from time import time import jax.random import matplotlib.pyplot as plt from jax.random import PRNGKey from numpy.random import default_rng import numpy as np import damp.threedvar as threedvar from damp.gp import Shape from damp import gp def main() -> None: numpy_rng = default_rng(seed=1124) ground_truth = np.load("../../data/UM/UM_temp.npy") lon = np.load("../../data/UM/UM_lon.npy") lat = np.load("../../data/UM/UM_lat.npy") era5 = np.load("../../data/ERA5/temp_regrid.npy") # Subsample a grid for testing ratio = 8 ground_truth = ground_truth[::ratio, ::ratio] era5 = era5[::ratio, ::ratio] lon = lon[::ratio] lat = lat[::ratio] obs_noise = 1e-3 # Zero mean the truth based on the climatology mean ground_truth = ground_truth - era5 prior = gp.get_prior_sphere( Shape(np.shape(ground_truth)[0], np.shape(ground_truth)[1]), lon, lat ) obs = gp.choose_observations( numpy_rng, n_obs=round(prior.shape.width * prior.shape.height * 0.1), ground_truth=ground_truth, obs_noise=obs_noise, ) rng = PRNGKey(seed=23142834) rng, rng_input = jax.random.split(rng) start = time() result = threedvar.run_optimizer(rng_input, prior, obs, obs_noise) end = time() print(f"Took {end-start:.2f}s") # Converting back ground_truth = ground_truth + era5 result = result + era5[1:-1, 1:-1] fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) vmin = ground_truth.min() vmax = ground_truth.max() axes[0].imshow(np.flipud(ground_truth), vmin=vmin, vmax=vmax) axes[1].imshow(np.flipud(result), vmin=vmin, vmax=vmax) plt.tight_layout() plt.savefig("plots/3dvar_sphere_era5.png", dpi=300) plt.close() if __name__ == "__main__": main()