clear all; clc; filename = 'm_n_ph2_fara.xlsx'; col1 = xlsread(filename,'1:7'); %pattern col2 = xlsread(filename,'8:8'); x = col1; t = col2; trainFcn = 'trainlm'; % Scaled conjugate gradient backpropagation. % by default function='crossentropy', hiddenLayerSize =10; net = patternnet(hiddenLayerSize, trainFcn); net.divideParam.trainRatio =70/100; % net.divideParam.valRatio = 15/100; net.divideParam.testRatio = 30/100; [net,tr] = train(net,x,t); y = net(x); e = gsubtract(t,y); performance = perform(net,t,y); tind = vec2ind(t); yind = vec2ind(y); percentErrors = sum(tind ~= yind)/numel(tind); [tpr,fpr,thresholds] = roc(t,y); [c,cm,ind,per] = confusion(t,y); TP_N=cm(1,1); FP_N=cm(2,1); FN_N=cm(1,2); TN_N=cm(2,2); V=[TP_N, FP_N,FN_N,TN_N];