Stark-et-al-ICB-2022 / Code / statistical_analysis / step_2 / model jags result simp3.txt
model jags result simp3.txt
Raw
Inference for Bugs model at "../Mi model JAGS simp3.txt", fit using jags,
 3 chains, each with 4e+05 iterations (first 2e+05 discarded), n.thin = 300
 n.sims = 1998 iterations saved
          mu.vect sd.vect    2.5%    25%    50%    75%  97.5%  Rhat n.eff
Loc[1]      1.765   0.085   1.593  1.708  1.766  1.820  1.924 1.001  2000
Loc[2]      1.975   0.088   1.797  1.919  1.977  2.036  2.140 1.001  2000
alpha[1]    1.771  19.247 -42.218  0.500  1.858  3.533 42.383 1.002  2000
alpha[2]   -0.165   0.090  -0.341 -0.223 -0.167 -0.107  0.010 1.000  2000
alpha[3]   -0.031   0.220  -0.496 -0.175 -0.032  0.109  0.397 1.000  2000
alpha[4]    0.050   0.161  -0.251 -0.065  0.053  0.155  0.368 1.002  1100
alpha[5]   -0.430   0.102  -0.634 -0.497 -0.429 -0.363 -0.227 1.001  2000
alpha[6]    0.179   0.226  -0.259  0.030  0.176  0.321  0.659 1.001  2000
alpha[7]    0.098   0.166  -0.223 -0.011  0.102  0.208  0.414 1.003  1100
alpha[8]    0.132   0.125  -0.120  0.055  0.135  0.217  0.372 1.001  2000
alpha[9]    0.457   0.142   0.150  0.367  0.464  0.552  0.715 1.000  2000
alpha[10]  -0.212   0.111  -0.429 -0.285 -0.213 -0.139  0.014 1.001  2000
alpha[11]   0.194   0.148  -0.106  0.097  0.196  0.292  0.471 1.001  1900
delta      -2.514   0.629  -3.601 -2.974 -2.567 -2.114 -1.195 1.003   750
e.obs[1]    0.403   0.133   0.155  0.311  0.401  0.490  0.666 1.003   710
e.obs[2]   -0.046   0.132  -0.315 -0.129 -0.046  0.039  0.218 1.001  2000
e.obs[3]    0.793   0.111   0.576  0.717  0.791  0.869  1.014 1.005   510
e.obs[4]   -0.228   0.167  -0.546 -0.339 -0.231 -0.120  0.109 1.001  2000
e.obs[5]    0.802   0.141   0.519  0.706  0.805  0.898  1.069 1.001  2000
e.obs[6]   -0.808   0.161  -1.112 -0.917 -0.812 -0.703 -0.485 1.004   490
e.obs[7]    0.093   0.128  -0.155  0.006  0.090  0.180  0.347 1.004   520
e.obs[8]    0.059   0.185  -0.304 -0.066  0.063  0.175  0.432 1.003  1800
e.obs[9]    0.675   0.130   0.424  0.585  0.674  0.763  0.940 1.005   450
e.obs[10]  -0.043   0.179  -0.422 -0.151 -0.036  0.068  0.299 1.006   570
e.obs[11]  -0.185   0.113  -0.396 -0.265 -0.186 -0.108  0.039 1.003   690
e.obs[12]   0.080   0.202  -0.319 -0.053  0.075  0.205  0.493 1.001  2000
e.obs[13]  -0.064   0.151  -0.362 -0.163 -0.065  0.040  0.226 1.000  2000
e.obs[14]  -0.468   0.192  -0.845 -0.596 -0.461 -0.337 -0.103 1.001  2000
e.obs[15]   0.518   0.241   0.064  0.352  0.509  0.683  0.995 1.002  1200
e.obs[16]  -0.099   0.172  -0.439 -0.207 -0.095  0.015  0.222 1.001  2000
e.obs[17]  -0.882   0.183  -1.223 -1.005 -0.890 -0.757 -0.523 1.003   810
e.obs[18]  -0.477   0.188  -0.834 -0.606 -0.484 -0.350 -0.108 1.003   700
e.obs[19]  -0.211   0.182  -0.545 -0.333 -0.216 -0.096  0.158 1.004   540
e.obs[20]  -0.040   0.179  -0.373 -0.160 -0.045  0.079  0.310 1.003   650
e.obs[21]  -0.220   0.217  -0.626 -0.367 -0.220 -0.075  0.217 1.001  2000
e.obs[22]  -0.333   0.224  -0.763 -0.487 -0.331 -0.187  0.110 1.001  2000
e.obs[23]  -0.173   0.191  -0.527 -0.303 -0.178 -0.042  0.213 1.002  1300
