--- title: '[clem] CCA with adult_HCA' author: "Nina-Lydia Kazakou" date: '2022-07-18' output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` # Set-up ### Load libraries ```{r load_libraries, message=FALSE, warning=FALSE} library(Seurat) library(SeuratObject) library(ggplot2) library(here) library(ggsci) library(corrplot) library(RColorBrewer) ``` ### Colour Palette ```{r load_palette} mypal1 <- pal_npg("nrc", alpha = 0.7)(10) mypal2 <- pal_tron("legacy", alpha = 0.7)(7) mypal3 <- pal_lancet("lanonc", alpha = 0.7)(9) mypal4 <- pal_simpsons(palette = c("springfield"), alpha = 0.7)(16) mypal5 <- pal_rickandmorty(palette = c("schwifty"), alpha = 0.7)(6) mypal6 <- pal_futurama(palette = c("planetexpress"), alpha = 0.7)(5) mypal7 <- pal_startrek(palette = c("uniform"), alpha = 0.7)(5) mycoloursP<- c(mypal1, mypal2, mypal3, mypal4) ``` ### Load object ```{r load_object} clem <- readRDS(here("Data", "Human_R_Analysis", "Clemastine_DMSO", "clem_srt.rds")) ``` ```{r} DimPlot(clem, group.by = "Initial_Annotation", pt.size = 1, cols = mycoloursP[15:40], reduction = "umap", label = TRUE) & NoLegend() ``` ```{r load_adult_HCA} HCA <- readRDS("C:/Users/s1241040/Desktop/SingleCell_MonolayerCultures/MonolayerCultures/data/Processed/Original_Objects/HCA_oligos_opcs_LS.RDS") ``` ```{r} DimPlot(HCA, group.by = "ol_clusters_named", pt.size = 1, reduction = "umap", label = TRUE, cols = mycoloursP) & NoLegend() ``` ### Prepare objects metadata ```{r HCA_clean-up, eval=FALSE} HCA@meta.data$process_number <- NULL HCA@meta.data$caseNO <- NULL HCA@meta.data$BBN <- NULL HCA@meta.data$PMI <- NULL HCA@meta.data$CauseOfDeath_1a <- NULL HCA@meta.data$CauseOfDeath_1b <- NULL HCA@meta.data$CauseOfDeath_1c <- NULL HCA@meta.data$CauseOfDeath_1d <- NULL HCA@meta.data$SlideBox <- NULL HCA@meta.data$Location_Block <- NULL HCA@meta.data$comments <- NULL HCA@meta.data$RNAconcRIN <- NULL HCA@meta.data$RINvalue <- NULL HCA@meta.data$RINvalueDate <- NULL HCA@meta.data$RINvalueRemeasured <- NULL HCA@meta.data$RIN <- NULL HCA@meta.data$rEeXTRACT <- NULL HCA@meta.data$Cryostat_date <- NULL HCA@meta.data$ident <- NULL HCA@meta.data$low_lib_size <- NULL HCA@meta.data$large_lib_size <- NULL HCA@meta.data$low_n_features <- NULL HCA@meta.data$high_n_features <- NULL HCA@meta.data$high_subsets_mito_percent <- NULL HCA@meta.data$ProcessNumber <- NULL HCA@meta.data$ScaterQC_failed <- NULL HCA@meta.data$scDblFinder_weighted<- NULL HCA@meta.data$scDblFinder_ratio <- NULL HCA@meta.data$scDblFinder_score <- NULL HCA@meta.data$RNA_snn_res.0.5 <- NULL HCA@meta.data$RNA_snn_res.0.1 <- NULL HCA@meta.data$RNA_snn_res.0.01 <- NULL HCA@meta.data$RNA_snn_res.0.2 <- NULL HCA@meta.data$RNA_snn_res.0.3 <- NULL HCA@meta.data$RNA_snn_res.0.4 <- NULL HCA@meta.data$RNA_snn_res.0.6 <- NULL HCA@meta.data$RNA_snn_res.0.7 <- NULL HCA@meta.data$RNA_snn_res.0.9 <- NULL HCA@meta.data$RNA_snn_res.1 <- NULL HCA@meta.data$RNA_snn_res.0.05 <- NULL HCA@meta.data$RNA_snn_res.0.04 <- NULL head(HCA@meta.data, 2) HCA@meta.data$author <- "Seeker et al." HCA@meta.data$dataset <- "adult_HCA" ``` ```{r clem_clean-up, eval=FALSE} clem@meta.data$originalexp_snn_res.0.01 <-NULL clem@meta.data$originalexp_snn_res.0.03 <-NULL clem@meta.data$originalexp_snn_res.0.05 <-NULL