# # # 0===============================0 # | PLY files reader/writer | # 0===============================0 # # #------------------------------------------------------------------------------------------ # # function to read/write .ply files # #------------------------------------------------------------------------------------------ # # Hugues THOMAS - 10/02/2017 # #------------------------------------------------------------------------------------------ # # Imports and global variables # \**********************************/ # # Basic libs import numpy as np import sys # Define PLY types ply_dtypes = dict([ (b'int8', 'i1'), (b'char', 'i1'), (b'uint8', 'u1'), (b'uchar', 'b1'), (b'uchar', 'u1'), (b'int16', 'i2'), (b'short', 'i2'), (b'uint16', 'u2'), (b'ushort', 'u2'), (b'int32', 'i4'), (b'int', 'i4'), (b'uint32', 'u4'), (b'uint', 'u4'), (b'float32', 'f4'), (b'float', 'f4'), (b'float64', 'f8'), (b'double', 'f8') ]) # Numpy reader format valid_formats = {'ascii': '', 'binary_big_endian': '>', 'binary_little_endian': '<'} #------------------------------------------------------------------------------------------ # # Functions # \***************/ # def parse_header(plyfile, ext): # Variables line = [] properties = [] num_points = None while b'end_header' not in line and line != b'': line = plyfile.readline() if b'element' in line: line = line.split() num_points = int(line[2]) elif b'property' in line: line = line.split() properties.append((line[2].decode(), ext + ply_dtypes[line[1]])) return num_points, properties def read_ply(filename): """ Read ".ply" files Parameters ---------- filename : string the name of the file to read. Returns ------- result : array data stored in the file Examples -------- Store data in file >>> points = np.random.rand(5, 3) >>> values = np.random.randint(2, size=10) >>> write_ply('example.ply', [points, values], ['x', 'y', 'z', 'values']) Read the file >>> data = read_ply('example.ply') >>> values = data['values'] array([0, 0, 1, 1, 0]) >>> points = np.vstack((data['x'], data['y'], data['z'])).T array([[ 0.466 0.595 0.324] [ 0.538 0.407 0.654] [ 0.850 0.018 0.988] [ 0.395 0.394 0.363] [ 0.873 0.996 0.092]]) """ with open(filename, 'rb') as plyfile: # Check if the file start with ply if b'ply' not in plyfile.readline(): raise ValueError('The file does not start whith the word ply') # get binary_little/big or ascii fmt = plyfile.readline().split()[1].decode() if fmt == "ascii": raise ValueError('The file is not binary') # get extension for building the numpy dtypes ext = valid_formats[fmt] # Parse header num_points, properties = parse_header(plyfile, ext) # Get data data = np.fromfile(plyfile, dtype=properties, count=num_points) return data def header_properties(field_list, field_names): # List of lines to write lines = [] # First line describing element vertex lines.append('element vertex %d' % field_list[0].shape[0]) # Properties lines i = 0 for fields in field_list: for field in fields.T: lines.append('property %s %s' % (field.dtype.name, field_names[i])) i += 1 return lines def write_ply(filename, field_list, field_names): """ Write ".ply" files Parameters ---------- filename : string the name of the file to which the data is saved. A '.ply' extension will be appended to the file name if it does no already have one. field_list : list, tuple, numpy array the fields to be saved in the ply file. Either a numpy array, a list of numpy arrays or a tuple of numpy arrays. Each 1D numpy array and each column of 2D numpy arrays are considered as one field. field_names : list the name of each fields as a list of strings. Has to be the same length as the number of fields. Examples -------- >>> points = np.random.rand(10, 3) >>> write_ply('example1.ply', points, ['x', 'y', 'z']) >>> values = np.random.randint(2, size=10) >>> write_ply('example2.ply', [points, values], ['x', 'y', 'z', 'values']) >>> colors = np.random.randint(255, size=(10,3), dtype=np.uint8) >>> field_names = ['x', 'y', 'z', 'red', 'green', 'blue', values'] >>> write_ply('example3.ply', [points, colors, values], field_names) """ # Format list input to the right form field_list = list(field_list) if (type(field_list) == list or type(field_list) == tuple) else list((field_list,)) for i, field in enumerate(field_list): if field is None: print('WRITE_PLY ERROR: a field is None') return False elif field.ndim > 2: print('WRITE_PLY ERROR: a field have more than 2 dimensions') return False elif field.ndim < 2: field_list[i] = field.reshape(-1, 1) # check all fields have the same number of data n_points = [field.shape[0] for field in field_list] if not np.all(np.equal(n_points, n_points[0])): print('wrong field dimensions') return False # Check if field_names and field_list have same nb of column n_fields = np.sum([field.shape[1] for field in field_list]) if (n_fields != len(field_names)): print('wrong number of field names') return False # Add extension if not there if not filename.endswith('.ply'): filename += '.ply' # open in text mode to write the header with open(filename, 'w') as plyfile: # First magical word header = ['ply'] # Encoding format header.append('format binary_' + sys.byteorder + '_endian 1.0') # Points properties description header.extend(header_properties(field_list, field_names)) # End of header header.append('end_header') # Write all lines for line in header: plyfile.write("%s\n" % line) # open in binary/append to use tofile with open(filename, 'ab') as plyfile: # Create a structured array i = 0 type_list = [] for fields in field_list: for field in fields.T: type_list += [(field_names[i], field.dtype.str)] i += 1 data = np.empty(field_list[0].shape[0], dtype=type_list) i = 0 for fields in field_list: for field in fields.T: data[field_names[i]] = field i += 1 data.tofile(plyfile) return True def describe_element(name, df): """ Takes the columns of the dataframe and builds a ply-like description Parameters ---------- name: str df: pandas DataFrame Returns ------- element: list[str] """ property_formats = {'f': 'float', 'u': 'uchar', 'i': 'int'} element = ['element ' + name + ' ' + str(len(df))] if name == 'face': element.append("property list uchar int points_indices") else: for i in range(len(df.columns)): # get first letter of dtype to infer format f = property_formats[str(df.dtypes[i])[0]] element.append('property ' + f + ' ' + df.columns.values[i]) return element