestamp_list.get()); *out_len = CRYPTO_BUFFER_len(session->signed_cert_timestamp_list.get()); } void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out, size_t *out_len) { SSL_SESSION *session = SSL_get_session(ssl); if (ssl->server || !session || !session->ocsp_response) { *out_len = 0; *out = NULL; return; } *out = CRYPTO_BUFFER_data(session->ocsp_response.get()); *out_len = CRYPTO_BUFFER_len(session->ocsp_response.get()); } int SSL_set_tlsext_host_name(SSL *ssl, const char *name) { ssl->hostname.reset(); if (name == nullptr) { return 1; } size_t len = strlen(name); if (len == 0 || len > TLSEXT_MAXLEN_host_name) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL3_EXT_INVALID_SERVERNAME); return 0; } ssl->hostname.reset(OPENSSL_strdup(name)); if (ssl->hostname == nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return 0; } return 1; } int SSL_CTX_set_tlsext_servername_callback( SSL_CTX *ctx, int (*callback)(SSL *ssl, int *out_alert, void *arg)) { ctx->servername_callback = callback; return 1; } int SSL_CTX_set_tlsext_servername_arg(SSL_CTX *ctx, void *arg) { ctx->servername_arg = arg; return 1; } int SSL_select_next_proto(uint8_t **out, uint8_t *out_len, const uint8_t *peer, unsigned peer_len, const uint8_t *supported, unsigned supported_len) { const uint8_t *result; int status; // For each protocol in peer preference order, see if we support it. for (unsigned i = 0; i < peer_len;) { for (unsigned j = 0; j < supported_len;) { if (peer[i] == supported[j] && OPENSSL_memcmp(&peer[i + 1], &supported[j + 1], peer[i]) == 0) { // We found a match result = &peer[i]; status = OPENSSL_NPN_NEGOTIATED; goto found; } j += supported[j]; j++; } i += peer[i]; i++; } // There's no overlap between our protocols and the peer's list. result = supported; status = OPENSSL_NPN_NO_OVERLAP; found: *out = (uint8_t *)result + 1; *out_len = result[0]; return status; } void SSL_get0_next_proto_negotiated(const SSL *ssl, const uint8_t **out_data, unsigned *out_len) { *out_data = ssl->s3->next_proto_negotiated.data(); *out_len = ssl->s3->next_proto_negotiated.size(); } void SSL_CTX_set_next_protos_advertised_cb( SSL_CTX *ctx, int (*cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg), void *arg) { ctx->next_protos_advertised_cb = cb; ctx->next_protos_advertised_cb_arg = arg; } void SSL_CTX_set_next_proto_select_cb( SSL_CTX *ctx, int (*cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg), void *arg) { ctx->next_proto_select_cb = cb; ctx->next_proto_select_cb_arg = arg; } int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos, unsigned protos_len) { // Note this function's return value is backwards. auto span = MakeConstSpan(protos, protos_len); if (!span.empty() && !ssl_is_valid_alpn_list(span)) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL_LIST); return 1; } return ctx->alpn_client_proto_list.CopyFrom(span) ? 0 : 1; } int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, unsigned protos_len) { // Note this function's return value is backwards. if (!ssl->config) { return 1; } auto span = MakeConstSpan(protos, protos_len); if (!span.empty() && !ssl_is_valid_alpn_list(span)) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL_LIST); return 1; } return ssl->config->alpn_client_proto_list.CopyFrom(span) ? 