clem@meta.data$originalexp_snn_res.0.1 <-NULL clem@meta.data$originalexp_snn_res.0.2 <-NULL clem@meta.data$originalexp_snn_res.0.3 <-NULL clem@meta.data$originalexp_snn_res.0.4 <-NULL clem@meta.data$originalexp_snn_res.0.5 <-NULL clem@meta.data$originalexp_snn_res.0.7 <-NULL clem@meta.data$originalexp_snn_res.0.8 <-NULL clem@meta.data$originalexp_snn_res.0.9 <-NULL clem@meta.data$originalexp_snn_res.1 <-NULL clem@meta.data$old.ident <-NULL head(clem@meta.data, 2) clem@meta.data$author <- "Kazakou" clem@meta.data$dataset <- "chimeras_human_OL" ``` # Integrate datasets ```{r cca, eval=FALSE} # Create a list of objects srt_list <- list(HCA, clem) # normalize and identify variable features for each dataset independently srt_list<- lapply(X = srt_list, FUN = function(x) { x <- NormalizeData(x) x <- FindVariableFeatures(x, selection.method = "vst", nfeatures = 2000) }) # select features that are repeatedly variable across datasets for integration var_features <- SelectIntegrationFeatures(object.list = srt_list) # create anchors to integrate the datasets anchors <- FindIntegrationAnchors(object.list = srt_list, anchor.features = var_features) # create an 'integrated' data assay ol_comb <- IntegrateData(anchorset = anchors, dims = 1:20) ``` # Run the standard workflow for visualisation & clustering ```{r integrated, eval=FALSE} DefaultAssay(ol_comb) <- "integrated" Idents(ol_comb) <- "dataset" # Scale data all_genes <- rownames(ol_comb) ol_comb <- ScaleData(ol_comb, features = all_genes) # Dimentionality reduction ol_comb <- RunPCA(ol_comb, npcs = 30, verbose = FALSE) # Choose the mumber of PCs ElbowPlot(ol_comb, ndims = 30) #20 # Clustering ol_comb <- RunUMAP(ol_comb, reduction = "pca", dims = 1:20) ol_comb <- FindNeighbors(ol_comb, reduction = "pca", dims = 1:20) ol_comb <- FindClusters(ol_comb, resolution = 0.5) ``` # save ```{r save, eval=FALSE} dir.create(here("Data", "Human_R_Analysis", "Clemastine_DMSO", "Integrated_Robjs")) dir.create(here("Data", "Human_R_Analysis", "Clemastine_DMSO", "Integrated_Robjs", "adult_HCA")) saveRDS(ol_comb, here("Data", "Human_R_Analysis", "Clemastine_DMSO", "Integrated_Robjs", "adult_HCA", "clem_adult_HCA_ol_comb.rds")) ``` ```{r} ol_comb <- readRDS(here("Data", "Human_R_Analysis", "Clemastine_DMSO", "Integrated_Robjs", "adult_HCA", "clem_adult_HCA_ol_comb.rds")) ``` # Visualization ```{r} DimPlot(ol_comb, pt.size = 0.6, cols = c(mycoloursP[5], "turquoise3"), group.by = "dataset") ``` ```{r fig.height=4, fig.width=10} DimPlot(ol_comb, pt.size = 0.8, cols = c(mycoloursP[5], "turquoise3"), group.by = "dataset", split.by = "dataset") & NoLegend() ``` ```{r fig.height=15, fig.width=15} DimPlot(ol_comb, pt.size = 0.8, cols = mycoloursP, group.by = "ol_clusters_named", split.by = "dataset", label = TRUE) & NoLegend() DimPlot(ol_comb, pt.size = 0.8, cols = mycoloursP[5:40], group.by = "Initial_Annotation", split.by = "dataset", label = TRUE) & NoLegend() DimPlot(ol_comb, pt.size = 0.8, cols = mycoloursP[5:40], group.by = "Initial_Annotation", split.by = "dataset", label = TRUE) ``` ```{r} FeaturePlot(ol_comb, features = c("MOBP", "PDGFRA"), split.by = "dataset") ``` ##### SessionInfo <details> <summary> Click to expand </summary> ```{r} sessionInfo() ``` </details>