COMP3222 Machine Learning Technologies
Coursework Report

Harry Nelson
hjn2g19

January 2022

1 Introduction and Data Analysis

When events happen, such as natural disasters or terrorist attacks, people often
flock to social media such as Twitter to find out about what happened in a fast
and digestible way, without reading through and verifying sources. People often
take advantage of this and attempt to misuse the format of tweets being short
and easily found/spread and attempt to deceive by posting ”fake” tweets. This
can be done by manipulating, synthesising or re-posting multimedia and sharing
it as if it was related to a real event. We are tasked with designing a machine
learning algorithm to detect these ”fake” tweets using the provided datasets
(specifically, to sort a test dataset of tweets into "real” and ”fake” classes).

The dataset contains ~15,000 tweets focused around different events. It
holds the tweet ID, the tweet text, the image ID, the username string and user
ID, a timestamp, and a ground truth label for the tweet which is either "real”,
”fake” or "humor”, in a tab-separated-values format. In terms of bias, the split
between real /fake/humorous tweets is about 1/3 each, and the events covered
are mostly about Hurricane Sandy, with around ~12,000 of them being focused
on that, with the remaining sets of tweets covering events such as the Boston
Bombings or a chemical plant explosion. The tweets are also in a wide range of
languages, with most (~80%) being in English, with a further ~10% being in
Spanish, and the rest a mixture of other languages.

Event Distribution of Tweets Language Distribution of Tweets

= Other
= columbianChemicals
= sochi

m— malaysia

= boston

" sandy

= Other

= Portuguese
m= indonesian
= French
= Tagalog
m Spanish
we English

Figure 1: Event Distribution Figure 2: Language Distribution

The text has some issues, as there are escaped HTML characters left in
tweets. In some cases the URL at the end of the tweet has been incorrectly
parsed, with spaces and backslashes left in as well, such as
"http \/\/t.co\/5IJBtF54cmg”. Finally, as there are un-escaped /un-paired quo-
tation marks some readers will read multiple lines of the dataset as one entry
without proper configuring. The text quality is also subject to spelling mistakes,
slang, shortened words etc. as is common with users posting to the internet,
and many of the tweets are "retweets”, identified either by "RT” being present
or some text being surrounded by quotation marks.

For computation speed, as this classifier doesn’t need to work in real time
we are quite unrestricted for computation time. It would be ideal to keep it low
in order to make evaluation easier given the time constraints of the coursework,
but there is no set limit. Personally I would like to aim for a given run of
the classifier to take less than 5 minutes based on previous experience with the
python libraries I plan to use (e.g. sklearn). It is reported that previously f1-
scores of over 0.9 were obtained, so while the highest accuracy possible would
be ideal I think aiming for 0.85 or higher is a good goal.

For legal and ethical characteristics of the data, Twitter prevents some kinds
of profiling and sharing larger than 50,000 posts, and as the tweets are public
we can use without author consent and without further approval as long as we
don’t work with personal identifying information within the posts. As this is
a university coursework that has already been ethically approved and we are
working purely with the tweet content in order to determine how truthful it is
I will not need to seek further approval to work with this dataset to create this
classifier.

2 Algorithm Design

2.1 Pre-processing

The data is read in from the dataset into a pandas DataFrame, ignoring quota-
tion marks and using tab as a delimiter. All humor labels are changed to fake la-
bels, as I was unable to find a good way to take advantage of the alternate labels.

The text is made lower case, then the t.co URLSs at the end of every tweet are re-
moved using the regex expression "https* [\s]*(\\\/\\/—\/\/)t.co(\\\/—\/)[a-
zA-7Z0-9]*". Incorrectly parsed html characters are parsed, such as & to &,
and punctuation is removed by removing characters in the string.punctuation
set. The tweet is split at spaces and the words are un-contracted using the
contractions library, then any words that are in either the spanish or the en-
glish stopwords set from the nltk library were removed. These processed tweets
are then saved into a new column in the dataframe.

