import pandas as pd from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score from sklearn.neighbors import KNeighborsClassifier from sklearn.gaussian_process.kernels import RBF from sklearn import svm from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix df = pd.read_csv('n7point.csv') data=shuffle(df) X = data.drop("class", axis=1) y = data["class"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=43) #random forest classifier1 = RandomForestClassifier(n_estimators=100, criterion='entropy') classifier1.fit(X_train, y_train) y_pred = classifier1.predict(X_test) print("Accuracy random forest accuracy:", accuracy_score(y_test, y_pred)) print("recall_score random forest :", recall_score(y_test, y_pred)) print("precision_score random forest:", precision_score(y_test, y_pred)) print("pf1_score random forest:", f1_score(y_test, y_pred)) print("confuzion matrix random forest",confusion_matrix(y_test, y_pred)) ######### KNN classifier2 = KNeighborsClassifier(n_neighbors=5,weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski') classifier2.fit(X_train, y_train) y_pred = classifier2.predict(X_test) print("Accuracy KNN:", accuracy_score(y_test, y_pred)) print("recall random forest knn:", recall_score(y_test, y_pred)) print("precision_score knn:", precision_score(y_test, y_pred)) print("pf1_score knn:", f1_score(y_test, y_pred)) print("confuzion matrix knn",confusion_matrix(y_test, y_pred)) ######### AdaBoost kernel = 1.0 * RBF(1.0) classifier3 = AdaBoostClassifier(n_estimators=100, algorithm='SAMME', random_state=40) classifier3.fit(X_train, y_train) y_pred = classifier3.predict(X_test) print("Accuracy adaBoost:", accuracy_score(y_test, y_pred)) print("recall adaBoost forest :", recall_score(y_test, y_pred)) print("precision_score adaBoost:", precision_score(y_test, y_pred)) print("pf1_score adaBoost:", f1_score(y_test, y_pred)) print("confuzion matrix adaBoost",confusion_matrix(y_test, y_pred)) ####gaussian NB classifier4 = GaussianNB(priors=None, var_smoothing=1e-09) classifier4.fit(X_train, y_train) y_pred = classifier4.predict(X_test) print("Accuracy gaussian NB:", accuracy_score(y_test, y_pred)) print("recall random gaussian NB :", recall_score(y_test, y_pred)) print("precision_score gaussian NB:", precision_score(y_test, y_pred)) print("pf1_score gaussian NB:", f1_score(y_test, y_pred)) print("confuzion matrix NB",confusion_matrix(y_test, y_pred)) #DT classifierDT = DecisionTreeClassifier(criterion='entropy', splitter='best', max_depth=100, ccp_alpha=0.0) classifierDT.fit(X_train, y_train) y_pred = classifierDT.predict(X_test) print("DT:", accuracy_score(y_test, y_pred)) print("recall DT:", recall_score(y_test, y_pred)) print("precision_score DT:", precision_score(y_test, y_pred)) print("pf1_score gaussian DT:", f1_score(y_test, y_pred)) print("confuzion matrix DT",confusion_matrix(y_test, y_pred)) #svm classifier7 = svm.SVC(degree=2, gamma='scale', cache_size=100, decision_function_shape='ovo') classifier7.fit(X_train, y_train) y_pred = classifier7.predict(X_test) print("svm:", accuracy_score(y_test, y_pred)) print("recall svm:", recall_score(y_test, y_pred)) print("precision_score svm:", precision_score(y_test, y_pred)) print("pf1_score gaussian svm:", f1_score(y_test, y_pred)) print("confuzion matrix svm",confusion_matrix(y_test, y_pred)) `