e.obs[24]  -0.098   0.213  -0.488 -0.246 -0.102  0.044  0.312 1.001  2000
e.obs[25]  -0.026   0.168  -0.367 -0.131 -0.023  0.085  0.292 1.001  2000
e.obs[26]  -0.137   0.190  -0.524 -0.258 -0.130 -0.009  0.211 1.000  2000
e.obs[27]   0.060   0.112  -0.153 -0.015  0.059  0.132  0.286 1.002  1500
e.obs[28]   0.671   0.113   0.453  0.595  0.668  0.747  0.893 1.002  1100
e.obs[29]  -0.118   0.153  -0.421 -0.220 -0.121 -0.019  0.190 1.001  1600
e.obs[30]   0.107   0.186  -0.265 -0.015  0.108  0.235  0.456 1.001  2000
e.obs[31]  -0.355   0.140  -0.624 -0.448 -0.355 -0.265 -0.068 1.001  1800
e.obs[32]  -0.207   0.165  -0.521 -0.319 -0.209 -0.098  0.129 1.002  1300
e.obs[33]  -0.461   0.148  -0.757 -0.559 -0.464 -0.365 -0.157 1.001  1700
e.obs[34]  -0.835   0.166  -1.153 -0.948 -0.837 -0.727 -0.499 1.002  1300
e.obs[35]  -1.282   0.158  -1.584 -1.389 -1.284 -1.178 -0.959 1.002  1400
e.obs[36]  -0.440   0.120  -0.671 -0.521 -0.442 -0.362 -0.210 1.002  1300
e.obs[37]   0.116   0.117  -0.107  0.038  0.116  0.190  0.349 1.002  1400
e.obs[38]  -0.475   0.122  -0.709 -0.557 -0.476 -0.391 -0.233 1.002  1300
e.obs[39]   0.091   0.127  -0.149  0.004  0.090  0.174  0.341 1.001  1700
e.obs[40]   0.040   0.171  -0.277 -0.080  0.035  0.154  0.400 1.001  1600
e.obs[41]  -0.094   0.210  -0.499 -0.236 -0.097  0.037  0.331 1.001  2000
e.obs[42]   0.199   0.091   0.027  0.139  0.195  0.259  0.386 1.002  1100
e.obs[43]   0.074   0.073  -0.052  0.033  0.067  0.110  0.246 1.002  2000
e.obs[44]  -0.005   0.053  -0.104 -0.016  0.000  0.015  0.067 1.030  2000
e.obs[45]  -0.008   0.042  -0.077 -0.025 -0.009  0.009  0.071 1.021  2000
e.obs[46]   0.046   0.082  -0.115 -0.008  0.046  0.100  0.204 1.002  1500
e.obs[47]  -0.167   0.147  -0.471 -0.262 -0.164 -0.071  0.120 1.003  1900
e.obs[48]   0.094   0.213  -0.324 -0.044  0.087  0.238  0.507 1.001  1800
e.obs[49]   1.820   0.271   1.301  1.639  1.814  2.007  2.337 1.002  1500
e.obs[50]  -0.141   0.113  -0.366 -0.215 -0.138 -0.068  0.086 1.002  1500
e.obs[51]  -0.553   0.105  -0.764 -0.622 -0.554 -0.484 -0.349 1.001  2000
e.obs[52]   0.019   0.105  -0.190 -0.049  0.018  0.092  0.216 1.002  1500
e.obs[53]   0.697   0.215   0.252  0.560  0.708  0.837  1.103 1.001  2000
e.obs[54]   0.109   0.239  -0.372 -0.048  0.114  0.275  0.539 1.001  2000
e.obs[55]   0.488   0.157   0.185  0.381  0.492  0.597  0.785 1.003   890
e.obs[56]   0.861   0.133   0.603  0.770  0.860  0.950  1.127 1.001  2000
e.obs[57]   0.218   0.091   0.041  0.157  0.218  0.279  0.394 1.001  1700
e.obs[58]  -0.500   0.136  -0.781 -0.586 -0.497 -0.413 -0.235 1.001  2000
e.obs[59]   0.179   0.135  -0.091  0.089  0.180  0.268  0.444 1.001  2000
e.obs[60]  -0.832   0.134  -1.088 -0.922 -0.830 -0.745 -0.570 1.001  2000
e.obs[61]   0.129   0.131  -0.122  0.041  0.129  0.218  0.384 1.001  2000
e.obs[62]  -0.257   0.160  -0.567 -0.364 -0.258 -0.152  0.066 1.001  1700
e.obs[63]  -0.134   0.179  -0.482 -0.256 -0.137 -0.017  0.224 1.002  1500
e.obs[64]   0.226   0.189  -0.141  0.097  0.224  0.351  0.607 1.001  1700
e.obs[65]  -0.018   0.110  -0.222 -0.094 -0.019  0.054  0.204 1.001  2000
e.obs[66]  -0.154   0.134  -0.414 -0.244 -0.155 -0.068  0.107 1.001  2000