0 : 1; } void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg), void *arg) { ctx->alpn_select_cb = cb; ctx->alpn_select_cb_arg = arg; } void SSL_get0_alpn_selected(const SSL *ssl, const uint8_t **out_data, unsigned *out_len) { if (SSL_in_early_data(ssl) && !ssl->server) { *out_data = ssl->s3->hs->early_session->early_alpn.data(); *out_len = ssl->s3->hs->early_session->early_alpn.size(); } else { *out_data = ssl->s3->alpn_selected.data(); *out_len = ssl->s3->alpn_selected.size(); } } void SSL_CTX_set_allow_unknown_alpn_protos(SSL_CTX *ctx, int enabled) { ctx->allow_unknown_alpn_protos = !!enabled; } int SSL_add_application_settings(SSL *ssl, const uint8_t *proto, size_t proto_len, const uint8_t *settings, size_t settings_len) { if (!ssl->config) { return 0; } ALPSConfig config; if (!config.protocol.CopyFrom(MakeConstSpan(proto, proto_len)) || !config.settings.CopyFrom(MakeConstSpan(settings, settings_len)) || !ssl->config->alps_configs.Push(std::move(config))) { return 0; } return 1; } void SSL_get0_peer_application_settings(const SSL *ssl, const uint8_t **out_data, size_t *out_len) { const SSL_SESSION *session = SSL_get_session(ssl); Span<const uint8_t> settings = session ? session->peer_application_settings : Span<const uint8_t>(); *out_data = settings.data(); *out_len = settings.size(); } int SSL_has_application_settings(const SSL *ssl) { const SSL_SESSION *session = SSL_get_session(ssl); return session && session->has_application_settings; } int SSL_CTX_add_cert_compression_alg(SSL_CTX *ctx, uint16_t alg_id, ssl_cert_compression_func_t compress, ssl_cert_decompression_func_t decompress) { assert(compress != nullptr || decompress != nullptr); for (const auto &alg : ctx->cert_compression_algs) { if (alg.alg_id == alg_id) { return 0; } } CertCompressionAlg alg; alg.alg_id = alg_id; alg.compress = compress; alg.decompress = decompress; return ctx->cert_compression_algs.Push(alg); } void SSL_CTX_set_tls_channel_id_enabled(SSL_CTX *ctx, int enabled) { ctx->channel_id_enabled = !!enabled; } int SSL_CTX_enable_tls_channel_id(SSL_CTX *ctx) { SSL_CTX_set_tls_channel_id_enabled(ctx, 1); return 1; } void SSL_set_tls_channel_id_enabled(SSL *ssl, int enabled) { if (!ssl->config) { return; } ssl->config->channel_id_enabled = !!enabled; } int SSL_enable_tls_channel_id(SSL *ssl) { SSL_set_tls_channel_id_enabled(ssl, 1); return 1; } static int is_p256_key(EVP_PKEY *private_key) { const EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(private_key); return ec_key != NULL && EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) == NID_X9_62_prime256v1; } int SSL_CTX_set1_tls_channel_id(SSL_CTX *ctx, EVP_PKEY *private_key) { if (!is_p256_key(private_key)) { OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256); return 0; } ctx->channel_id_private = UpRef(private_key); return 1; } int SSL_set1_tls_channel_id(SSL *ssl, EVP_PKEY *private_key) { if (!ssl->config) { return 0; } if (!is_p256_key(private_key)) { OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256); return 0; } ssl->config->channel_id_private = UpRef(private_key); return 1; } size_t SSL_get_tls_channel_id(SSL *ssl, uint8_t *out, size_t max_out) { if (!ssl->s3->channel_id_valid) { return 0; } OPENSSL_memcpy(out, ssl->s3->channel_id, (max_out < 64) ? max_out : 64); return 64; } size_t SSL_get0_certificate_types(const SSL *ssl, const uint8_t **out_types) { Span<const uint8_t> types; if (!ssl->server && ssl->s3->hs != nullptr) { types = ssl->s3->hs->certificate_types; } *out_types = types.data(); return types.size(); } size_t SSL_get0_peer_verify_algorithms(const SSL *ssl, const uint16_t **out_sigalgs) { Span<const uint16_t> sigalgs; if (ssl->s3->hs != nullptr) { sigalgs = ssl->s3->hs->peer_sigalgs; } *out_sigalgs = sigalgs.data(); return sigalgs.size(); } size_t