Stark-et-al-ICB-2022 / Code / statistical_analysis / step_2 / model jags result simp4.txt
model jags result simp4.txt
Raw
Inference for Bugs model at "../Mi model JAGS simp4.txt", fit using jags,
 3 chains, each with 4e+05 iterations (first 2e+05 discarded), n.thin = 300
 n.sims = 1998 iterations saved
          mu.vect sd.vect    2.5%    25%    50%    75%  97.5%  Rhat n.eff
Loc[1]      1.734   0.069   1.599  1.688  1.734  1.780  1.867 1.003   690
Loc[2]      1.942   0.071   1.804  1.896  1.939  1.988  2.085 1.000  2000
alpha[1]    1.109  19.892 -50.888  0.296  1.840  3.239 40.483 1.007  2000
alpha[2]   -0.129   0.072  -0.270 -0.175 -0.130 -0.080  0.009 1.001  2000
alpha[3]   -0.086   0.197  -0.463 -0.221 -0.085  0.047  0.305 1.001  2000
alpha[4]    0.136   0.059   0.021  0.098  0.135  0.174  0.251 1.000  2000
alpha[5]   -0.446   0.099  -0.638 -0.513 -0.446 -0.380 -0.247 1.000  2000
alpha[6]    0.230   0.209  -0.179  0.090  0.232  0.372  0.637 1.001  2000
alpha[7]    0.143   0.126  -0.108  0.062  0.145  0.226  0.380 1.000  2000
alpha[8]    0.473   0.136   0.178  0.391  0.480  0.560  0.728 1.001  2000
alpha[9]   -0.218   0.115  -0.428 -0.296 -0.220 -0.142  0.018 1.000  2000
alpha[10]   0.217   0.139  -0.064  0.126  0.218  0.309  0.489 1.001  2000
delta      -2.510   0.624  -3.604 -2.954 -2.548 -2.108 -1.160 1.000  2000
e.obs[1]    0.414   0.140   0.148  0.319  0.413  0.504  0.697 1.001  2000
e.obs[2]   -0.087   0.108  -0.303 -0.156 -0.087 -0.019  0.125 1.002  1400
e.obs[3]    0.832   0.097   0.644  0.768  0.829  0.895  1.033 1.003   830
e.obs[4]   -0.159   0.122  -0.396 -0.241 -0.159 -0.078  0.078 1.003   740
e.obs[5]    0.816   0.138   0.548  0.726  0.814  0.906  1.094 1.001  2000
e.obs[6]   -0.752   0.137  -1.013 -0.842 -0.752 -0.664 -0.475 1.001  2000
e.obs[7]    0.143   0.103  -0.050  0.073  0.141  0.210  0.357 1.002  1000
e.obs[8]    0.127   0.149  -0.174  0.032  0.127  0.222  0.411 1.002   950
e.obs[9]    0.721   0.112   0.507  0.647  0.718  0.793  0.954 1.001  1600
e.obs[10]  -0.067   0.171  -0.408 -0.172 -0.066  0.043  0.261 1.002  2000
e.obs[11]  -0.174   0.117  -0.397 -0.252 -0.175 -0.099  0.064 1.001  1900
e.obs[12]   0.100   0.202  -0.292 -0.036  0.099  0.234  0.490 1.001  1600
e.obs[13]  -0.099   0.132  -0.355 -0.184 -0.098 -0.015  0.162 1.001  1900
e.obs[14]  -0.462   0.188  -0.829 -0.587 -0.459 -0.336 -0.087 1.000  2000
e.obs[15]   0.643   0.131   0.371  0.562  0.646  0.729  0.894 1.000  2000
e.obs[16]  -0.125   0.167  -0.455 -0.234 -0.120 -0.015  0.199 1.001  2000
e.obs[17]  -0.787   0.098  -0.989 -0.852 -0.785 -0.724 -0.596 1.001  2000
e.obs[18]  -0.380   0.103  -0.584 -0.449 -0.378 -0.313 -0.182 1.001  2000
e.obs[19]  -0.130   0.130  -0.388 -0.213 -0.130 -0.041  0.118 1.001  2000
e.obs[20]   0.044   0.114  -0.182 -0.029  0.043  0.122  0.260 1.001  2000
e.obs[21]  -0.166   0.191  -0.538 -0.292 -0.162 -0.039  0.207 1.001  2000
e.obs[22]  -0.275   0.197  -0.664 -0.401 -0.279 -0.145  0.118 1.001  2000
e.obs[23]  -0.112   0.158  -0.418 -0.217 -0.111 -0.009  0.200 1.001  2000
e.obs[24]   0.005   0.129  -0.248 -0.081  0.005  0.091  0.258 1.000  2000
