Stark-et-al-ICB-2022 / Code / statistical_analysis / step_2 / model jags result simp1.txt
model jags result simp1.txt
Raw
Inference for Bugs model at "../Mi model JAGS simp1.txt", fit using jags,
 3 chains, each with 3e+05 iterations (first 150000 discarded), n.thin = 300
 n.sims = 1500 iterations saved
          mu.vect sd.vect    2.5%    25%    50%    75%  97.5%  Rhat n.eff
Loc[1]      1.784   0.106   1.581  1.714  1.787  1.856  1.992 1.007   310
Loc[2]      1.992   0.114   1.762  1.917  1.992  2.069  2.215 1.004   560
alpha[1]    1.386  18.611 -46.595  0.356  1.894  3.274 42.430 1.003   820
alpha[2]   -0.188   0.115  -0.408 -0.267 -0.189 -0.110  0.039 1.007   310
alpha[3]    0.050   0.317  -0.578 -0.162  0.055  0.264  0.662 1.004   550
alpha[4]    0.032   0.231  -0.442 -0.112  0.029  0.182  0.496 1.009   230
alpha[5]   -0.373   0.142  -0.652 -0.469 -0.371 -0.278 -0.097 1.001  1500
alpha[6]    0.097   0.331  -0.545 -0.117  0.093  0.320  0.772 1.003   650
alpha[7]    0.098   0.240  -0.377 -0.064  0.094  0.254  0.583 1.007   300
alpha[8]    0.041   0.192  -0.331 -0.086  0.038  0.169  0.419 1.001  1500
alpha[9]    0.289   0.762  -1.202 -0.211  0.293  0.789  1.815 1.010   210
alpha[10]  -0.202   0.120  -0.439 -0.280 -0.201 -0.121  0.025 1.000  1500
alpha[11]   0.073   0.334  -0.586 -0.148  0.062  0.304  0.723 1.001  1500
alpha[12]   0.216   0.779  -1.389 -0.292  0.209  0.738  1.764 1.010   210
alpha[13]   0.193   0.373  -0.506 -0.058  0.200  0.438  0.892 1.001  1500
delta      -2.487   0.641  -3.651 -2.942 -2.524 -2.059 -1.175 1.001  1500
e.obs[1]    0.388   0.160   0.074  0.277  0.391  0.496  0.703 1.000  1500
e.obs[2]   -0.062   0.154  -0.379 -0.159 -0.064  0.036  0.254 1.003   680
e.obs[3]    0.770   0.121   0.546  0.685  0.771  0.853  1.013 1.003   660
e.obs[4]   -0.270   0.224  -0.703 -0.420 -0.276 -0.120  0.172 1.007   280
e.obs[5]    0.854   0.159   0.555  0.745  0.857  0.959  1.173 1.003   800
e.obs[6]   -0.796   0.249  -1.299 -0.965 -0.795 -0.632 -0.310 1.001  1500
e.obs[7]    0.074   0.145  -0.205 -0.026  0.074  0.171  0.356 1.001  1500
e.obs[8]   -0.045   0.229  -0.475 -0.207 -0.047  0.116  0.401 1.006   400
e.obs[9]    0.673   0.160   0.346  0.566  0.673  0.777  0.976 1.001  1500
e.obs[10]  -0.009   0.192  -0.399 -0.128 -0.004  0.113  0.349 1.001  1500
e.obs[11]  -0.189   0.129  -0.448 -0.276 -0.187 -0.102  0.057 1.001  1500
e.obs[12]   0.082   0.219  -0.326 -0.061  0.077  0.218  0.543 1.005  1200
e.obs[13]  -0.073   0.158  -0.376 -0.172 -0.078  0.026  0.239 1.001  1500
e.obs[14]  -0.368   0.233  -0.849 -0.520 -0.369 -0.216  0.097 1.003   790
e.obs[15]   0.400   0.297  -0.198  0.198  0.403  0.609  0.962 1.006   380
e.obs[16]  -0.111   0.195  -0.493 -0.236 -0.107  0.017  0.237 1.003   790
e.obs[17]  -0.921   0.188  -1.301 -1.040 -0.920 -0.794 -0.566 1.003   670
e.obs[18]  -0.498   0.190  -0.889 -0.614 -0.496 -0.378 -0.125 1.001  1500
e.obs[19]  -0.216   0.245  -0.711 -0.383 -0.215 -0.058  0.258 1.001  1500
e.obs[20]  -0.035   0.194  -0.410 -0.163 -0.030  0.093  0.348 1.001  1500
e.obs[21]  -0.103   0.275  -0.645 -0.285 -0.105  0.082  0.433 1.004   560
e.obs[22]  -0.221   0.305  -0.795 -0.427 -0.217 -0.016  0.362 1.002  1100