SSL_get0_peer_delegation_algorithms(const SSL *ssl, const uint16_t **out_sigalgs){ Span<const uint16_t> sigalgs; if (ssl->s3->hs != nullptr) { sigalgs = ssl->s3->hs->peer_delegated_credential_sigalgs; } *out_sigalgs = sigalgs.data(); return sigalgs.size(); } EVP_PKEY *SSL_get_privatekey(const SSL *ssl) { if (!ssl->config) { assert(ssl->config); return NULL; } if (ssl->config->cert != NULL) { return ssl->config->cert->privatekey.get(); } return NULL; } EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) { if (ctx->cert != NULL) { return ctx->cert->privatekey.get(); } return NULL; } const SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl) { const SSL_SESSION *session = SSL_get_session(ssl); return session == nullptr ? nullptr : session->cipher; } int SSL_session_reused(const SSL *ssl) { return ssl->s3->session_reused || SSL_in_early_data(ssl); } const COMP_METHOD *SSL_get_current_compression(SSL *ssl) { return NULL; } const COMP_METHOD *SSL_get_current_expansion(SSL *ssl) { return NULL; } int SSL_get_server_tmp_key(SSL *ssl, EVP_PKEY **out_key) { return 0; } void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) { ctx->quiet_shutdown = (mode != 0); } int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) { return ctx->quiet_shutdown; } void SSL_set_quiet_shutdown(SSL *ssl, int mode) { ssl->quiet_shutdown = (mode != 0); } int SSL_get_quiet_shutdown(const SSL *ssl) { return ssl->quiet_shutdown; } void SSL_set_shutdown(SSL *ssl, int mode) { // It is an error to clear any bits that have already been set. (We can't try // to get a second close_notify or send two.) assert((SSL_get_shutdown(ssl) & mode) == SSL_get_shutdown(ssl)); if (mode & SSL_RECEIVED_SHUTDOWN && ssl->s3->read_shutdown == ssl_shutdown_none) { ssl->s3->read_shutdown = ssl_shutdown_close_notify; } if (mode & SSL_SENT_SHUTDOWN && ssl->s3->write_shutdown == ssl_shutdown_none) { ssl->s3->write_shutdown = ssl_shutdown_close_notify; } } int SSL_get_shutdown(const SSL *ssl) { int ret = 0; if (ssl->s3->read_shutdown != ssl_shutdown_none) { // Historically, OpenSSL set |SSL_RECEIVED_SHUTDOWN| on both close_notify // and fatal alert. ret |= SSL_RECEIVED_SHUTDOWN; } if (ssl->s3->write_shutdown == ssl_shutdown_close_notify) { // Historically, OpenSSL set |SSL_SENT_SHUTDOWN| on only close_notify. ret |= SSL_SENT_SHUTDOWN; } return ret; } SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx.get(); } SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) { if (!ssl->config) { return NULL; } if (ssl->ctx.get() == ctx) { return ssl->ctx.get(); } // One cannot change the X.509 callbacks during a connection. if (ssl->ctx->x509_method != ctx->x509_method) { assert(0); return NULL; } UniquePtr<CERT> new_cert = ssl_cert_dup(ctx->cert.get()); if (!new_cert) { return nullptr; } ssl->config->cert = std::move(new_cert); ssl->ctx = UpRef(ctx); ssl->enable_early_data = ssl->ctx->enable_early_data; return ssl->ctx.get(); } void SSL_set_info_callback(SSL *ssl, void (*cb)(const SSL *ssl, int type, int value)) { ssl->info_callback = cb; } void (*SSL_get_info_callback(const SSL *ssl))(const SSL *ssl, int type, int value) { return ssl->info_callback; } int SSL_state(const SSL *ssl) { return SSL_in_init(ssl) ? SSL_ST_INIT : SSL_ST_OK; } void SSL_set_state(SSL *ssl, int state) { } char *SSL_get_shared_ciphers(const SSL *ssl, char *buf, int len) { if (len <= 0) { return NULL; } buf[0] = '\0'; return buf; } int SSL_get_shared_sigalgs(SSL *ssl, int idx, int *psign, int *phash, int *psignandhash, uint8_t *rsig, uint8_t *rhash) { return 