Inference for Bugs model at "../Mi model JAGS simp7.txt", fit using jags, 3 chains, each with 4e+05 iterations (first 2e+05 discarded), n.thin = 300 n.sims = 1998 iterations saved mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff Loc[1] 1.748 0.062 1.629 1.705 1.748 1.790 1.869 1.001 1700 Loc[2] 1.980 0.069 1.850 1.933 1.982 2.025 2.118 1.001 1600 alpha[1] 2.120 19.812 -40.411 0.476 1.867 3.465 47.149 1.005 620 alpha[2] -0.136 0.071 -0.282 -0.183 -0.136 -0.088 -0.001 1.000 2000 alpha[3] 0.135 0.074 -0.007 0.085 0.133 0.183 0.283 1.001 2000 alpha[4] 0.214 0.043 0.131 0.187 0.214 0.242 0.298 1.000 2000 alpha[5] -0.312 0.065 -0.444 -0.353 -0.309 -0.268 -0.187 1.001 2000 alpha[6] 0.282 0.101 0.061 0.222 0.290 0.351 0.459 1.000 2000 alpha[7] -0.148 0.109 -0.362 -0.219 -0.150 -0.078 0.075 1.000 2000 delta -2.046 0.584 -3.147 -2.471 -2.065 -1.659 -0.816 1.001 2000 p.val[1] 0.459 0.842 0.000 0.000 0.000 0.000 2.000 1.002 1200 p.val[2] 1.950 0.312 1.850 2.000 2.000 2.000 2.000 1.010 1900 p.val[3] 0.068 0.363 0.000 0.000 0.000 0.000 2.000 1.008 1700 p.val[4] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1 p.val[5] 2.000 0.000 2.000 2.000 2.000 2.000 2.000 1.000 1 p.val[6] 0.018 0.189 0.000 0.000 0.000 0.000 0.000 1.000 2000 p.val[7] 1.831 0.557 0.000 2.000 2.000 2.000 2.000 1.002 2000 tau 14.909 2.784 9.867 12.930 14.820 16.655 21.004 1.002 1100 deviance 10.435 5.505 1.897 6.441 9.761 13.534 23.498 1.003 880 For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence, Rhat=1). DIC info (using the rule, pD = var(deviance)/2) pD = 15.1 and DIC = 25.6 DIC is an estimate of expected predictive error (lower deviance is better).