e.obs[67]   0.260   0.181  -0.082  0.133  0.254  0.381  0.619 1.001  2000
e.obs[68]   0.058   0.106  -0.148 -0.012  0.056  0.132  0.267 1.002  1000
mu[1]       1.605   0.083   1.442  1.552  1.606  1.662  1.760 1.003   750
mu[2]       1.672   0.082   1.508  1.619  1.673  1.724  1.839 1.001  2000
mu[3]       1.664   0.069   1.526  1.617  1.665  1.711  1.799 1.004   580
mu[4]       1.754   0.104   1.545  1.687  1.757  1.824  1.952 1.001  2000
mu[5]       1.931   0.088   1.765  1.872  1.930  1.991  2.108 1.001  2000
mu[6]       1.707   0.100   1.506  1.642  1.710  1.775  1.896 1.004   510
mu[7]       1.672   0.079   1.515  1.618  1.674  1.726  1.827 1.004   540
mu[8]       1.406   0.115   1.174  1.334  1.403  1.483  1.632 1.002  1900
mu[9]       1.698   0.081   1.534  1.644  1.699  1.754  1.854 1.004   530
mu[10]      1.473   0.111   1.260  1.404  1.469  1.540  1.708 1.004   630
mu[11]      1.673   0.070   1.534  1.626  1.674  1.723  1.805 1.003   710
mu[12]      2.093   0.125   1.837  2.016  2.096  2.176  2.341 1.001  2000
mu[13]      1.860   0.094   1.680  1.796  1.861  1.921  2.045 1.000  2000
mu[14]      2.011   0.120   1.784  1.930  2.007  2.091  2.246 1.001  2000
mu[15]      1.713   0.150   1.416  1.610  1.718  1.816  1.995 1.002  1100
mu[16]      1.744   0.107   1.545  1.673  1.742  1.811  1.956 1.001  2000
mu[17]      1.876   0.114   1.652  1.798  1.881  1.952  2.088 1.003   810
mu[18]      1.899   0.117   1.670  1.820  1.903  1.979  2.121 1.003   710
mu[19]      1.884   0.113   1.655  1.813  1.888  1.960  2.092 1.004   560
mu[20]      1.939   0.111   1.722  1.865  1.942  2.014  2.146 1.003   670
mu[21]      2.179   0.135   1.907  2.089  2.179  2.270  2.431 1.001  2000
mu[22]      2.248   0.140   1.973  2.157  2.247  2.344  2.515 1.001  2000
mu[23]      2.110   0.119   1.870  2.029  2.113  2.191  2.330 1.002  1300
mu[24]      2.031   0.133   1.776  1.942  2.033  2.123  2.273 1.001  2000
mu[25]      2.145   0.104   1.948  2.076  2.143  2.211  2.357 1.001  2000
mu[26]      1.897   0.118   1.680  1.817  1.892  1.972  2.138 1.000  2000
mu[27]      1.541   0.070   1.401  1.496  1.542  1.588  1.673 1.002  1500
mu[28]      1.637   0.070   1.498  1.589  1.638  1.683  1.772 1.002  1300
mu[29]      1.795   0.095   1.604  1.734  1.797  1.858  1.984 1.001  1700
mu[30]      1.922   0.116   1.704  1.842  1.921  1.997  2.153 1.000  2000
mu[31]      1.503   0.087   1.324  1.446  1.503  1.560  1.670 1.001  1800
mu[32]      1.710   0.103   1.501  1.642  1.711  1.780  1.905 1.002  1400
mu[33]      1.717   0.092   1.528  1.657  1.719  1.778  1.901 1.001  1700
mu[34]      1.719   0.103   1.510  1.652  1.720  1.789  1.917 1.002  1400
mu[35]      1.692   0.098   1.491  1.627  1.693  1.758  1.879 1.002  1400
mu[36]      1.618   0.074   1.475  1.570  1.620  1.669  1.762 1.002  1300
mu[37]      1.532   0.073   1.387  1.486  1.532  1.581  1.670 1.002  1400
mu[38]      1.602   0.076   1.451  1.550  1.602  1.653  1.748 1.002  1300
mu[39]      1.535   0.079   1.379  1.483  1.535  1.589  1.684 1.001  1700
mu[40]      1.430   0.106   1.206  1.359  1.433  1.505  1.627 1.001  1700
