// Copyright 2019 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/profiling/internal/exponential_biased.h" #include <stdint.h> #include <algorithm> #include <atomic> #include <cmath> #include <limits> #include "absl/base/attributes.h" #include "absl/base/optimization.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace profiling_internal { // The algorithm generates a random number between 0 and 1 and applies the // inverse cumulative distribution function for an exponential. Specifically: // Let m be the inverse of the sample period, then the probability // distribution function is m*exp(-mx) so the CDF is // p = 1 - exp(-mx), so // q = 1 - p = exp(-mx) // log_e(q) = -mx // -log_e(q)/m = x // log_2(q) * (-log_e(2) * 1/m) = x // In the code, q is actually in the range 1 to 2**26, hence the -26 below int64_t ExponentialBiased::GetSkipCount(int64_t mean) { if (ABSL_PREDICT_FALSE(!initialized_)) { Initialize(); } uint64_t rng = NextRandom(rng_); rng_ = rng; // Take the top 26 bits as the random number // (This plus the 1<<58 sampling bound give a max possible step of // 5194297183973780480 bytes.) // The uint32_t cast is to prevent a (hard-to-reproduce) NAN // under piii debug for some binaries. double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0; // Put the computed p-value through the CDF of a geometric. double interval = bias_ + (std::log2(q) - 26) * (-std::log(2.0) * mean); // Very large values of interval overflow int64_t. To avoid that, we will // cheat and clamp any huge values to (int64_t max)/2. This is a potential // source of bias, but the mean would need to be such a large value that it's // not likely to come up. For example, with a mean of 1e18, the probability of // hitting this condition is about 1/1000. For a mean of 1e17, standard // calculators claim that this event won't happen. if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) { // Assume huge values are bias neutral, retain bias for next call. return std::numeric_limits<int64_t>::max() / 2; } double value = std::rint(interval); bias_ = interval - value; return value; } int64_t ExponentialBiased::GetStride(int64_t mean) { return GetSkipCount(mean - 1) + 1; } void ExponentialBiased::Initialize() { // We don't get well distributed numbers from `this` so we call NextRandom() a // bunch to mush the bits around. We use a global_rand to handle the case // where the same thread (by memory address) gets created and destroyed // repeatedly. ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0); uint64_t r = reinterpret_cast<uint64_t>(this) + global_rand.fetch_add(1, std::memory_order_relaxed); for (int i = 0; i < 20; ++i) { r = NextRandom(r); } rng_ = r; initialized_ = true; } } // namespace profiling_internal ABSL_NAMESPACE_END } // namespace absl