
MVA 2020-21 Pierre Gaillard, Rémy Degenne

Sequential Learning
Home Assignment

This homework should be uploaded by Friday, March 12, 2021 on the website

http://pierre.gaillard.me/teaching/mva.php

The password to upload is mva2021. The penalty scale is minus two points (on the final grade over 20 points) for
every day of delay. The homework can be done alone or in groups of two students. The code can be done in any
langage (python, R, matlab,. . . ) and should not be returned but the results and the figures must be included into
the pdf report.

All questions require a proper mathematical justification or derivation (unless otherwise stated), but most ques-
tions can be answered concisely in just a few lines. No question should require lengthy or tedious derivations or
calculations.

Part 1. Rock Paper Scissors

We consider the sequential version of a repeated two-player zero-sum games between a player and an adversary.

Let L ∈ [−1, 1]M×N be a loss matrix.
At each round t = 1, . . . , T

– The player choose a distribution pt ∈ ∆M := {p ∈ [0, 1]M ,
∑M

i=1 pi = 1}
– The adversary chooses a distribution qt ∈ ∆N

– The actions of both players are sampled it ∼ pt and jt ∼ qt
– The player incurs the loss L(it, jt) and the adversary the loss −L(it, jt).

Setting 1: Setting of a sequential two-player zero sum game

1. Recall M , N and a loss matrix L ∈ [−1, 1]M×N that corresponds to the game “Rock paper scissors”1.

Full information feedback We assume that both players know the matrix L in advance and can compute L(i, j)
for any (i, j).

2. Implementation of EWA.

(a) In order to implement the exponential weight algorithm, you need a way to sample from the exponential
weight distribution. Implement the function rand_weighted that takes as input a probability vector
p ∈ ∆M and uses a single call to rand() to return X ∈ [M ] with P (X = i) = pi.

1This is a common game where two players choose one of 3 options: (Rock, Paper, Scissors). The winner is decided according to
the following: Rock crushes scissors, Paper covers Rock, Scissors cuts paper
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(b) Define a function EWA_update that takes as input a vector pt ∈ ∆M and a loss vector `t ∈ [−1, 1]M and
return the updated vector pt+1 ∈ ∆M defined for all i ∈ [M ] by

pt+1(i) =
pt(i) exp(−η`t(i))∑M
j=1 pt(j) exp(−η`t(j))

.

3. Simulation against a fixed adverary. Consider the game “Rock paper scissors” and assume that the adversary
chooses qt = (1/2, 1/4, 1/4) and samples jt ∼ qt for all rounds t ≥ 1.

(a) What is the loss `t(i) incurred by the player if he chooses action i at time t? Simulate an instance of the
game for t = 1, . . . , T = 100 for η = 1.

(b) Plot the evolution of the weight vectors p1, p2, . . . , pT . What seems to be the best strategy against this
adversary?

(c) Plot the average loss ¯̀
t = 1

t

∑t
s=1 `(is, js) as a function of t.

(d) Plot the cumulative regret.

(e) To see if the algorithm is stable, repeat the simulation n = 10 times and plot the average loss (¯̀
t)t≥1

obtained in average, in maximum and in minimum over the n simulations.

(f) Repeat one simulation for different values of learning rates η ∈ {0.01, 0.05, 0.1, 0.5, 1} and plot the final
regret as a function of η. What are the best η in practice and in theory.

4. Simulation against an adaptive adversary. Repeat the simulation of question 3) when the adversary is also
playing EWA with learning parameters η = 0.05.

(a) Plot 1
t

∑t
s=1 `(is, js) as a function of t.

It is possible to show that if both players play according to a regret minimizing strategy the cumulative
loss of the player converges to the value of the game

V = min
p∈∆M

max
q∈∆q

p>Lq .

(b) Define p̄t = 1
t

∑t
s=1 ps. Plot in log log scale ‖p̄t − (1/3, 1/3, 1/3)‖2 as a function of t = 1, . . . , 10 000.

It is possible to show that (p̄t, q̄t)t≥1 converges almost surely to a Nash equilibrium of the game. This
means that if p× q is a Nash equilibrium, none of the players should change is strategy if the other player
does not change hers.

Bandit feedback Now, we assume that the players do not know the game in advance but only observe the
performance L(it, jt) (that we assume here to be in [0, 1]) of the actions played at time t. They need to learn the
game and adapt to the adversary as one goes along.

