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TP 4: Improve the Metropolis-Hastings algorithm

Exercise 1: Adaptive Metropolis-Hastings within Gibbs sampler

MCMC samplers, such as the Metropolis-Hastings algorithm or Gibbs sampler, require that the user
specify a transition kernel with a given invariant distribution (the target distribution). These transition
kernels usually depend on parameters which are to be given and tuned by the user. In practice, it is often
difficult (if not impossible) to find the best parameters for such algorithms given a target distribution.
Moreover, if the parameters are not carefully chosen, it may result in a MCMC algorithm performing
poorly as in part A. Adaptive MCMC algorithms is a class of MCMC algorithms which address the
problem of parameters tuning by updating automatically some of (if not all) the parameters.

1.A — Metropolis-Hastings within Gibbs sampler

We aim to sample the target distribution 7, on R2, given by
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where a > 0. We consider a Markov transition kernel P defined by
1
P= 3 (P + P»)

where P;((z,y); da’ x dy") for i = 1,2 is the Markov transition kernel which only updates the i-th
component: this update follows a symmetric random walk proposal mechanism and uses a Gaussian
distribution with variance o?.

1. Implement an algorithm which samples the distribution P;(z;-) where z € R? ; likewise for the
distribution P(z;-). Then, implement an algorithm which samples a chain with kernel P.

2. Run the algorithm with a = 10 and standard deviations of the proposal distributions chosen as
follows: (o1,02) = (3,3). Discuss the performance of the algorithm in this situation.

3. How could the performance of the above algorithm be improved ? Propose two methods.

1.B — Adaptive Metropolis-Hastings within Gibbs sampler

Let 7 be a density defined on an open set U of R?% d > 2. We consider here a Metropolis-Hastings

within Gibbs algorithm to sample from the target density . More precisely, the HM-step is a symmetric

random walk one and the proposal distribution is a Gaussian distribution centered at the current state.
As usual, for i € [1,d], let m; denote the i-th full conditional of 7, which is given by:

(E,i:{£E17...,$i71,$i+1,...,$d} N 7TZ(£L'1|£L',Z)O(’/T((E)

and o? the variance of the corresponding proposal distribution.
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Figure 1: Mean acceptance rate and contour plot of the density — a = 10

Algorithm 1: Metropolis-Hastings (symmetric random walk) within Gibbs Sampler

k k
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1 Given z(®) = (
2 fori=1 toddo

3 HM to sample from the target $Ek+1) ~ (x| xikﬂ), ... ,xl(.]flrl), xgi)l, ... ,x&k)):

4 Proposal: 7 ~ N (z{¥), 02)

. Acceptance ratio a(z?, 2%) — oy |28 ) ety N
Wi(xgk) | xgkﬂ), .. ,a:z(’ftl), J;Z(i)l, . ,xt(ik))

6 end

In [RRO09], the authors propose an adaptive version of the above sampler which automatically adjusts
the variances o?, ... ,05 of the proposal distributions. We proceed as follows:

o For each of the variables z;, we create an associate variable ¢; giving for the logarithm of the
standard deviation o; to be used when proposing a normal increment to variable: ¢; := log(o;) ;

o We initialize all £; to zero, which correspond to the unit proposal variance ;

o After the j-th (j € IN*) batch of 50 iterations, each variable ¢; is updated by adding or subtracting
an amount §(j). The adapting attempts to make the acceptance rate of proposals for variable
x; as close as possible to 0.24, which is optimal for one-dimensional proposals in certain settings.
Specifically, if the acceptance rate for the i-th variable is greater than 0.24, ¢; is increased with
d(j). Otherwise, if the rate is lower than 0.24, ¢; is decreased by 4(j).

In practice, we (can) take 6(j) := min(O.Ol,j_l/Q).

1. Implement the adaptative Metropolis-Hastings within Gibbs sampler and test the algorithm on
the density 7 defined in the part A: Using auto-correlation plots (use a built-in function), compare
the performance of the algorithm with or without adaptation.

