/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include "internal.h" #include "../../internal.h" void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) { OPENSSL_memset(ctx, 0, sizeof(EVP_CIPHER_CTX)); } EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) { EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX)); if (ctx) { EVP_CIPHER_CTX_init(ctx); } return ctx; } int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) { if (c->cipher != NULL && c->cipher->cleanup) { c->cipher->cleanup(c); } OPENSSL_free(c->cipher_data); OPENSSL_memset(c, 0, sizeof(EVP_CIPHER_CTX)); return 1; } void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) { if (ctx) { EVP_CIPHER_CTX_cleanup(ctx); OPENSSL_free(ctx); } } int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) { if (in == NULL || in->cipher == NULL) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED); return 0; } EVP_CIPHER_CTX_cleanup(out); OPENSSL_memcpy(out, in, sizeof(EVP_CIPHER_CTX)); if (in->cipher_data && in->cipher->ctx_size) { out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size); if (!out->cipher_data) { out->cipher = NULL; OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE); return 0; } OPENSSL_memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size); } if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) { if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) { out->cipher = NULL; return 0; } } return 1; } int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx) { EVP_CIPHER_CTX_cleanup(ctx); EVP_CIPHER_CTX_init(ctx); return 1; } int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *engine, const uint8_t *key, const uint8_t *iv, int enc) { if (enc == -1) { enc = ctx->encrypt; } else { if (enc) { enc = 1; } ctx->encrypt = enc; } if (cipher) { // Ensure a context left from last time is cleared (the previous check // attempted to avoid this if the same ENGINE and EVP_CIPHER could be // used). if (ctx->cipher) { EVP_CIPHER_CTX_cleanup(ctx); // Restore encrypt and flags ctx->encrypt = enc; } ctx->cipher = cipher; if (ctx->cipher->ctx_size) { ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size); if (!ctx->cipher_data) { ctx->cipher = NULL; OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE); return 0; } } else { ctx->cipher_data = NULL; } ctx->key_len = cipher->key_len; ctx->flags = 0; if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) { if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) { ctx->cipher = NULL; OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR); return 0; } } } else if (!ctx->cipher) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET); return 0; } // we assume block size is a power of 2 in *cryptUpdate assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 || ctx->cipher->block_size == 16); if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) { switch (EVP_CIPHER_CTX_mode(ctx)) { case EVP_CIPH_STREAM_CIPHER: case EVP_CIPH_ECB_MODE: break; case EVP_CIPH_CFB_MODE: ctx->num = 0; OPENSSL_FALLTHROUGH; case EVP_CIPH_CBC_MODE: assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv)); if (iv) { OPENSSL_memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); } OPENSSL_memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx)); break; case EVP_CIPH_CTR_MODE: case EVP_CIPH_OFB_MODE: ctx->num = 0; // Don't reuse IV for CTR mode if (iv) { OPENSSL_memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); } break; default: return 0; } } if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) { if (!ctx->cipher->init(ctx, key, iv, enc)) { return 0; } } ctx->buf_len = 0; ctx->final_used = 0; return 1; } int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const uint8_t *key, const uint8_t *iv) { return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1); } int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const uint8_t *key, const uint8_t *iv) { return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0); } // block_remainder returns the number of bytes to remove from |len| to get a // multiple of |ctx|'s block size. static int block_remainder(const EVP_CIPHER_CTX *ctx, int len) { // |block_size| must be a power of two. assert(ctx->cipher->block_size != 0); assert((ctx->cipher->block_size & (ctx->cipher->block_size - 1)) == 0); return len & (ctx->cipher->block_size - 1); } int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, const uint8_t *in, int in_len) { // Ciphers that use blocks may write up to |bl| extra bytes. Ensure the output // does not overflow |*out_len|. int bl = ctx->cipher->block_size; if (bl > 1 && in_len > INT_MAX - bl) { OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW); return 0; } if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { int ret = ctx->cipher->cipher(ctx, out, in, in_len); if (ret < 0) { return 0; } else { *out_len = ret; } return 1; } if (in_len <= 0) { *out_len = 0; return in_len == 0; } if (ctx->buf_len == 0 && block_remainder(ctx, in_len) == 0) { if (ctx->cipher->cipher(ctx, out, in, in_len)) { *out_len = in_len; return 1; } else { *out_len = 0; return 0; } } int i = ctx->buf_len; assert(bl <= (int)sizeof(ctx->buf)); if (i != 0) { if (bl - i > in_len) { OPENSSL_memcpy(&ctx->buf[i], in, in_len); ctx->buf_len += in_len; *out_len = 0; return 1; } else { int j = bl - i; OPENSSL_memcpy(&ctx->buf[i], in, j); if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) { return 0; } in_len -= j; in += j; out += bl; *out_len = bl; } } else { *out_len = 0; } i = block_remainder(ctx, in_len); in_len -= i; if (in_len > 0) { if (!ctx->cipher->cipher(ctx, out, in, in_len)) { return 0; } *out_len += in_len; } if (i != 0) { OPENSSL_memcpy(ctx->buf, &in[in_len], i); } ctx->buf_len = i; return 1; } int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { int n, ret; unsigned int i, b, bl; if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { ret = ctx->cipher->cipher(ctx, out, NULL, 0); if (ret < 0) { return 0; } else { *out_len = ret; } return 1; } b = ctx->cipher->block_size; assert(b <= sizeof(ctx->buf)); if (b == 1) { *out_len = 0; return 1; } bl = ctx->buf_len; if (ctx->flags & EVP_CIPH_NO_PADDING) { if (bl) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); return 0; } *out_len = 0; return 1; } n = b - bl; for (i = bl; i < b; i++) { ctx->buf[i] = n; } ret = ctx->cipher->cipher(ctx, out, ctx->buf, b); if (ret) { *out_len = b; } return ret; } int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, const uint8_t *in, int in_len) { // Ciphers that use blocks may write up to |bl| extra bytes. Ensure the output // does not overflow |*out_len|. unsigned int b = ctx->cipher->block_size; if (b > 1 && in_len > INT_MAX - (int)b) { OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW); return 0; } if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { int r = ctx->cipher->cipher(ctx, out, in, in_len); if (r < 0) { *out_len = 0; return 0; } else { *out_len = r; } return 1; } if (in_len <= 0) { *out_len = 0; return in_len == 0; } if (ctx->flags & EVP_CIPH_NO_PADDING) { return EVP_EncryptUpdate(ctx, out, out_len, in, in_len); } assert(b <= sizeof(ctx->final)); int fix_len = 0; if (ctx->final_used) { OPENSSL_memcpy(out, ctx->final, b); out += b; fix_len = 1; } if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) { return 0; } // if we have 'decrypted' a multiple of block size, make sure // we have a copy of this last block if (b > 1 && !ctx->buf_len) { *out_len -= b; ctx->final_used = 1; OPENSSL_memcpy(ctx->final, &out[*out_len], b); } else { ctx->final_used = 0; } if (fix_len) { *out_len += b; } return 1; } int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) { int i, n; unsigned int b; *out_len = 0; if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { i = ctx->cipher->cipher(ctx, out, NULL, 0); if (i < 0) { return 0; } else { *out_len = i; } return 1; } b = ctx->cipher->block_size; if (ctx->flags & EVP_CIPH_NO_PADDING) { if (ctx->buf_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); return 0; } *out_len = 0; return 1; } if (b > 1) { if (ctx->buf_len || !ctx->final_used) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH); return 0; } assert(b <= sizeof(ctx->final)); // The following assumes that the ciphertext has been authenticated. // Otherwise it provides a padding oracle. n = ctx->final[b - 1]; if (n == 0 || n > (int)b) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } for (i = 0; i < n; i++) { if (ctx->final[--b] != n) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } } n = ctx->cipher->block_size - n; for (i = 0; i < n; i++) { out[i] = ctx->final[i]; } *out_len = n; } else { *out_len = 0; } return 1; } int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, size_t in_len) { return ctx->cipher->cipher(ctx, out, in, in_len); } int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, const uint8_t *in, int in_len) { if (ctx->encrypt) { return EVP_EncryptUpdate(ctx, out, out_len, in, in_len); } else { return EVP_DecryptUpdate(ctx, out, out_len, in, in_len); } } int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { if (ctx->encrypt) { return EVP_EncryptFinal_ex(ctx, out, out_len); } else { return EVP_DecryptFinal_ex(ctx, out, out_len); } } const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) { return ctx->cipher; } int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->nid; } int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx) { return ctx->encrypt; } unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->block_size; } unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) { return ctx->key_len; } unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->iv_len; } void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) { return ctx->app_data; } void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) { ctx->app_data = data; } uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK; } uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->flags & EVP_CIPH_MODE_MASK; } int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) { int ret; if (!ctx->cipher) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET); return 0; } if (!ctx->cipher->ctrl) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED); return 0; } ret = ctx->cipher->ctrl(ctx, command, arg, ptr); if (ret == -1) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED); return 0; } return ret; } int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) { if (pad) { ctx->flags &= ~EVP_CIPH_NO_PADDING; } else { ctx->flags |= EVP_CIPH_NO_PADDING; } return 1; } int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) { if (c->key_len == key_len) { return 1; } if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH); return 0; } c->key_len = key_len; return 1; } int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; } unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) { return cipher->block_size; } unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) { return cipher->key_len; } unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) { return cipher->iv_len; } uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) { return cipher->flags & ~EVP_CIPH_MODE_MASK; } uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) { return cipher->flags & EVP_CIPH_MODE_MASK; } int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const uint8_t *key, const uint8_t *iv, int enc) { if (cipher) { EVP_CIPHER_CTX_init(ctx); } return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc); } int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const uint8_t *key, const uint8_t *iv) { return EVP_CipherInit(ctx, cipher, key, iv, 1); } int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const uint8_t *key, const uint8_t *iv) { return EVP_CipherInit(ctx, cipher, key, iv, 0); } int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { return EVP_CipherFinal_ex(ctx, out, out_len); } int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { return EVP_EncryptFinal_ex(ctx, out, out_len); } int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { return EVP_DecryptFinal_ex(ctx, out, out_len); } int EVP_add_cipher_alias(const char *a, const char *b) { return 1; } void EVP_CIPHER_CTX_set_flags(const EVP_CIPHER_CTX *ctx, uint32_t flags) {}