mu[41]      1.335   0.130   1.071  1.254  1.337  1.423  1.587 1.001  1900
mu[42]      1.600   0.057   1.484  1.563  1.603  1.637  1.707 1.002  1200
mu[43]      2.074   0.045   1.967  2.052  2.079  2.100  2.153 1.002  2000
mu[44]      1.693   0.033   1.648  1.681  1.690  1.700  1.755 1.024  2000
mu[45]      1.808   0.026   1.759  1.797  1.808  1.818  1.851 1.017  2000
mu[46]      2.074   0.051   1.975  2.040  2.073  2.107  2.173 1.002  1400
mu[47]      2.509   0.091   2.330  2.449  2.507  2.568  2.698 1.003  1700
mu[48]      1.945   0.132   1.688  1.855  1.949  2.030  2.204 1.001  1900
mu[49]      2.178   0.168   1.856  2.062  2.181  2.290  2.501 1.001  1900
mu[50]      1.710   0.070   1.569  1.664  1.708  1.756  1.850 1.002  1400
mu[51]      1.882   0.065   1.754  1.839  1.882  1.924  2.012 1.001  2000
mu[52]      1.822   0.066   1.700  1.777  1.823  1.865  1.952 1.002  1500
mu[53]      2.091   0.134   1.838  2.004  2.084  2.176  2.368 1.001  2000
mu[54]      1.776   0.149   1.509  1.674  1.773  1.874  2.076 1.001  2000
mu[55]      1.555   0.098   1.370  1.488  1.553  1.622  1.744 1.002   900
mu[56]      1.764   0.082   1.599  1.709  1.765  1.821  1.925 1.001  2000
mu[57]      1.936   0.056   1.827  1.898  1.936  1.974  2.046 1.001  1800
mu[58]      2.171   0.085   2.007  2.117  2.169  2.224  2.346 1.001  2000
mu[59]      2.409   0.084   2.244  2.353  2.408  2.465  2.577 1.001  1900
mu[60]      1.717   0.083   1.554  1.663  1.716  1.773  1.876 1.001  2000
mu[61]      1.733   0.082   1.575  1.678  1.733  1.788  1.889 1.001  2000
mu[62]      1.638   0.099   1.437  1.572  1.639  1.705  1.831 1.001  1600
mu[63]      1.595   0.111   1.373  1.523  1.597  1.671  1.812 1.002  1400
mu[64]      1.609   0.117   1.372  1.531  1.610  1.689  1.837 1.001  1600
mu[65]      1.778   0.069   1.640  1.734  1.779  1.826  1.905 1.001  2000
mu[66]      1.700   0.084   1.537  1.646  1.700  1.755  1.861 1.001  2000
mu[67]      2.100   0.113   1.876  2.024  2.103  2.178  2.312 1.001  2000
mu[68]      1.706   0.066   1.577  1.661  1.708  1.750  1.835 1.002  1000
p.val[1]    0.457   0.840   0.000  0.000  0.000  0.000  2.000 1.003   760
p.val[2]    1.921   0.390   0.000  2.000  2.000  2.000  2.000 1.000  2000
p.val[3]    1.108   0.994   0.000  0.000  2.000  2.000  2.000 1.001  1900
p.val[4]    0.751   0.969   0.000  0.000  0.000  2.000  2.000 1.001  1600
p.val[5]    2.000   0.000   2.000  2.000  2.000  2.000  2.000 1.000     1
p.val[6]    0.416   0.812   0.000  0.000  0.000  0.000  2.000 1.000  2000
p.val[7]    0.541   0.888   0.000  0.000  0.000  2.000  2.000 1.002  1200
p.val[8]    0.282   0.697   0.000  0.000  0.000  0.000  2.000 1.001  2000
p.val[9]    0.008   0.126   0.000  0.000  0.000  0.000  0.000 1.153   640
p.val[10]   1.934   0.358   0.000  2.000  2.000  2.000  2.000 1.004  2000
p.val[11]   0.186   0.581   0.000  0.000  0.000  0.000  2.000 1.002  2000
tau        15.822   3.116  10.328 13.663 15.668 17.755 22.440 1.002  1500
deviance    6.336   7.497  -5.591  0.798  5.547 10.898 23.760 1.004   500

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 28.0 and DIC = 34.4
DIC is an estimate of expected predictive error (lower deviance is better).