5. Implementation of EXP3. Since both players are symmetric, we focus on the first player.

(a) Implement the function estimated_loss that takes as input the action it ∈ [M ] played at round t ≥ 1
and the loss L(it, jt) suffered by the player and return the vector of estimated loss ̂̀t ∈ RM+ used by EXP3.

(b) Implement the function EXP3_update that takes as input a vector pt ∈ ∆M , the action it ∈ [M ] played by
the player and the loss L(it, jt) and return the updated weight vector pt+1 ∈ ∆M .

6. Repeat Questions 3.a) to 3.f) with EXP3 instead of EWA.
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7. Repeat Question 4.a) and 4.b) with EXP3 instead of EWA.

Optional extentions The following questions are optional.

8. Repeat Question 4.a) when the adversary is playing a UCB algorithm. Who wins between UCB and EXP3?

9. In the lecture 3, we see that EXP3 has a sublinear expected regret. Yet, as shown by question 6.e), it is
extremely unstable with a large variance. Implement EXP3.IX (see Chapter 12 of [3]) a modification of EXP3
that controls the regret in expectation and simultaneously keeps it stable. Repeat question 3.e) with EXP3.IX

10. Try different games (not necessarily zero-sum games). In particular, how these algorithms behave for the
prisoner’s dilemna (see wikipedia)? The prisoner’s dilemna is a two-player games that shows why two completely
rational individuals might not cooperate, even if it appears that it is in their best interests to do so. The losses
matrices are:

L(player) =

(
1 3
0 2

)
and L(adversary) =

(
1 0
3 2

)
.

Part 2. Bernoulli Bandits

We consider a stochastic bandit setting in which the arm rewards have Bernoulli distributions. A random variable
X is said to have Bernoulli distribution with parameter p, which we denote by B(p), if it takes value 0 with
probability 1− p and value 1 with probability p. The set {1, . . . ,K} is denoted by [K].

Each arm k ∈ [K] has a reward distribution B(pk).
At each round t = 1, . . . , T

– The player chooses an arm kt ∈ [K],
– The player observes a reward Xkt

t ∼ B(pkt), independent of all other rewards.

Setting 2: Bernoulli bandit

Notations:
– In this part, the term “regret” refers to the quantity RT = maxk∈[K] Tpk −

∑T
t=1 pkt .

– Nk
t denotes the number of pulls of arm k before time t, i.e. Nk

t =
∑t−1

s=1 I{ks = k}.
– µ̂kt denotes the empirical mean of arm k: µ̂kt = 1

Nk
t

∑t−1
s=1X

ks
s I{ks = k}.

A bit of context: why Bernoulli bandits matter. Many applications have binary outcomes, in which the
reward then follows a Bernoulli distribution. A prominent example is online advertising, in which a seller shows
advertisements to visitors of a website, and a usual goal is to maximize the probability that the visitor clicks on
the ad. In its most basic form, this is exactly the bandit interaction described above: the seller (player) chooses
an ad (arm) which is displayed to the visitor, and then the seller observes whether there is a click or not (reward).
More elaborate models of that interaction take into account prior information that the seller has about the visitor,
turning it into a contextual bandit, or get rid of the independence assumption, etc.

1. Follow the leader. All experiments in this question will be done for K = 2, p = (0.5, 0.6).

(a) Prove that the expected regret of the Follow-the-leader algorithm (FTL) verifies ERT ≥ αT , for some
α > 0. Recall that FTL pulls at each time the arm with highest empirical mean.

(b) Implement FTL.
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(c) For time T = 100, plot a histogram of the regret RT of FTL over 1000 repetitions of the experiment.
Explain the figure.

(d) Plot the mean regret of FTL over 1000 repetitions, as a function of t ∈ {1, . . . , 1000}. Is FTL a good
algorithm for stochastic bandits?

2. UCB. A random variable is said to be σ2-sub-Gaussian if for all λ ∈ R, E[eλ(X−E[X])] ≤ e
1
2
σ2λ2 . The UCB(σ2)

algorithm pulls arm kt = arg mink∈[K] µ̂
k
t +

√
2σ2 log(t)

Nk
t

. It is designed to have low regret on σ2-sub-Gaussian

random variables.