2. We can also compare the performance of our algorithm on more complicated target densities. For
example centered d-dimensional Gaussian N (0, ) or "banana'-shaped density as in TP 2:

2 1 1
Vo = (z1,...,74) € RY,  fp(z) o exp (CEl — (22 + B} — 100B)2 - 2(1:§+...+:17§)) .
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In practice, you can choose d = 20 and B = 0.1 for the density fg. You may also choose
d = 20 for the second one and use the 20 x 20 variance-covariance matrix ¥ given in the file
http://dept.stat.lsa.umich.edu/~yvesa/tmalaexcov.txt.

To go further. ..

The next improvement of the Metropolis-Hastings algorithm we can make is to consider a drift function
in the proposal distribution. Given a positive definite matrix A and a scale parameter o > 0, we consider
a proposal distribution of the form:

1 1 1 o? T, _1 o?
Gy |0) = s e (= gz [y = o = FAD@)] A7y — 2~ FAD@)]).

o is the density (with respect to the Lebesgue measure on R?) of the d-dimensional Gaussian distri-
bution with mean x + %QAD(x) and variance-covariance matrix o2A. If D vanishes everywhere (D = 0),
the corresponding algorithm is a Metropolis-Hastings Symmetric Random Walk. If the drift D is chosen
such that: 5

max(d, ||V log w(z)]|)

for a constant § > 0, the corresponding algorithm is a Metropolis Adjusted Langevin Algorithm (MALA).
In that case, the proposal distribution includes information on the gradient Vlogm of the target dis-
tribution 7. In [Atc06], the author proposes an adaptive version of the MALA algorithm in which the
parameters o and A are adjusted automatically.

Vr € RY, D(x)= V log m(x)

Exercise 2: Sampling from multimodal distributions

We consider a target distribution = with support & C R¢ (d € IN*). When the target distribution is
multimodal, especially with well-separated modes, classical MCMC algorithms can perform very poorly
and exhibit poor mixing. Indeed, a Metropolis-Hastings algorithm with local proposal can get stuck for
a long time in a local mode of the target distribution.
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Figure 2: Mixture of 20 Gaussian distributions
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2.A — A toy example

In the following, we consider a target distribution m — taken from [LWO01] and plotted at figure 2 —
defined on R? as a mixture of 20 Gaussian distributions. The target distribution writes:

20
7(x) = Y gz exp (= 5 = ) )
i=1 K2 ?

where, Vi € {1,...,20}, w; = 0.05 and o; = 0.1. The 20 means p,; are defined as follows:
( ) . 2.18 8.67 4.24 8.41 3.93 3.25 1.70
Hipeoobizo) = 576 )\ 9.59) " \8.48) \1.68 ) ' \8.82) "\ 347/ \0.50) -
4.59 6.91 6.87 5.41 2.70 4.98 1.14
5.60)’\581)’\5.40/’\2.65)’\7.88)’\3.70/)°\2.39)"
8.33 4.93 1.83 2.26 5.54 1.69
9.50/’\1.50/°\0.09)°\0.31)’\6.86/"\8.11 ’

1. Write a Metropolis-Hastings Symmetric Random Walk algorithm (you may use your code from
previous tutorial classes) to sample from 7.

2. Show that the Metropolis-Hastings algorithm (even the adaptive Metropolis-Hastings algorithm)
fails to sample from 7.

2.B — Parallel Tempering

The general idea of the Parallel Tempering (PT) [Gey91, EDO05] algorithm is to use tempered versions
of the distribution 7 and run parallel Metropolis-Hastings algorithm to sample from these tempered
distributions. The tempered distributions are obtained by "warming up" the target distribution 7« at
different temperatures. At each iteration of the algorithm, a swap between two chains (chains running
at different temperature levels) is proposed. The Parallel Tempering uses the fast mixing of the chains
at high temperature to improve the mixing of the chains at low temperatures.

Let K denote a positive integer. We consider a sequence of temperatures (7;)1<;<x such that:
Ti>T>...>Tk=1.

In the Parallel Tempering algorithm, K chains run in parallel: for ¢ € [1, K], the i-th chain targets the
tempered distribution 7; := 7'/ ; the distribution of interest corresponds to the lowest temperature,
Tk = 1. Let (XT(f))ne]N denote the i-th chain, sampling from the tempered distribution ;.