Choices for pre-processing were based on knowledge from the lectures, visu-
ally inspecting the dataset to try and spot any issues, and the methods being
mentioned in sklearn documentation or the literature detailed in the evaluation
section. Different combinations of pre-processing techniques were then tested
with the various algorithms tried to get the methods resulting in the best score.

Only stopwords from English and Spanish were removed, as I decided that
translating all the tweets to English would likely lower the quality as well as
severely increase the runtime of the pre-processing due to ratelimiting with the
Google Translate api, and 90% of the tweets were either English or Spanish so
removing the stopwords from those resulted in quite a high impact to accuracy
without altering the data beforehand or an increase in runtime. Upon manual
inspection several of the other languages identified by the langdetect library
were inaccuracies also, and as I didn’t want to go through and manually label
each language/remove stopwords for many languages that may not even be
present I ended up only removing them for English and Spanish. T also didn’t
correct spelling, somewhat due to the large amount of non-english tweets and
my lack of confidence in correcting spellings in other languages, but also because
some things like emphasis or slang could be a feature worth keeping to compare
separate to the word it is originally.

2.2 Features

The tweets are put through the sklearn TfidfVectorizer() with the non-
default parameters:

e use_idf: True

e norm: 12

e ngram range: (1, 2)
e max_df: 0.75

These parameters were selected based on tuning detailed in the evaluation
section, with the starting points based on the default values. TfidfVectorizer ()
was chosen as it was one of the feature extraction methods provided by sklearn
[1] that was listed as commonly used for bag-of-words feature approaches, as
it improves the accuracy over the CountVectorizer() as it weights features
in the document based on their frequency multiplied by their inverse-document

frequency, meaning features that appear in 100% of cases are less weighted com-
pared to features that appear more sparingly. This was then selected over fea-
tures like manual feature vectors based on present visual features, part-of-speech
tagging or CountVectorizer () on its own based on performance comparisons
detailed in the evaluation section.

2.3 Algorithm

The algorithm used was the sklearn KNeighborsClassifier (), with the non-
default parameters:

e weights: uniform
e n_neighbors: 9
e n_jobs: -1

These parameters were also selected based on the tuning detailed in the
evaluation section, with the starting points based on the default values. This
algorithm was initially selected based on it being a commonly used algorithm for
text classification problems [2] [3], and was chosen out of the classifiers detailed
in the evaluation section due to the highest consistent performance.

3 Evaluation

I initially implemented some pre-processing from when I was analysing the
dataset, such as stop word removal for the two most common languages, En-
glish and Spanish, substitution emojis and urls and removing punctuation. The
processed tweets were then passed into a TfidfVectorizer () from the sklearn
module to create a feature vector. Initial algorithm selection was based mostly
on indications of commonly used algorithms, such as use in a paper by Pratma
et al. in 2015 [3], selecting Multinomial Naive Bayes, Support Vector Machine
and K-Nearest Neighbours algorithms. I also modified a script from this sklearn
tutorial page [4] to quickly compare many of their classifiers with different com-
binations of pre-processing and features. A MultinomialNB() classifier achieved
an f1 score of 0.79 with the default parameters for the TfidfVectorizer () and
the classifier, so I decided that for this comparison I would use that as a baseline
for performance when selecting other algorithms to try. Filtering the micro-fl
scores above 0.8 from this test, these were the best performing algorithms with
no tuning of the 14 tried:

Figure 3: Accuracy of Classifiers

I decided to experiment with the top few classifiers from this test to make
a voting ensemble to boost the fl score more. I ran each with different combi-
nations of hyperparameters to see what parameters resulted in the highest f1
score. I ended up with a K-Nearest Neighbours classifier scoring 0.87, a Percep-
tron Classifier scoring 0.87, a Multinomial Naive Bayes classifier scoring 0.83,
a Passive Aggressive Classifier scoring 0.83, and a LinearSVC classifier scoring
0.83, with the following hyperparameters being tuned:

e TfidfVectorizer parameters tried:

— use_idf: True and False

— norm: 11 and 12

— ngram range: (1, 1), (1, 2), (1, 3)
max_df: 0.25, 0.5, 0.75, 1

K-Nearest Neighbours parameters tried:

— weights: uniform and distance
— n_neighbours: 2, 4, 6, 8, 10, 12

e Multinomial Naive Bayes parameters tried:

— alpha: 0.01, 0.001, 0.0001, 0.0001

Perceptron parameters tried:

— penalty: 11, 12 and elasticnet
— alpha: 0.01, 0.001, 0.0001, 0.0001

— max_iter: 50, 100, 200
e Passive Aggressive Classifier parameters tried:
- C:0.1,05,1,2
— max-iter: 50, 100, 200
— fit_intercept: True and False

e LinearSVC parameters tried:

- C:0.1,05,1,2
penalty: 11 and 12

fit_intercept: True and False
max_iter: 50, 100, 200

These were pooled into a custom voting ensemble that would pre-process the
test data being passed to each classifier according to what had performed the
best previously. Sadly, the micro-f1 score of this voting classifier ended up being
0.84, with quite a low precision for real posts (0.74) and a high precision for
fake posts (0.91). This potentially means that all of the classifiers were slightly
more biased towards voting for fake posts which makes sense given the bias
in the dataset (1/3 real to 2/3 fake). I decided to instead choose the highest
performing algorithms (KNN and Perceptron) and make more adjustments to
those to try and increase their performance, as well as re-evaluate the feature
sets.

I went back to try and find some new features to try. A paper by Sriram et al.
in 2010 discussing alternate feature extraction methods to Bag-Of-Words fea-
tures proposes an approach creating a small feature vector with several boolean
identifiers to help sort tweets into multiple classes, with the identifiers including
elements such as whether the tweet mentions another user, or whether the tweet
contains an opinion [5]. I decided to analyse the dataset further to try and find
any patterns that might prove useful for a similar approach.

I tried making features of the parts of speech of the tweets, adding the part
of speech to the end of each word in the string to tag them and then turning that
into a feature vector using the TfidfVectorizer (), however that lowered the
f1 score of the Perceptron, KNN and MNB algorithms, so I discarded it. I could
not spot any particular features common in one class of tweet and not the other.
I tried making a feature vector of text features such as length of words, number
of hashtags, number of mentions, whether it was a retweet or not, sentiment
of the tweet, number of capitals etc. and feeding that into algorithms. With
purely those features as a feature vector KNN got an f1 score of 0.57, which was
surprisingly high given they were relatively weak features. I then tried adding
these features to the TfidfVectorizer () processed tweets which lowered the f1
score to around 0.65 with KNN, then reducing the number of features added to
things like hashtags, mentions, and sentiment, which also got around 0.65 with
KNN. I tried both of these configurations with the Perceptron too but the extra

features caused every tweet in the test set to be classified as "real”, leading to
an f1 score of less than 0.2.

I tried a few more pre-processing techniques like using the emoji package to
turn the emotes into a text representation of the specific emoji rather than just
an identifier saying "emoji”, as well as lemmatising the words, but both ended
up reducing the fl-score by 0.01 rather than helping. I also tried running the
KNN algorithm with no pre-processing as I realised I hadn’t tried that but it
also got a sub-0.8 f1 score. As my hyperparameter tuning was somewhat brief
when I was performing it on many algorithms, I decided to do another run on
the KNN algorithm with more parameter options.

e TfidfVectorizer parameters tried:

use_idf: True and False

— norm: 11 and 12
— ngram.range: (la 1)7 (17 2)v (17 3)7 (27 2)3 (27 3)7 (3a 3)
— max_df: 0.7, 0.75, 0.8, 1

o K-Nearest Neighbours parameters tried:

— n_neighbours: 6, 7, 8, 9, 10
- p: 1,2

This didn’t lead to much change though, as the only parameter that changed
was 9 neighbours becoming the best rather than 8 and the difference in f1 score
less than 0.01, and it still rounded to 0.87. I took a look at other papers and
websites using KNN algorithms and they reported similar accuracies on similar
corpora, around 0.7 to 0.8 [6] [7].