0; } int SSL_CTX_set_quic_method(SSL_CTX *ctx, const SSL_QUIC_METHOD *quic_method) { if (ctx->method->is_dtls) { return 0; } ctx->quic_method = quic_method; return 1; } int SSL_set_quic_method(SSL *ssl, const SSL_QUIC_METHOD *quic_method) { if (ssl->method->is_dtls) { return 0; } ssl->quic_method = quic_method; return 1; } int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { int index; if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl, &index, argl, argp, free_func)) { return -1; } return index; } int SSL_set_ex_data(SSL *ssl, int idx, void *data) { return CRYPTO_set_ex_data(&ssl->ex_data, idx, data); } void *SSL_get_ex_data(const SSL *ssl, int idx) { return CRYPTO_get_ex_data(&ssl->ex_data, idx); } int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { int index; if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl_ctx, &index, argl, argp, free_func)) { return -1; } return index; } int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *data) { return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); } void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx) { return CRYPTO_get_ex_data(&ctx->ex_data, idx); } int SSL_want(const SSL *ssl) { return ssl->s3->rwstate; } void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx, RSA *(*cb)(SSL *ssl, int is_export, int keylength)) {} void SSL_set_tmp_rsa_callback(SSL *ssl, RSA *(*cb)(SSL *ssl, int is_export, int keylength)) {} void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, DH *(*cb)(SSL *ssl, int is_export, int keylength)) {} void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*cb)(SSL *ssl, int is_export, int keylength)) {} static int use_psk_identity_hint(UniquePtr<char> *out, const char *identity_hint) { if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); return 0; } // Clear currently configured hint, if any. out->reset(); // Treat the empty hint as not supplying one. Plain PSK makes it possible to // send either no hint (omit ServerKeyExchange) or an empty hint, while // ECDHE_PSK can only spell empty hint. Having different capabilities is odd, // so we interpret empty and missing as identical. if (identity_hint != NULL && identity_hint[0] != '\0') { out->reset(OPENSSL_strdup(identity_hint)); if (*out == nullptr) { return 0; } } return 1; } int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) { return use_psk_identity_hint(&ctx->psk_identity_hint, identity_hint); } int SSL_use_psk_identity_hint(SSL *ssl, const char *identity_hint) { if (!ssl->config) { return 0; } return use_psk_identity_hint(&ssl->config->psk_identity_hint, identity_hint); } const char *SSL_get_psk_identity_hint(const SSL *ssl) { if (ssl == NULL) { return NULL; } if (ssl->config == NULL) { assert(ssl->config); return NULL; } return ssl->config->psk_identity_hint.get(); } const char *SSL_get_psk_identity(const SSL *ssl) { if (ssl == NULL) { return NULL; } SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL) { return NULL; } return session->psk_identity.get(); } void SSL_set_psk_client_callback( SSL *ssl, unsigned (*cb)(SSL *ssl, const char *hint, char *identity, unsigned max_identity_len, uint8_t *psk, unsigned max_psk_len)) { if (!ssl->config) { return; } ssl->config->psk_client_callback = cb; } void SSL_CTX_set_psk_client_callback( SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *hint, char *identity, unsigned max_identity_len, uint8_t *psk, unsigned max_psk_len)) { ctx->psk_client_callback = cb; } void SSL_set_psk_server_callback( SSL *ssl, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk, unsigned