import torch import numpy as np from rope import apply_rotary_emb seed = 0 def construct_query() -> torch.Tensor: ''' Shape: (batch_size, seqlen, n_local_heads, self.head_dim) ''' return 2 * torch.ones([1, 2, 2, 4]) def construct_key() -> torch.Tensor: ''' Shape: (batch_size, seqlen, n_local_kv_heads, self.head_dim) ''' return 3 * torch.ones([1, 2, 2, 4]) def test_apply_rotary_emb() -> tuple[torch.Tensor, torch.Tensor]: rng = np.random.default_rng(seed) torch.manual_seed(seed) model = torch.nn.Linear(3, 2, bias=False) test_query = construct_query() test_key = construct_key() rotary_embeddings = apply_rotary_emb(test_query, test_key, 4, 20) rotary_query_embedding, rotary_key_embedding = rotary_embeddings return rotary_query_embedding, rotary_key_embedding actual_query_rope_embedding, actual_key_rope_embedding = test_apply_rotary_emb() ref_query_rope_embedding, ref_key_rope_embedding = torch.load("./rotary_embedding_actual.data") assert torch.allclose(ref_query_rope_embedding, actual_query_rope_embedding) assert torch.allclose(ref_key_rope_embedding, actual_key_rope_embedding) print("Rotary embedding test passed!")