# -*- coding: utf-8 -*- """ Created on Thu Jul 16 15:13:56 2020 @author: baum_c4 """ import numpy as np import pandas as pd import pickle import matplotlib.colors as mcol import matplotlib.cm as cm import matplotlib.pyplot as plt import matplotlib with open('plot_importances.pickle', 'rb') as f: impis=pickle.load( f) impstd=np.std(impis,axis=0) impmean=np.mean(impis,axis=0) sum_mean=np.sum(impmean) font = { 'size' : 12,'weight' : 'normal',} matplotlib.rc('font', **font) f,ax = plt.subplots(1,1,figsize=(9*0.39,8*0.39)) label=np.array(['r$_x$','r$_y$','r$_z$','v$_x$','v$_y$','v$_z$','DST']) c=ax.boxplot(impis,showmeans='True',meanline='True',labels=label) #ax[0].set_xlabel('ACE position in X [Re]') ax.set_ylabel('feature importance [min]') ax.set_title('10-fold drop column FI') ax.grid(True) plt.tight_layout() plt.savefig('plot_importance.pdf',bbox_inches='tight') plt.show()