At the n-th iteration of the Parallel Tempering algorithm, a candidate Yéi)l for the i-th chain is
proposed using the transition kernel P(i)(Xr(f), -) of a Metropolis-Hastings algorithm. The next step
consists in proposing a swap between two different chains (running at different temperatures): given
(i,5) € [1, K]?, with i # j, a swap is proposed with probability a(i, j).

1. Implement the Parallel Tempering algorithm.
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Algorithm 2: Parallel Tempering
1 For all i € [1, K], initialize Xéi) ;

2 for n =1 to Njer do
3 For all ¢ € [1, K], draw Yrgi)l using the transition kernel P(i)(X,,(f)7 )
4 Choose uniformly (i, j) € [1, K]?, with i # j ;
. .. . (Y9 ) (v )
5 Compute the swap acceptance probability a(i,j) = min | 1, —SF = |
i (Y ie) ™5 (V)
6 | Draw U ~U([0,1]) ;
7 if U < a(i,j) then
8
sz,:)—l = eri)l and X'V(Lj-‘,)-l = Yé?l ;
9 else
10
Xq(jJ)rl = wai)l and X7(£1 = Y'rgi)l ;
11 end
12 | Forall ke [1,K], k+#1i,j,set X =v®)
13 end

2. In order to illustrate the performance of the algorithm, use your code to sample from the distri-
bution 7 of Part A. Use the algorithm with K = 5 and with the following temperatures ladder:

(Tv,...,Ts) = (60, 21.6, 7.7, 2.8, 1).

For the Metropolis-Hastings step (line 3), take as proposal distribution the bivariate Gaussian
distribution centered at Xff), with variance-covariance matrix TZ-ZIQ:

Vie[1,K], Y~ Nge(XP,721) where 7, = 0.25\/T; .

The scale parameters 7; are tuned to ensure a reasonable acceptance rate in the algorithm.

In practice, the performance of the Parallel Tempering algorithm strongly depends on the choice of
the temperatures ladder, the number of chains and the choice of proposal kernels. For most distribu-
tions, tuning these parameters may be infeasible. In [MMV13], the authors have proposed an adaptive
Parallel Tempering algorithm to address these difficulties.

Exercise 3: Bayesian analysis of a one-way random effects model

We recall that the density of an Inverse Gamma distribution with positive parameters (a, b) is propor-
tional to

1 b
Ty —y exXp <x) Ig+(x)
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and especially that we can sample y from the inverse gamma distribution of parameters (a,b) by gener-
ating x from a gamma distribution of parameters (a, b) and then taking y = -. We also recall that we
can find a Matlab toolbox-free Gamma Generator in the Handbook of Monte Carlo Methods [KTB13]:
https://people.smp.uq.edu.au/DirkKroese/montecarlohandbook/probdist/. Otherwise, we can
use directly scipy.stats.invgamma or the Statistics and Machine Learning Toolbox in Matlab.

Let suppose we collect the observations Y = {y; ;, ¢ € [L, N], j € [1,k;] } and set k := Zi\;l k; the
total number of observations. Let the following random effects model:

(i) yi,; is a realization of the variable Y; ; where Y; ; = X, +¢;; ;

(ii) The random effects X = { X;, i € [1,N] } are i.i.d from a Gaussian N (i, 0?) and independent of
the errors e = {¢; 5, 1 € [1,N], j € [1,ki] } ;

(iii) The errors ¢ are i.i.d from the centred Gaussian N(0,72) ;

where (u,0,7) are the unknown parameters. Bayesian analysis using this model requires specifying a
prior distribution, for which we consider:

Tprior (f, 0 TQ)O(;GX _B #ex _p
prior Hy ) 02(1+o¢) p 0_2 7—2(1+’7) P 7_2

where «, 5 and y are known hyper-parameters.

1. Write the density of the a posteriori distribution (X, i, 0?,72) — it can be given up to a normal-
izing constant — 4.e the density of the distribution (Y, X, u, 02, 72).

Implement a Gibbs sampler which updates in turn (o2, 72, i, X) one at a time.
Implement a Block-Gibbs sampler which updates o2, then 72 and then the block (X, u).

Discuss the theoretical performance of these two algorithms.

RANE- A

Test your code on a synthetic dataset Y = {y;,, ¢ € [1,N], j € [1,k] } generated from the
previous model.
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