max_psk_len)) { if (!ssl->config) { return; } ssl->config->psk_server_callback = cb; } void SSL_CTX_set_psk_server_callback( SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk, unsigned max_psk_len)) { ctx->psk_server_callback = cb; } void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)) { ctx->msg_callback = cb; } void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg) { ctx->msg_callback_arg = arg; } void SSL_set_msg_callback(SSL *ssl, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)) { ssl->msg_callback = cb; } void SSL_set_msg_callback_arg(SSL *ssl, void *arg) { ssl->msg_callback_arg = arg; } void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, void (*cb)(const SSL *ssl, const char *line)) { ctx->keylog_callback = cb; } void (*SSL_CTX_get_keylog_callback(const SSL_CTX *ctx))(const SSL *ssl, const char *line) { return ctx->keylog_callback; } void SSL_CTX_set_current_time_cb(SSL_CTX *ctx, void (*cb)(const SSL *ssl, struct timeval *out_clock)) { ctx->current_time_cb = cb; } int SSL_can_release_private_key(const SSL *ssl) { if (ssl_can_renegotiate(ssl)) { // If the connection can renegotiate (client only), the private key may be // used in a future handshake. return 0; } // Otherwise, this is determined by the current handshake. return !ssl->s3->hs || ssl->s3->hs->can_release_private_key; } int SSL_is_init_finished(const SSL *ssl) { return !SSL_in_init(ssl); } int SSL_in_init(const SSL *ssl) { // This returns false once all the handshake state has been finalized, to // allow callbacks and getters based on SSL_in_init to return the correct // values. SSL_HANDSHAKE *hs = ssl->s3->hs.get(); return hs != nullptr && !hs->handshake_finalized; } int SSL_in_false_start(const SSL *ssl) { if (ssl->s3->hs == NULL) { return 0; } return ssl->s3->hs->in_false_start; } int SSL_cutthrough_complete(const SSL *ssl) { return SSL_in_false_start(ssl); } int SSL_is_server(const SSL *ssl) { return ssl->server; } int SSL_is_dtls(const SSL *ssl) { return ssl->method->is_dtls; } void SSL_CTX_set_select_certificate_cb( SSL_CTX *ctx, enum ssl_select_cert_result_t (*cb)(const SSL_CLIENT_HELLO *)) { ctx->select_certificate_cb = cb; } void SSL_CTX_set_dos_protection_cb(SSL_CTX *ctx, int (*cb)(const SSL_CLIENT_HELLO *)) { ctx->dos_protection_cb = cb; } void SSL_CTX_set_reverify_on_resume(SSL_CTX *ctx, int enabled) { ctx->reverify_on_resume = !!enabled; } void SSL_set_enforce_rsa_key_usage(SSL *ssl, int enabled) { if (!ssl->config) { return; } ssl->config->enforce_rsa_key_usage = !!enabled; } void SSL_set_renegotiate_mode(SSL *ssl, enum ssl_renegotiate_mode_t mode) { ssl->renegotiate_mode = mode; // Check if |ssl_can_renegotiate| has changed and the configuration may now be // shed. HTTP clients may initially allow renegotiation for HTTP/1.1, and then // disable after the handshake once the ALPN protocol is known to be HTTP/2. ssl_maybe_shed_handshake_config(ssl); } int SSL_get_ivs(const SSL *ssl, const uint8_t **out_read_iv, const uint8_t **out_write_iv, size_t *out_iv_len) { size_t write_iv_len; if (!ssl->s3->aead_read_ctx->GetIV(out_read_iv, out_iv_len) || !ssl->s3->aead_write_ctx->GetIV(out_write_iv, &write_iv_len) || *out_iv_len != write_iv_len) { return 0; } return 1; } static uint64_t be_to_u64(const uint8_t in[8]) { return (((uint64_t)in[0]) << 56) | (((uint64_t)in[1]) << 48) | (((uint64_t)in[2]) << 40) | (((uint64_t)in[3]) << 32) | (((uint64_t)in[4]) << 24) | (((uint64_t)in[5]) << 16) | (((uint64_t)in[6]) << 8) | ((uint64_t)in[7]); } uint64_t