model { for(i in 1:N) { X[i,1]<-1.0 #main effects for categories X[i,2]<-equals(season[i], 2) X[i,3]<-(rock[i]-mean(rock[]))/(2*sd(rock[])) #interactions for categories X[i,4]<-(veg[i]-mean(veg[]))/(2*sd(veg[])) X[i,5]<-(svl[i]-mean(svl[]))/(2*sd(svl[])) X[i,6]<-X[i,2]*X[i,3] X[i,7]<-X[i,2]*X[i,4] X[i,8]<-X[i,2]*X[i,5] X[i,9]<-X[i,3]*X[i,4] X[i,10]<-X[i,3]*X[i,5] X[i,11]<-X[i,4]*X[i,5] #X[i,12]<-X[i,2]*X[i,9] #X[i,13]<-X[i,2]*X[i,10] X[i,12]<-X[i,2]*X[i,11] } for(i in 1:N){ Mi[i]~dnorm(mu[i], tau.exp[i]) tau.exp[i]<- tau*1/sqrt(exp(X[i,4]*2*delta)) mu[i]<- inprod(alpha[2:12],X[i, 2:12]) + Loc[location[i]] #+ X[i,4]*Ind.gud[hz[i]] e.obs[i]<-(Mi[i]-mu[i])/sqrt(sd(Mi[])) } for( c in 1 : 2) { Loc[c]~dnorm(alpha[1], tau.loc) } tau.loc <- 1 / (sigma.loc * sigma.loc) sigma.loc ~ dunif(0, 100) for (L in 1:12){ alpha[L]~dnorm(0.0, 1.0E-6) } delta~dnorm(0, 1E-6) #delta[2]~dnorm(0.0, 1.0E-6) #delta[3]~dnorm(0.0, 1.0E-6) tau~dgamma(0.01, 0.01) #tau[2]~dgamma(0.001, 0.001) #tau[3]~dgamma(0.001, 0.001) #tau.loc~dgamma(0.01, 0.01) # tau.Ind.gud~dgamma(0.001, 0.001) p.val<-2*(1-step(alpha)) #Deviance <- -2*sum( l[1:128] ) }