/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ // This implementation of poly1305 is by Andrew Moon // (https://github.com/floodyberry/poly1305-donna) and released as public // domain. #include #include #include #include "internal.h" #include "../internal.h" #if !defined(BORINGSSL_HAS_UINT128) || !defined(OPENSSL_X86_64) // We can assume little-endian. static uint32_t U8TO32_LE(const uint8_t *m) { uint32_t r; OPENSSL_memcpy(&r, m, sizeof(r)); return r; } static void U32TO8_LE(uint8_t *m, uint32_t v) { OPENSSL_memcpy(m, &v, sizeof(v)); } static uint64_t mul32x32_64(uint32_t a, uint32_t b) { return (uint64_t)a * b; } struct poly1305_state_st { uint32_t r0, r1, r2, r3, r4; uint32_t s1, s2, s3, s4; uint32_t h0, h1, h2, h3, h4; uint8_t buf[16]; size_t buf_used; uint8_t key[16]; }; OPENSSL_STATIC_ASSERT( sizeof(struct poly1305_state_st) + 63 <= sizeof(poly1305_state), "poly1305_state isn't large enough to hold aligned poly1305_state_st"); static inline struct poly1305_state_st *poly1305_aligned_state( poly1305_state *state) { return align_pointer(state, 64); } // poly1305_blocks updates |state| given some amount of input data. This // function may only be called with a |len| that is not a multiple of 16 at the // end of the data. Otherwise the input must be buffered into 16 byte blocks. static void poly1305_update(struct poly1305_state_st *state, const uint8_t *in, size_t len) { uint32_t t0, t1, t2, t3; uint64_t t[5]; uint32_t b; uint64_t c; size_t j; uint8_t mp[16]; if (len < 16) { goto poly1305_donna_atmost15bytes; } poly1305_donna_16bytes: t0 = U8TO32_LE(in); t1 = U8TO32_LE(in + 4); t2 = U8TO32_LE(in + 8); t3 = U8TO32_LE(in + 12); in += 16; len -= 16; state->h0 += t0 & 0x3ffffff; state->h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff; state->h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff; state->h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff; state->h4 += (t3 >> 8) | (1 << 24); poly1305_donna_mul: t[0] = mul32x32_64(state->h0, state->r0) + mul32x32_64(state->h1, state->s4) + mul32x32_64(state->h2, state->s3) + mul32x32_64(state->h3, state->s2) + mul32x32_64(state->h4, state->s1); t[1] = mul32x32_64(state->h0, state->r1) + mul32x32_64(state->h1, state->r0) + mul32x32_64(state->h2, state->s4) + mul32x32_64(state->h3, state->s3) + mul32x32_64(state->h4, state->s2); t[2] = mul32x32_64(state->h0, state->r2) + mul32x32_64(state->h1, state->r1) + mul32x32_64(state->h2, state->r0) + mul32x32_64(state->h3, state->s4) + mul32x32_64(state->h4, state->s3); t[3] = mul32x32_64(state->h0, state->r3) + mul32x32_64(state->h1, state->r2) + mul32x32_64(state->h2, state->r1) + mul32x32_64(state->h3, state->r0) + mul32x32_64(state->h4, state->s4); t[4] = mul32x32_64(state->h0, state->r4) + mul32x32_64(state->h1, state->r3) + mul32x32_64(state->h2, state->r2) + mul32x32_64(state->h3, state->r1) + mul32x32_64(state->h4, state->r0); state->h0 = (uint32_t)t[0] & 0x3ffffff; c = (t[0] >> 26); t[1] += c; state->h1 = (uint32_t)t[1] & 0x3ffffff; b = (uint32_t)(t[1] >> 26); t[2] += b; state->h2 = (uint32_t)t[2] & 0x3ffffff; b = (uint32_t)(t[2] >> 26); t[3] += b; state->h3 = (uint32_t)t[3] & 0x3ffffff; b = (uint32_t)(t[3] >> 26); t[4] += b; state->h4 = (uint32_t)t[4] & 0x3ffffff; b = (uint32_t)(t[4] >> 26); state->h0 += b * 5; if (len >= 16) { goto poly1305_donna_16bytes; } // final bytes poly1305_donna_atmost15bytes: if (!len) { return; } for (j = 0; j < len; j++) { mp[j] = in[j]; } mp[j++] = 1; for (; j < 16; j++) { mp[j] = 0; } len = 0; t0 = U8TO32_LE(mp + 0); t1 = U8TO32_LE(mp + 4); t2 = U8TO32_LE(mp + 8); t3 = U8TO32_LE(mp + 12); state->h0 += t0 & 