SSL_get_read_sequence(const SSL *ssl) { // TODO(davidben): Internally represent sequence numbers as uint64_t. if (SSL_is_dtls(ssl)) { // max_seq_num already includes the epoch. assert(ssl->d1->r_epoch == (ssl->d1->bitmap.max_seq_num >> 48)); return ssl->d1->bitmap.max_seq_num; } return be_to_u64(ssl->s3->read_sequence); } uint64_t SSL_get_write_sequence(const SSL *ssl) { uint64_t ret = be_to_u64(ssl->s3->write_sequence); if (SSL_is_dtls(ssl)) { assert((ret >> 48) == 0); ret |= ((uint64_t)ssl->d1->w_epoch) << 48; } return ret; } uint16_t SSL_get_peer_signature_algorithm(const SSL *ssl) { // TODO(davidben): This checks the wrong session if there is a renegotiation // in progress. SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL) { return 0; } return session->peer_signature_algorithm; } size_t SSL_get_client_random(const SSL *ssl, uint8_t *out, size_t max_out) { if (max_out == 0) { return sizeof(ssl->s3->client_random); } if (max_out > sizeof(ssl->s3->client_random)) { max_out = sizeof(ssl->s3->client_random); } OPENSSL_memcpy(out, ssl->s3->client_random, max_out); return max_out; } size_t SSL_get_server_random(const SSL *ssl, uint8_t *out, size_t max_out) { if (max_out == 0) { return sizeof(ssl->s3->server_random); } if (max_out > sizeof(ssl->s3->server_random)) { max_out = sizeof(ssl->s3->server_random); } OPENSSL_memcpy(out, ssl->s3->server_random, max_out); return max_out; } const SSL_CIPHER *SSL_get_pending_cipher(const SSL *ssl) { SSL_HANDSHAKE *hs = ssl->s3->hs.get(); if (hs == NULL) { return NULL; } return hs->new_cipher; } void SSL_set_retain_only_sha256_of_client_certs(SSL *ssl, int enabled) { if (!ssl->config) { return; } ssl->config->retain_only_sha256_of_client_certs = !!enabled; } void SSL_CTX_set_retain_only_sha256_of_client_certs(SSL_CTX *ctx, int enabled) { ctx->retain_only_sha256_of_client_certs = !!enabled; } void SSL_CTX_set_grease_enabled(SSL_CTX *ctx, int enabled) { ctx->grease_enabled = !!enabled; } void SSL_CTX_set_permute_extensions(SSL_CTX *ctx, int enabled) { ctx->permute_extensions = !!enabled; } void SSL_set_permute_extensions(SSL *ssl, int enabled) { if (!ssl->config) { return; } ssl->config->permute_extensions = !!enabled; } int32_t SSL_get_ticket_age_skew(const SSL *ssl) { return ssl->s3->ticket_age_skew; } void SSL_CTX_set_false_start_allowed_without_alpn(SSL_CTX *ctx, int allowed) { ctx->false_start_allowed_without_alpn = !!allowed; } int SSL_used_hello_retry_request(const SSL *ssl) { return ssl->s3->used_hello_retry_request; } void SSL_set_shed_handshake_config(SSL *ssl, int enable) { if (!ssl->config) { return; } ssl->config->shed_handshake_config = !!enable; } void SSL_set_jdk11_workaround(SSL *ssl, int enable) { if (!ssl->config) { return; } ssl->config->jdk11_workaround = !!enable; } void SSL_set_quic_use_legacy_codepoint(SSL *ssl, int use_legacy) { if (!ssl->config) { return; } ssl->config->quic_use_legacy_codepoint = !!use_legacy; } int SSL_clear(SSL *ssl) { if (!ssl->config) { return 0; // SSL_clear may not be used after shedding config. } // In OpenSSL, reusing a client |SSL| with |SSL_clear| causes the previously // established session to be offered the next time around. wpa_supplicant // depends on this behavior, so emulate it. UniquePtr<SSL_SESSION> session; if (!ssl->server && ssl->s3->established_session != NULL) { session = UpRef(ssl->s3->established_session); } // The ssl->d1->mtu is simultaneously configuration (preserved across // clear) and connection-specific state (gets reset). // // TODO(davidben): Avoid this. unsigned