--- title: '[met] NDUF' author: "Nina-Lydia Kazakou" date: '2022-06-26' output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` # Set-up ### Load libraries ```{r load_libraries} library(Seurat) # For scRNASeq analysis library(here) # For reproducible pathways library(ggsci) # Colour Pallete library(ggplot2) # For nice plots library(tidyverse) # For R library(viridis) # For heatmap colours library(RColorBrewer) # For treatment colours ``` ### Colour Palette ```{r load_palette} mypal1 <- pal_npg("nrc", alpha = 0.7)(10) mypal2 <- pal_tron("legacy", alpha = 0.7)(7) mypal3 <- pal_lancet("lanonc", alpha = 0.7)(9) mypal4 <- pal_simpsons(palette = c("springfield"), alpha = 0.7)(16) mypal5 <- pal_rickandmorty(palette = c("schwifty"), alpha = 0.7)(6) mypal6 <- pal_futurama(palette = c("planetexpress"), alpha = 0.7)(5) mypal7 <- pal_startrek(palette = c("uniform"), alpha = 0.7)(5) mycoloursP<- c(mypal1, mypal2, mypal3, mypal4) ``` ```{r met_ddH2O_colour} cp <- brewer.pal(n = 8, name = "Pastel1") cp_2 <- brewer.pal(n = 12, name = "Set3") my_cp <- c(cp, cp_2) ``` ### Load object ```{r load_object} srt <- readRDS(here("Data", "Human_R_Analysis", "Metformin_ddH2O", "met_srt_ol.rds")) ``` ```{r} DimPlot(srt, group.by = "Initial_Annotation", pt.size = 1, cols = mycoloursP[5:40], label = TRUE) & NoLegend() DimPlot(srt, group.by = "Treatment", split.by = "Treatment", pt.size = 1, cols = c(my_cp[2], my_cp[1]), label = FALSE) & NoLegend() ``` ```{r} FeaturePlot(srt, features = "subsets_mt_percent", split.by = "Treatment") VlnPlot(srt, features = "subsets_mt_percent", group.by = "Treatment", c(my_cp[2], my_cp[1])) ``` ### Read in data ```{r} nduf <- read.csv(here("outs", "filter_70", "Human_R_Analysis", "Metformin_ddH2O", "NDUF", "nduf_genes.csv")) ``` # NDUF: NADH Complex I Nicotinamide Adenine Dinucleotide: Ubiquinone oxidoreductase Mitochondrial complex I (CI): - Largest discrete enzyme of the oxidative phosphorylation system (OXPHOS) - Located in the inner mitochondrial membrane - Transports electrons from NADH to ubiquinone - Oxidizes NADH generated from the tricorboxylic acid cycle NAD+, which leads to the reduction of the ubiquinone & the transport of protons from thee matrix across the inner membrane to the inter-membrane area --\> the proton-motive force is consumed by ATP synthase to generate ATP or harness ion transport or mRNA or protein transport - Consists of 41 sub-units , now fully identified in humans, although there are no functional data available; 7 of them are encoded by mtDNA (ND1-ND6, ND4L) and 34 of them are encoded by nDNA and are divided in 3 fractions: a) Flavoprotein (FP), b) Iron-sulfur protein (IP) and c) Hydrophobic protein (HP) - Complex I impairment causes abnormalities in the energy generating systems present in mitochondria and has been associated with chronic metabolite and degenerative disorders, like diabetis, cardiomyopathy, Parkinson's Disease (PD) and Leigh syndrome ### Plots ```{r fig.height=40, fig.width=20} VlnPlot(srt,features = nduf$Approved.symbol, ncol = 4, group.by = "Treatment", pt.size = 0.1, cols = c(my_cp[2], my_cp[1])) ``` ```{r fig.height=10, fig.width=20} DotPlot(srt, features = nduf$Approved.symbol, group.by = "Treatment") + FontSize(9) + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) ``` ```{r fig.height=10, fig.width=20} Idents(srt) <- srt@meta.data$Initial_Annotation DotPlot(srt, features = nduf$Approved.symbol, split.by = "Treatment", cols = c(my_cp[2], my_cp[1]), dot.scale = 8) + FontSize(9) + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) ``` ```{r fig.height=15, fig.width=15} DoHeatmap(object = srt, features = nduf$Approved.symbol, label = TRUE, group.by = "Treatment", group.colors =c(my_cp[2], my_cp[1]), draw.lines = TRUE, size = 5) + theme(text = element_text(size = 10, face = "bold"), plot.title = element_text(hjust = 0.5)) + scale_fill_viridis(discrete=FALSE) ``` ```{r fig.height=15, fig.width=10} cluster_averages <- AverageExpression(srt, group.by = "Treatment", return.seurat = TRUE) Idents(srt) <- srt@meta.data$Treatment lev <- levels(Idents(srt)) cluster_averages@meta.data$cluster <- factor(lev) library(viridis) DoHeatmap(object = cluster_averages, features = nduf$Approved.symbol, label = TRUE, group.by = "cluster", group.colors =c(my_cp[2], my_cp[1]), draw.lines = F, size = 5) + theme(text = element_text(size = 10, face = "bold"), plot.title = element_text(hjust = 0.5)) + scale_fill_viridis(discrete=FALSE) ``` ```{r} # Upregulated NDUF genes in metformin treated animals up_genes <- c("NDUFAB1", "NDUFA10", "NDUFA11", "NDUFB7", "NDUFB10", "NDUFB11", "NDUFS2", "NDUFS3", "NDUFS6", "NDUFS7", "NDUFS8", "NDUFV1") ``` ```{r fig.height=15, fig.width=20} VlnPlot(srt,features = up_genes, ncol = 4, group.by = "Treatment", pt.size = 0.1, cols = c(my_cp[2], my_cp[1])) ``` ```{r fig.height=30, fig.width=20} VlnPlot(srt,features = up_genes, ncol = 2, group.by = "Initial_Annotation", pt.size = 0.1, cols = mycoloursP) ``` ## Human data ```{r} HCA <- readRDS("C:/Users/s1241040/Desktop/SingleCell_MonolayerCultures/MonolayerCultures/data/Processed/Original_Objects/HCA_oligos_opcs_LS.RDS") ``` ```{r} DefaultAssay(HCA) <- "RNA" ``` ```{r fig.height=55, fig.width=20, message=FALSE, warning=FALSE} VlnPlot(HCA, group.by = "ol_clusters_named", features = nduf$Approved.symbol, cols = mycoloursP, ncol = 2) VlnPlot(HCA, group.by = "ol_clusters_named", features = nduf$Approved.symbol, cols = mycoloursP, ncol = 2, pt.size = 0) ``` #### Upregulated gene in metformin treated cells ```{r fig.height=20, fig.width=20} VlnPlot(HCA, group.by = "ol_clusters_named", features = up_genes, cols = mycoloursP, ncol = 2) VlnPlot(HCA, group.by = "ol_clusters_named", features = up_genes, cols = mycoloursP, ncol = 2, pt.size = 0) ``` ##### SessionInfo <details> <summary> Click to expand </summary> ```{r} sessionInfo() ``` </details>