
1 Online SSL

• Complete online_ssl_update_centroids using the pseudocode 1.

• Complete online_ssl_compute_solution following the pseudocode 2

Algorithm 1 Incremental k-centers (simplified)
1: Input: an unlabeled xt, a list of centroids Ct−1, a list of multiplicities vt−1, taboo

list b containing the labeled centroids.
2: if (|Ct−1| = k) then
3: c1, c2 ← two closest centroids such that at least one of them is not in b.
4: // Decide which centroid is crep, that will represent both c1 and c2, and which

centroid is cadd, that will represent the new point xt.
5: if c1 in b then
6: crep ← c1
7: cadd ← c2
8: else if c2 in b then
9: crep ← c2

10: cadd ← c1
11: else if vt−1(c2) ≤ vt−1(c1) then
12: crep ← c1
13: cadd ← c2
14: else
15: crep ← c2
16: cadd ← c1
17: end if
18: vt ← vt−1

19: vt(crep)← vt(crep) + vt(cadd)
20: cadd ← xt

21: vt(cadd) = 1
22: else
23: Ct ← Ct−1.append(xt)
24: vt ← vt−1.append(1)

25: end if

Algorithm 2 Online HFS with Graph Quantization
1: Input: t, a list of centroids Ct, a list of multiplicities vt and labels y.
2: V ← diag(vt)

3: [W̃q]ij ← weight between centroids i and j.
4: Compute the Laplacian L of the graph represented by Wq = V W̃qV
5: // Infer labels using hard-HFS.
6: ŷt ← hardHFS(L, y)
7: // Remark: with the preceding construction of the centroids, xt is always

present in the reduced graph and does not share the centroid with any other
node.

1

Some practical considerations:

• The labeled nodes are fundamentally different from unlabeled ones. Be-
cause of this, it is always a good idea to keep them separate, and never
merge them in a centroid. In the implementation this is accomplished with
a taboo list b that keeps track of nodes that cannot be merged together.

• In streaming applications, it is not always possible to stop execution to
partition the centroids, and it is often preferable to pay a small price
at every step to keep execution smooth. In our case, the centroids are
updated at every step.

• Whenever a new node arrives, and we have too many centroids, we choose
the two closest centroids cadd and crep. cadd will forget the old centroid
and will point to the new sample that just arrived, and crep will take care
of representing all nodes that belonged to cadd.

References

[1] Moses CHARIKAR, Chandra CHEKURI, Tomas FEDER, and Rajeev
MOTWANI. Incremental clustering and dynamic information retrieval.
SIAM journal on computing, 33(6):1417–1440, 2004.

2

	Online SSL