e.obs[23]  -0.092   0.225  -0.518 -0.246 -0.095  0.063  0.343 1.003   650
e.obs[24]  -0.111   0.332  -0.762 -0.324 -0.124  0.115  0.554 1.005   370
e.obs[25]  -0.040   0.203  -0.436 -0.164 -0.042  0.098  0.353 1.009   260
e.obs[26]  -0.103   0.198  -0.492 -0.228 -0.098  0.023  0.281 1.002   870
e.obs[27]   0.069   0.111  -0.146  0.001  0.066  0.138  0.293 1.001  1500
e.obs[28]   0.655   0.116   0.428  0.578  0.652  0.734  0.884 1.003  1500
e.obs[29]  -0.172   0.171  -0.514 -0.292 -0.165 -0.055  0.152 1.001  1400
e.obs[30]   0.064   0.199  -0.351 -0.065  0.063  0.203  0.443 1.004   520
e.obs[31]  -0.345   0.139  -0.618 -0.433 -0.348 -0.259 -0.062 1.000  1500
e.obs[32]  -0.267   0.185  -0.625 -0.390 -0.264 -0.140  0.089 1.001  1500
e.obs[33]  -0.507   0.161  -0.829 -0.620 -0.502 -0.392 -0.204 1.002  1200
e.obs[34]  -0.895   0.186  -1.252 -1.018 -0.893 -0.769 -0.540 1.001  1500
e.obs[35]  -1.337   0.175  -1.671 -1.453 -1.334 -1.219 -1.001 1.001  1500
e.obs[36]  -0.462   0.122  -0.698 -0.545 -0.462 -0.380 -0.219 1.000  1500
e.obs[37]   0.127   0.115  -0.101  0.055  0.124  0.201  0.351 1.000  1500
e.obs[38]  -0.491   0.125  -0.742 -0.575 -0.495 -0.405 -0.240 1.000  1500
e.obs[39]   0.091   0.126  -0.160  0.012  0.090  0.170  0.348 1.000  1500
e.obs[40]   0.076   0.176  -0.270 -0.043  0.079  0.191  0.421 1.000  1500
e.obs[41]  -0.103   0.210  -0.503 -0.244 -0.107  0.036  0.298 1.000  1500
e.obs[42]   0.215   0.091   0.040  0.158  0.212  0.272  0.398 1.001  1500
e.obs[43]   0.071   0.074  -0.063  0.031  0.062  0.108  0.240 1.003   830
e.obs[44]  -0.003   0.049  -0.105 -0.016  0.001  0.015  0.084 1.014   500
e.obs[45]  -0.008   0.040  -0.082 -0.026 -0.009  0.008  0.065 1.010  1500
e.obs[46]   0.040   0.087  -0.128 -0.016  0.039  0.098  0.215 1.001  1500
e.obs[47]  -0.161   0.158  -0.484 -0.260 -0.156 -0.060  0.160 1.001  1500
e.obs[48]   0.022   0.243  -0.443 -0.149  0.032  0.182  0.498 1.000  1500
e.obs[49]   1.713   0.314   1.098  1.486  1.723  1.925  2.307 1.001  1500
e.obs[50]  -0.121   0.118  -0.344 -0.199 -0.123 -0.043  0.118 1.003  1200
e.obs[51]  -0.551   0.106  -0.766 -0.621 -0.551 -0.481 -0.349 1.002   950
e.obs[52]   0.031   0.106  -0.194 -0.037  0.032  0.100  0.237 1.002  1100
e.obs[53]   0.709   0.221   0.215  0.581  0.718  0.856  1.105 1.004   660
e.obs[54]   0.149   0.248  -0.373 -0.005  0.155  0.312  0.609 1.002  1400
e.obs[55]   0.538   0.168   0.205  0.426  0.545  0.644  0.859 1.001  1500
e.obs[56]   0.859   0.141   0.587  0.761  0.853  0.953  1.138 1.002  1100
e.obs[57]   0.230   0.095   0.043  0.169  0.230  0.295  0.412 1.003   800
e.obs[58]  -0.511   0.136  -0.791 -0.600 -0.507 -0.423 -0.257 1.001  1500
e.obs[59]   0.169   0.139  -0.126  0.083  0.172  0.262  0.423 1.001  1400
e.obs[60]  -0.820   0.140  -1.081 -0.912 -0.823 -0.727 -0.532 1.003  1100
e.obs[61]   0.136   0.137  -0.128  0.047  0.131  0.226  0.409 1.002  1200
e.obs[62]  -0.217   0.171  -0.536 -0.337 -0.224 -0.105  0.136 1.002  1400
e.obs[63]  -0.087   0.191  -0.448 -0.219 -0.098  0.038  0.301 1.002  1500
e.obs[64]   0.270   0.200  -0.113  0.132  0.260  0.405  0.680 1.002  1500
e.obs[65]  -0.024   0.114  -0.233 -0.103 -0.025  0.053  0.201 1.002  1500
e.obs[66]  -0.136   0.140  -0.398 -0.232 -0.143 -0.047  0.153 1.003  1200