Code used to evaluate different algorithms and the implementation of the
voting classifier has been left in evaluation_testing.py and ensemble_voter.py.

4 Conclusion

precision reca fl-score support

micro avg
macro awvg

weighted avg

Figure 4: Final Metric Classification Report

The final algorithm design ended with a micro-f1 score of 0.87, accurately iden-
tifying 92% of fake tweets in the test dataset and 81% of real tweets. The
parameters and algorithm used were the best performing out of several dif-
ferent algorithms which were tested, filtered, tuned, tested and filtered again,
with more tuning done on the KNN algorithm after it was selected as the best
performing too.

Upon reflection I believe I could have done more research to find a better
use for the humor label, as due to poor time management I was unable to find
anything concrete towards the start and so pressed on with just the binary set
of labels. I could also potentially have tried some more complicated feature sets,
or libraries that weren’t sklearn, however I went with sklearn due to familiarity
from the module’s labs. I think I did reasonably well at finding relevant litera-
ture, however there were several papers that looked largely cited I was unable to
get access to due to the paywall or the server providing it being down, and there
are undoubtedly many more papers I didn’t find that contained some relevant
information. I also think I wasn’t able to analyse the dataset as well as I was
hoping I would, as there were not many characteristics I was able to identify
per class that could have helped me get a better score. One paper referenced
found quite a lot of success with only 8 binary features per tweet for sorting
into multiple categories, so I think if there were similar features identified for
this assignment it might give better performance.

My implementation of a voting ensemble could probably have been improved
by segmenting the dataset more and selecting algorithms based on their abil-
ity per-class then weighting them, rather than just having them all be equally
weighted, as most algorithms I tested guessed fake more often than real. T could
also have researched more effective ways to deal with the bias of the dataset
being more fake than real, which could potentially improve its ability to detect
real tweets. I was surprised at the accuracy of the Multinomial Naive Bayes

implementation, achieving an f1 score of around 0.79 on the test and the valida-
tion sets without any pre-processing at all, only with the TfidfVectorizer (),
however I was unable to increase it much further with any pre-processing or
parameter tuning which resulted in me selecting the KNN algorithm.

References

1]

scikit-learn developers. Feature extraction, 2021. https://scikit-
learn.org/stable/modules/feature_extraction.html#common-
vectorizer-usage (accessed: 6.1.2022).

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana
Mendu, Laura E. Barnes, and Donald E. Brown. Text classification algo-
rithms: A survey. CoRR, abs/1904.08067, 2019.

Bayu Yudha Pratama and Riyanarto Sarno. Personality classification based
on twitter text using naive bayes, knn and svm. In 2015 International
Conference on Data and Software Engineering (ICoDSE), pages 170-174,
2015.

scikit-learn developers. Classification of text documents using sparse
features, 2021. https://scikit-learn.org/stable/auto_examples/
text/plot_document_classification_20newsgroups.html (accessed:
6.1.2022).

Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Ferhatosmanoglu, and
Murat Demirbas. Short text classification in twitter to improve information
filtering. In Proceedings of the 33rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 10, page
841-842, New York, NY, USA, 2010. Association for Computing Machinery.

Harshiv Patel. Text classification using k nearest neighbors (knn), 2021.
https://iq.opengenus.org/text-classification-using-k-nearest-
neighbors/ (accessed: 13.1.2022).

Khushbu Khamar. Short text classification using knn based on distance
function. In International Journal of Advanced Research in Computer and
Communication Engineering, 2013.

https://scikit-learn.org/stable/modules/feature_extraction.html#common-vectorizer-usage
https://scikit-learn.org/stable/modules/feature_extraction.html#common-vectorizer-usage
https://scikit-learn.org/stable/modules/feature_extraction.html#common-vectorizer-usage
https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html
https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html
https://iq.opengenus.org/text-classification-using-k-nearest-neighbors/
https://iq.opengenus.org/text-classification-using-k-nearest-neighbors/

	Introduction and Data Analysis
	Algorithm Design
	Pre-processing
	Features
	Algorithm

	Evaluation
	Conclusion