0x3ffffff; state->h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff; state->h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff; state->h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff; state->h4 += (t3 >> 8); goto poly1305_donna_mul; } void CRYPTO_poly1305_init(poly1305_state *statep, const uint8_t key[32]) { struct poly1305_state_st *state = poly1305_aligned_state(statep); uint32_t t0, t1, t2, t3; #if defined(OPENSSL_POLY1305_NEON) if (CRYPTO_is_NEON_capable()) { CRYPTO_poly1305_init_neon(statep, key); return; } #endif t0 = U8TO32_LE(key + 0); t1 = U8TO32_LE(key + 4); t2 = U8TO32_LE(key + 8); t3 = U8TO32_LE(key + 12); // precompute multipliers state->r0 = t0 & 0x3ffffff; t0 >>= 26; t0 |= t1 << 6; state->r1 = t0 & 0x3ffff03; t1 >>= 20; t1 |= t2 << 12; state->r2 = t1 & 0x3ffc0ff; t2 >>= 14; t2 |= t3 << 18; state->r3 = t2 & 0x3f03fff; t3 >>= 8; state->r4 = t3 & 0x00fffff; state->s1 = state->r1 * 5; state->s2 = state->r2 * 5; state->s3 = state->r3 * 5; state->s4 = state->r4 * 5; // init state state->h0 = 0; state->h1 = 0; state->h2 = 0; state->h3 = 0; state->h4 = 0; state->buf_used = 0; OPENSSL_memcpy(state->key, key + 16, sizeof(state->key)); } void CRYPTO_poly1305_update(poly1305_state *statep, const uint8_t *in, size_t in_len) { struct poly1305_state_st *state = poly1305_aligned_state(statep); #if defined(OPENSSL_POLY1305_NEON) if (CRYPTO_is_NEON_capable()) { CRYPTO_poly1305_update_neon(statep, in, in_len); return; } #endif if (state->buf_used) { size_t todo = 16 - state->buf_used; if (todo > in_len) { todo = in_len; } for (size_t i = 0; i < todo; i++) { state->buf[state->buf_used + i] = in[i]; } state->buf_used += todo; in_len -= todo; in += todo; if (state->buf_used == 16) { poly1305_update(state, state->buf, 16); state->buf_used = 0; } } if (in_len >= 16) { size_t todo = in_len & ~0xf; poly1305_update(state, in, todo); in += todo; in_len &= 0xf; } if (in_len) { for (size_t i = 0; i < in_len; i++) { state->buf[i] = in[i]; } state->buf_used = in_len; } } void CRYPTO_poly1305_finish(poly1305_state *statep, uint8_t mac[16]) { struct poly1305_state_st *state = poly1305_aligned_state(statep); uint64_t f0, f1, f2, f3; uint32_t g0, g1, g2, g3, g4; uint32_t b, nb; #if defined(OPENSSL_POLY1305_NEON) if (CRYPTO_is_NEON_capable()) { CRYPTO_poly1305_finish_neon(statep, mac); return; } #endif if (state->buf_used) { poly1305_update(state, state->buf, state->buf_used); } b = state->h0 >> 26; state->h0 = state->h0 & 0x3ffffff; state->h1 += b; b = state->h1 >> 26; state->h1 = state->h1 & 0x3ffffff; state->h2 += b; b = state->h2 >> 26; state->h2 = state->h2 & 0x3ffffff; state->h3 += b; b = state->h3 >> 26; state->h3 = state->h3 & 0x3ffffff; state->h4 += b; b = state->h4 >> 26; state->h4 = state->h4 & 0x3ffffff; state->h0 += b * 5; g0 = state->h0 + 5; b = g0 >> 26; g0 &= 0x3ffffff; g1 = state->h1 + b; b = g1 >> 26; g1 &= 0x3ffffff; g2 = state->h2 + b; b = g2 >> 26; g2 &= 0x3ffffff; g3 = state->h3 + b; b = g3 >> 26; g3 &= 0x3ffffff; g4 = state->h4 + b - (1 << 26); b = (g4 >> 31) - 1; nb = ~b; state->h0 = (state->h0 & nb) | (g0 & b); state->h1 = (state->h1 & nb) | (g1 & b); state->h2 = (state->h2 & nb) | (g2 & b); state->h3 = (state->h3 & nb) | (g3 & b); state->h4 = (state->h4 & nb) | (g4 & b); f0 = ((state->h0) | (state->h1 << 26)) + (uint64_t)U8TO32_LE(&state->key[0]); f1 = ((state->h1 >> 6) | (state->h2 << 20)) + (uint64_t)U8TO32_LE(&state->key[4]); f2 = ((state->h2 >> 12) | (state->h3 << 14)) + (uint64_t)U8TO32_LE(&state->key[8]); f3 = ((state->h3 >> 18) | (state->h4 << 8)) + (uint64_t)U8TO32_LE(&state->key[12]); U32TO8_LE(&mac[0], f0); f1 += (f0 >> 32); U32TO8_LE(&mac[4], f1); f2 += (f1 >> 32); U32TO8_LE(&mac[8], f2); f3 += (f2 >> 32); U32TO8_LE(&mac[12], f3); } #endif // !BORINGSSL_HAS_UINT128 || !OPENSSL_X86_64