e.obs[25]  -0.045   0.159  -0.361 -0.144 -0.046  0.058  0.262 1.000  2000
e.obs[26]  -0.121   0.178  -0.510 -0.232 -0.114  0.001  0.197 1.002  1300
e.obs[27]   0.051   0.108  -0.166 -0.020  0.050  0.124  0.266 1.001  2000
e.obs[28]   0.659   0.107   0.438  0.590  0.659  0.731  0.870 1.001  2000
e.obs[29]  -0.143   0.146  -0.421 -0.236 -0.145 -0.044  0.141 1.001  2000
e.obs[30]   0.081   0.179  -0.282 -0.037  0.082  0.199  0.418 1.003   910
e.obs[31]  -0.368   0.136  -0.632 -0.460 -0.367 -0.279 -0.094 1.001  2000
e.obs[32]  -0.235   0.156  -0.552 -0.343 -0.233 -0.131  0.065 1.001  2000
e.obs[33]  -0.486   0.139  -0.752 -0.579 -0.483 -0.392 -0.213 1.001  2000
e.obs[34]  -0.863   0.157  -1.177 -0.972 -0.861 -0.759 -0.560 1.001  2000
e.obs[35]  -1.310   0.149  -1.605 -1.413 -1.306 -1.210 -1.024 1.001  2000
e.obs[36]  -0.458   0.112  -0.687 -0.533 -0.457 -0.384 -0.240 1.001  2000
e.obs[37]   0.107   0.112  -0.111  0.033  0.109  0.181  0.336 1.001  2000
e.obs[38]  -0.488   0.116  -0.722 -0.562 -0.488 -0.409 -0.256 1.001  2000
e.obs[39]   0.077   0.123  -0.172 -0.005  0.076  0.158  0.321 1.001  2000
e.obs[40]   0.033   0.169  -0.294 -0.084  0.035  0.141  0.381 1.001  2000
e.obs[41]  -0.095   0.208  -0.501 -0.233 -0.102  0.036  0.345 1.001  2000
e.obs[42]   0.196   0.087   0.028  0.137  0.196  0.251  0.370 1.001  1700
e.obs[43]   0.077   0.074  -0.054  0.034  0.069  0.111  0.263 1.002  2000
e.obs[44]  -0.003   0.039  -0.094 -0.016  0.001  0.015  0.063 1.003   630
e.obs[45]  -0.005   0.036  -0.073 -0.022 -0.008  0.011  0.074 1.008   540
e.obs[46]   0.042   0.082  -0.120 -0.010  0.041  0.094  0.213 1.003   690
e.obs[47]  -0.170   0.152  -0.461 -0.266 -0.172 -0.074  0.135 1.004   660
e.obs[48]   0.066   0.207  -0.352 -0.065  0.070  0.201  0.472 1.001  2000
e.obs[49]   1.783   0.264   1.263  1.613  1.782  1.959  2.305 1.001  2000
e.obs[50]  -0.147   0.110  -0.360 -0.219 -0.146 -0.072  0.061 1.001  2000
e.obs[51]  -0.560   0.104  -0.766 -0.627 -0.559 -0.489 -0.361 1.001  2000
e.obs[52]   0.015   0.104  -0.194 -0.051  0.014  0.085  0.215 1.001  2000
e.obs[53]   0.692   0.214   0.226  0.563  0.697  0.834  1.096 1.002  1800
e.obs[54]   0.120   0.241  -0.391 -0.037  0.125  0.278  0.586 1.002  2000
e.obs[55]   0.497   0.156   0.195  0.395  0.500  0.598  0.814 1.000  2000
e.obs[56]   0.850   0.129   0.595  0.764  0.851  0.936  1.106 1.001  2000
e.obs[57]   0.218   0.089   0.042  0.161  0.217  0.278  0.384 1.001  2000
e.obs[58]  -0.501   0.138  -0.772 -0.593 -0.502 -0.409 -0.233 1.001  2000
e.obs[59]   0.173   0.133  -0.091  0.090  0.175  0.258  0.439 1.001  2000
e.obs[60]  -0.842   0.131  -1.092 -0.931 -0.841 -0.753 -0.597 1.001  2000
e.obs[61]   0.118   0.128  -0.130  0.032  0.117  0.204  0.356 1.001  2000
e.obs[62]  -0.262   0.159  -0.565 -0.367 -0.256 -0.157  0.046 1.001  2000
e.obs[63]  -0.139   0.178  -0.482 -0.258 -0.135 -0.023  0.208 1.000  2000
e.obs[64]   0.219   0.188  -0.142  0.093  0.225  0.340  0.585 1.000  2000
e.obs[65]  -0.031   0.106  -0.245 -0.100 -0.030  0.037  0.167 1.001  2000
e.obs[66]  -0.163   0.132  -0.420 -0.252 -0.162 -0.074  0.084 1.001  2000