e.obs[67]   0.201   0.203  -0.209  0.062  0.207  0.333  0.591 1.001  1500
e.obs[68]   0.081   0.110  -0.150  0.008  0.081  0.154  0.300 1.001  1500
mu[1]       1.615   0.099   1.419  1.548  1.613  1.684  1.810 1.001  1500
mu[2]       1.682   0.096   1.486  1.621  1.683  1.742  1.879 1.003   690
mu[3]       1.678   0.075   1.527  1.627  1.677  1.731  1.818 1.003   750
mu[4]       1.781   0.139   1.506  1.687  1.785  1.874  2.050 1.007   270
mu[5]       1.899   0.099   1.701  1.834  1.897  1.967  2.085 1.003   750
mu[6]       1.700   0.155   1.397  1.598  1.699  1.805  2.012 1.001  1500
mu[7]       1.684   0.090   1.509  1.623  1.684  1.746  1.857 1.001  1500
mu[8]       1.471   0.143   1.194  1.371  1.472  1.572  1.738 1.005   450
mu[9]       1.700   0.099   1.511  1.635  1.700  1.766  1.903 1.000  1500
mu[10]      1.451   0.119   1.229  1.376  1.448  1.525  1.694 1.001  1500
mu[11]      1.676   0.080   1.523  1.622  1.675  1.730  1.837 1.001  1500
mu[12]      2.092   0.136   1.806  2.007  2.095  2.181  2.346 1.006  1000
mu[13]      1.865   0.098   1.672  1.804  1.869  1.927  2.054 1.002  1500
mu[14]      1.949   0.145   1.660  1.854  1.949  2.043  2.248 1.003   790
mu[15]      1.786   0.185   1.437  1.656  1.784  1.911  2.158 1.005   430
mu[16]      1.752   0.121   1.535  1.672  1.749  1.829  1.989 1.002   840
mu[17]      1.900   0.117   1.679  1.821  1.899  1.974  2.136 1.003   720
mu[18]      1.912   0.118   1.680  1.837  1.911  1.984  2.155 1.001  1500
mu[19]      1.887   0.153   1.593  1.789  1.887  1.992  2.196 1.001  1500
mu[20]      1.936   0.120   1.698  1.857  1.933  2.016  2.169 1.001  1500
mu[21]      2.106   0.171   1.773  1.991  2.107  2.220  2.443 1.004   570
mu[22]      2.178   0.189   1.816  2.051  2.176  2.307  2.536 1.002  1100
mu[23]      2.060   0.140   1.789  1.964  2.062  2.156  2.325 1.003   660
mu[24]      2.038   0.206   1.625  1.898  2.047  2.171  2.444 1.005   370
mu[25]      2.154   0.126   1.910  2.068  2.155  2.231  2.400 1.008   270
mu[26]      1.875   0.123   1.637  1.797  1.872  1.953  2.117 1.002   910
mu[27]      1.536   0.069   1.396  1.493  1.537  1.578  1.669 1.000  1500
mu[28]      1.647   0.072   1.504  1.597  1.648  1.694  1.788 1.000  1500
mu[29]      1.828   0.106   1.627  1.756  1.824  1.903  2.041 1.002  1300
mu[30]      1.948   0.124   1.712  1.862  1.949  2.028  2.206 1.004   520
mu[31]      1.496   0.086   1.320  1.443  1.498  1.551  1.666 1.000  1500
mu[32]      1.747   0.115   1.526  1.669  1.746  1.824  1.970 1.001  1500
mu[33]      1.746   0.100   1.557  1.674  1.742  1.816  1.946 1.002  1100
mu[34]      1.757   0.116   1.536  1.678  1.755  1.833  1.979 1.001  1500
mu[35]      1.725   0.109   1.517  1.653  1.724  1.798  1.934 1.001  1500
mu[36]      1.632   0.076   1.481  1.581  1.632  1.684  1.779 1.000  1500
mu[37]      1.525   0.071   1.385  1.479  1.527  1.569  1.667 1.000  1500
mu[38]      1.612   0.078   1.456  1.558  1.614  1.664  1.768 1.000  1500
mu[39]      1.535   0.078   1.375  1.485  1.535  1.584  1.691 1.000  1500
mu[40]      1.407   0.110   1.193  1.336  1.406  1.481  1.623 1.000  1500
mu[41]      1.340   0.131   1.091  1.254  1.343  1.428  1.589 1.000  1500