mtu = 0; if (ssl->d1 != NULL) { mtu = ssl->d1->mtu; } ssl->method->ssl_free(ssl); if (!ssl->method->ssl_new(ssl)) { return 0; } if (SSL_is_dtls(ssl) && (SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { ssl->d1->mtu = mtu; } if (session != nullptr) { SSL_set_session(ssl, session.get()); } return 1; } int SSL_CTX_sess_connect(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_connect_good(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_accept(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_accept_good(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_hits(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_misses(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_timeouts(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_cache_full(const SSL_CTX *ctx) { return 0; } int SSL_num_renegotiations(const SSL *ssl) { return SSL_total_renegotiations(ssl); } int SSL_CTX_need_tmp_RSA(const SSL_CTX *ctx) { return 0; } int SSL_need_tmp_RSA(const SSL *ssl) { return 0; } int SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, const RSA *rsa) { return 1; } int SSL_set_tmp_rsa(SSL *ssl, const RSA *rsa) { return 1; } void ERR_load_SSL_strings(void) {} void SSL_load_error_strings(void) {} int SSL_cache_hit(SSL *ssl) { return SSL_session_reused(ssl); } int SSL_CTX_set_tmp_ecdh(SSL_CTX *ctx, const EC_KEY *ec_key) { if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)); return SSL_CTX_set1_curves(ctx, &nid, 1); } int SSL_set_tmp_ecdh(SSL *ssl, const EC_KEY *ec_key) { if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)); return SSL_set1_curves(ssl, &nid, 1); } void SSL_CTX_set_ticket_aead_method(SSL_CTX *ctx, const SSL_TICKET_AEAD_METHOD *aead_method) { ctx->ticket_aead_method = aead_method; } SSL_SESSION *SSL_process_tls13_new_session_ticket(SSL *ssl, const uint8_t *buf, size_t buf_len) { if (SSL_in_init(ssl) || ssl_protocol_version(ssl) != TLS1_3_VERSION || ssl->server) { // Only TLS 1.3 clients are supported. OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return nullptr; } CBS cbs, body; CBS_init(&cbs, buf, buf_len); uint8_t type; if (!CBS_get_u8(&cbs, &type) || !CBS_get_u24_length_prefixed(&cbs, &body) || CBS_len(&cbs) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return nullptr; } UniquePtr<SSL_SESSION> session = tls13_create_session_with_ticket(ssl, &body); if (!session) { // |tls13_create_session_with_ticket| puts the correct error. return nullptr; } return session.release(); } int SSL_set_tlsext_status_type(SSL *ssl, int type) { if (!ssl->config) { return 0; } ssl->config->ocsp_stapling_enabled = type == TLSEXT_STATUSTYPE_ocsp; return 1; } int SSL_get_tlsext_status_type(const SSL *ssl) { if (ssl->server) { SSL_HANDSHAKE *hs = ssl->s3->hs.get(); return hs != nullptr && hs->ocsp_stapling_requested ? TLSEXT_STATUSTYPE_ocsp : TLSEXT_STATUSTYPE_nothing; } return ssl->config != nullptr && ssl->config->ocsp_stapling_enabled ? TLSEXT_STATUSTYPE_ocsp : TLSEXT_STATUSTYPE_nothing; } int SSL_set_tlsext_status_ocsp_resp(SSL *ssl, uint8_t *resp, size_t resp_len) { if (SSL_set_ocsp_response(ssl, resp, resp_len)) { OPENSSL_free(resp); return 1; } return 0; } size_t SSL_get_tlsext_status_ocsp_resp(const SSL *ssl, const uint8_t **out) { size_t ret; SSL_get0_ocsp_response(ssl, out, &ret); return ret; } int SSL_CTX_set_tlsext_status_cb(SSL_CTX *ctx, int (*callback)(SSL *ssl, void *arg)) { ctx->legacy_ocsp_callback = callback; return 1; } int SSL_CTX_set_tlsext_status_arg(SSL_CTX *ctx, void *arg) { ctx->legacy_ocsp_callback_arg = arg; return 1; }