e.obs[67]   0.236   0.177  -0.109  0.119  0.233  0.353  0.579 1.001  2000
e.obs[68]   0.055   0.104  -0.149 -0.011  0.057  0.124  0.254 1.000  2000
mu[1]       1.598   0.087   1.423  1.543  1.600  1.658  1.764 1.001  2000
mu[2]       1.698   0.067   1.566  1.655  1.698  1.741  1.832 1.002  1400
mu[3]       1.640   0.060   1.514  1.601  1.642  1.679  1.756 1.003   860
mu[4]       1.711   0.076   1.564  1.661  1.711  1.763  1.859 1.003   740
mu[5]       1.923   0.086   1.750  1.867  1.924  1.979  2.090 1.001  2000
mu[6]       1.672   0.085   1.500  1.618  1.672  1.728  1.835 1.001  2000
mu[7]       1.641   0.064   1.508  1.600  1.642  1.685  1.761 1.002  1000
mu[8]       1.364   0.093   1.187  1.304  1.364  1.423  1.551 1.002   950
mu[9]       1.670   0.070   1.525  1.625  1.671  1.716  1.803 1.002  1500
mu[10]      1.487   0.106   1.284  1.419  1.487  1.553  1.699 1.002  2000
mu[11]      1.667   0.073   1.518  1.620  1.667  1.715  1.805 1.001  1800
mu[12]      2.081   0.125   1.838  1.997  2.082  2.165  2.325 1.001  1600
mu[13]      1.882   0.082   1.719  1.829  1.881  1.934  2.041 1.001  1900
mu[14]      2.007   0.117   1.774  1.929  2.005  2.085  2.236 1.000  2000
mu[15]      1.635   0.082   1.479  1.582  1.633  1.685  1.804 1.001  2000
mu[16]      1.760   0.104   1.559  1.692  1.757  1.828  1.965 1.001  2000
mu[17]      1.816   0.061   1.698  1.777  1.816  1.857  1.942 1.001  2000
mu[18]      1.839   0.064   1.716  1.797  1.837  1.881  1.966 1.001  2000
mu[19]      1.834   0.081   1.680  1.779  1.834  1.886  1.995 1.001  2000
mu[20]      1.887   0.071   1.752  1.839  1.888  1.932  2.027 1.001  2000
mu[21]      2.145   0.119   1.914  2.067  2.143  2.224  2.376 1.001  2000
mu[22]      2.212   0.123   1.968  2.131  2.214  2.290  2.454 1.001  2000
mu[23]      2.072   0.098   1.878  2.008  2.072  2.137  2.262 1.001  2000
mu[24]      1.967   0.080   1.809  1.913  1.966  2.020  2.124 1.000  2000
mu[25]      2.157   0.099   1.966  2.093  2.158  2.219  2.353 1.000  2000
mu[26]      1.887   0.111   1.689  1.811  1.882  1.956  2.129 1.002  1200
mu[27]      1.547   0.067   1.413  1.501  1.547  1.591  1.682 1.001  2000
mu[28]      1.644   0.067   1.513  1.599  1.644  1.687  1.781 1.002  2000
mu[29]      1.811   0.091   1.634  1.749  1.812  1.868  1.983 1.002  2000
mu[30]      1.937   0.111   1.728  1.864  1.937  2.011  2.164 1.004   840
mu[31]      1.510   0.085   1.340  1.455  1.510  1.568  1.675 1.001  2000
mu[32]      1.728   0.097   1.541  1.663  1.726  1.795  1.924 1.001  2000
mu[33]      1.732   0.087   1.563  1.674  1.731  1.790  1.898 1.002  1900
mu[34]      1.737   0.097   1.548  1.672  1.735  1.804  1.932 1.001  2000
mu[35]      1.709   0.092   1.531  1.647  1.706  1.773  1.892 1.001  2000
mu[36]      1.630   0.070   1.494  1.584  1.629  1.676  1.772 1.001  2000
mu[37]      1.538   0.070   1.395  1.492  1.536  1.584  1.673 1.001  2000
mu[38]      1.610   0.072   1.466  1.561  1.610  1.656  1.755 1.001  2000
mu[39]      1.543   0.076   1.392  1.493  1.544  1.594  1.698 1.001  2000
mu[40]      1.434   0.105   1.218  1.367  1.433  1.507  1.637 1.001  2000