mu[42]      1.590   0.057   1.477  1.555  1.593  1.626  1.699 1.001  1500
mu[43]      2.076   0.046   1.971  2.053  2.082  2.101  2.159 1.003   830
mu[44]      1.692   0.030   1.638  1.681  1.690  1.700  1.756 1.011   500
mu[45]      1.808   0.025   1.763  1.798  1.809  1.819  1.854 1.009  1500
mu[46]      2.077   0.054   1.968  2.041  2.078  2.112  2.182 1.001  1500
mu[47]      2.505   0.098   2.305  2.442  2.501  2.566  2.706 1.001  1500
mu[48]      1.989   0.151   1.693  1.889  1.983  2.095  2.278 1.000  1500
mu[49]      2.244   0.195   1.875  2.113  2.238  2.385  2.627 1.001  1500
mu[50]      1.697   0.073   1.549  1.649  1.699  1.746  1.836 1.003  1100
mu[51]      1.880   0.066   1.754  1.837  1.880  1.923  2.014 1.002   950
mu[52]      1.815   0.066   1.687  1.772  1.814  1.857  1.955 1.002  1100
mu[53]      2.083   0.138   1.837  1.992  2.077  2.163  2.390 1.003   710
mu[54]      1.752   0.154   1.466  1.651  1.748  1.847  2.076 1.002  1500
mu[55]      1.524   0.105   1.325  1.458  1.519  1.594  1.731 1.001  1500
mu[56]      1.766   0.088   1.592  1.707  1.770  1.826  1.935 1.002  1000
mu[57]      1.929   0.059   1.816  1.888  1.929  1.967  2.045 1.003   790
mu[58]      2.178   0.085   2.020  2.123  2.176  2.234  2.352 1.001  1500
mu[59]      2.415   0.086   2.257  2.358  2.413  2.469  2.599 1.002  1300
mu[60]      1.709   0.087   1.530  1.652  1.712  1.767  1.872 1.003  1100
mu[61]      1.729   0.085   1.559  1.673  1.732  1.784  1.893 1.003  1100
mu[62]      1.613   0.106   1.393  1.543  1.617  1.688  1.811 1.003  1300
mu[63]      1.566   0.119   1.325  1.488  1.573  1.648  1.790 1.003  1400
mu[64]      1.581   0.124   1.326  1.497  1.587  1.667  1.819 1.003  1400
mu[65]      1.782   0.071   1.642  1.735  1.783  1.831  1.912 1.002  1500
mu[66]      1.688   0.087   1.509  1.633  1.693  1.748  1.851 1.003  1100
mu[67]      2.136   0.126   1.894  2.054  2.133  2.223  2.391 1.001  1500
mu[68]      1.692   0.068   1.556  1.647  1.692  1.738  1.836 1.002  1400
p.val[1]    0.460   0.842   0.000  0.000  0.000  0.000  2.000 1.000  1500
p.val[2]    1.895   0.447   0.000  2.000  2.000  2.000  2.000 1.020   470
p.val[3]    0.837   0.987   0.000  0.000  0.000  2.000  2.000 1.003   730
p.val[4]    0.903   0.996   0.000  0.000  0.000  2.000  2.000 1.005   380
p.val[5]    1.991   0.136   2.000  2.000  2.000  2.000  2.000 1.009  1500
p.val[6]    0.789   0.978   0.000  0.000  0.000  2.000  2.000 1.002   960
p.val[7]    0.681   0.948   0.000  0.000  0.000  2.000  2.000 1.005   430
p.val[8]    0.835   0.987   0.000  0.000  0.000  2.000  2.000 1.001  1400
p.val[9]    0.701   0.955   0.000  0.000  0.000  2.000  2.000 1.008   260
p.val[10]   1.920   0.392   0.000  2.000  2.000  2.000  2.000 1.002  1500
p.val[11]   0.849   0.989   0.000  0.000  0.000  2.000  2.000 1.001  1500
p.val[12]   0.779   0.976   0.000  0.000  0.000  2.000  2.000 1.008   270
p.val[13]   0.592   0.913   0.000  0.000  0.000  2.000  2.000 1.000  1500
tau        15.381   3.251   9.644 12.967 15.318 17.418 22.285 1.001  1500
deviance    8.338   7.855  -4.519  2.718  7.645 13.050 25.116 1.000  1500

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 30.9 and DIC = 39.2
DIC is an estimate of expected predictive error (lower deviance is better).