mu[41]      1.335   0.129   1.062  1.254  1.340  1.421  1.588 1.001  2000
mu[42]      1.603   0.054   1.494  1.568  1.602  1.639  1.707 1.001  1700
mu[43]      2.072   0.046   1.957  2.051  2.078  2.099  2.154 1.002  2000
mu[44]      1.692   0.024   1.651  1.681  1.690  1.700  1.748 1.003   620
mu[45]      1.806   0.022   1.757  1.796  1.808  1.817  1.848 1.009   530
mu[46]      2.076   0.051   1.970  2.044  2.077  2.108  2.177 1.003   700
mu[47]      2.511   0.094   2.321  2.451  2.512  2.570  2.692 1.004   660
mu[48]      1.962   0.129   1.709  1.878  1.959  2.043  2.221 1.001  2000
mu[49]      2.201   0.164   1.876  2.091  2.201  2.306  2.524 1.001  2000
mu[50]      1.714   0.068   1.584  1.667  1.713  1.758  1.846 1.001  2000
mu[51]      1.886   0.065   1.762  1.841  1.885  1.927  2.014 1.001  2000
mu[52]      1.825   0.065   1.700  1.781  1.826  1.866  1.955 1.001  2000
mu[53]      2.094   0.133   1.843  2.006  2.091  2.174  2.384 1.002  1700
mu[54]      1.770   0.150   1.480  1.672  1.767  1.867  2.087 1.003  2000
mu[55]      1.549   0.097   1.352  1.487  1.547  1.613  1.737 1.000  2000
mu[56]      1.771   0.080   1.612  1.717  1.771  1.825  1.929 1.001  2000
mu[57]      1.936   0.055   1.833  1.899  1.937  1.971  2.046 1.001  2000
mu[58]      2.172   0.086   2.005  2.115  2.172  2.229  2.341 1.001  2000
mu[59]      2.412   0.083   2.247  2.359  2.411  2.464  2.577 1.001  2000
mu[60]      1.723   0.082   1.571  1.668  1.723  1.779  1.879 1.001  2000
mu[61]      1.740   0.080   1.592  1.686  1.740  1.793  1.894 1.001  2000
mu[62]      1.641   0.099   1.449  1.576  1.637  1.706  1.829 1.001  2000
mu[63]      1.599   0.111   1.383  1.526  1.596  1.673  1.812 1.000  2000
mu[64]      1.613   0.117   1.386  1.538  1.609  1.692  1.837 1.000  2000
mu[65]      1.787   0.066   1.663  1.745  1.786  1.830  1.920 1.001  2000
mu[66]      1.705   0.082   1.551  1.650  1.705  1.760  1.865 1.001  2000
mu[67]      2.114   0.110   1.901  2.041  2.116  2.187  2.329 1.001  2000
mu[68]      1.708   0.065   1.585  1.666  1.707  1.749  1.835 1.000  2000
p.val[1]    0.468   0.847   0.000  0.000  0.000  0.000  2.000 1.002  1400
p.val[2]    1.931   0.365   0.000  2.000  2.000  2.000  2.000 1.004  2000
p.val[3]    1.350   0.937   0.000  0.000  2.000  2.000  2.000 1.001  2000
p.val[4]    0.019   0.194   0.000  0.000  0.000  0.000  0.000 1.001  2000
p.val[5]    2.000   0.000   2.000  2.000  2.000  2.000  2.000 1.000     1
p.val[6]    0.270   0.684   0.000  0.000  0.000  0.000  2.000 1.000  2000
p.val[7]    0.262   0.675   0.000  0.000  0.000  0.000  2.000 1.000  2000
p.val[8]    0.003   0.077   0.000  0.000  0.000  0.000  0.000 1.134  2000
p.val[9]    1.934   0.358   0.000  2.000  2.000  2.000  2.000 1.013  1100
p.val[10]   0.111   0.458   0.000  0.000  0.000  0.000  2.000 1.004  1900
tau        15.903   3.127  10.532 13.757 15.614 17.839 22.972 1.002  1600
deviance    5.605   7.036  -5.543  0.449  4.695  9.795 22.375 1.001  2000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 24.8 and DIC = 30.4
DIC is an estimate of expected predictive error (lower deviance is better).