(a) Compute the cumulant generating function, defined for λ ∈ R by φX(λ) = logE[eλ(X−E[X])], for a Bernoulli
random variable with parameter p.

(b) Prove that if a random variable X (not necessarily Bernoulli) verifies φ′′X(λ) ≤ σ2 for all λ ∈ R, then the
random variable is σ2-sub-Gaussian. Remark: this is not an equivalence (you are not required to prove
this).

(c) Using question 2.b, find σ2 such that a random variable with distribution B(p) is σ2-sub-Gaussian.

(d) Prove that a random variable X supported on [0, 1] with mean p ∈ [0, 1] verifies φX(λ) ≤ φY (λ) for all
λ ∈ R, where Y has a B(p) distribution. Hint: prove that for all x ∈ [0, 1], for all λ ∈ R, eλx ≤ 1−x+xeλ.

(e) Prove that all random variables supported on [0, 1] are sub-Gaussian.

(f) Implement the UCB(σ2) algorithm.

(g) Plot the mean regret of UCB(1/4) as a function of time up to T = 1000 for K = 2, p = (0.5, 0.6), over 1000
repetitions. Compare with the result of question 1.d.

(h) For K = 2, p = (0.6, 0.5), T = 1000, plot the mean regret of UCB(σ2) over 1000 repetitions as a function
of σ2, for σ2 ∈ {0, 1/32, 1/16, 1/4, 1}. Do it again for p = (0.85, 0.95) and compare the results: does the
optimal parameter change? How does it compare to the theoretic parameter?

The results of the question 2.c on Bernoulli distributions can be improved: it is possible to prove that a random
variable with distribution B(p) is σ2-sub-Gaussian with parameter σ2(p) = 0 if p ∈ {0, 1}, σ2(p) = 1/4 if p = 1/2

and σ2(p) = 1
2

p−(1−p)
log p−log(1−p) for p ∈ (0, 1) \ {1/4}.

3. On the same figure, plot the variance of B(p) and the sub-Gaussian constant σ2(p) described above as a function
of p ∈ [0, 1].

4. (optional) Prove that a σ2-sub-Gaussian random variable has variance bounded by σ2.

Adaptation to the variance. The algorithm UCB(σ2) uses only the empirical mean of the arms to choose the
next arm, except for a parameter σ2 which has to be chosen such that all arms are σ2-sub-Gaussian. In particular,
all variance information about the distributions is lost. Intuitively an arm with lower variance should require fewer
samples in order to know its mean with enough precision.

5. UCB-V. For bounded rewards belonging to [0, b], the algorithm UCB-V(b, ξ, c) (V for variance) computes the
empirical variance of the arms, v̂kt = 1

Nk
t

∑t−1
s=1 I{ks = k}(Xks

s − µ̂kt )2 and pulls the arm kt = arg maxk∈[K] µ̂
k
t +√

2v̂kt ξ log t

Nk
t

+ 3bcξ
Nk

t
. For theoretical regret bounds to hold, ξ should be taken slightly larger than 1 and c larger

than a function of ξ, which increases as ξ → 1. All experiments in this question will be done for b = 1,
ξ = 1.2 and c = 1.
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(a) Prove that Nk
t v̂

k
t =

∑t−1
s=1 I{ks = k}(Xks

s )2 − 1
Nk

t
(
∑t−1

s=1 I{ks = k}Xks
s )2.

(b) Prove that Nkt
t+1v̂

kt
t+1 = Nkt

t v̂
kt
t + (Xkt

t − µ̂ktt )(Xkt
t − µ̂ktt+1) . What is the practical advantage of that

formulation?

(c) Implement UCB-V.

(d) On the same figure, plot the mean regret of UCB-V and UCB(1/4) as a function of time up to T = 1000 for
K = 2, p = (0.5, 0.6), over 1000 repetitions.

(e) Same question for p = (0.1, 0.2) and p = (0, 0.1). Compare to the results of 5.d. When does UCB-V improve
over UCB?

Algorithms for parametric distributions. UCB uses only an estimate of the mean, while UCB-V uses estimates
of the mean and variance. However, Bernoulli distributions have many properties beyond their mean and variance,
and these properties are not used by UCB-V. We can design algorithms that perform better by using fully the
knowledge that the distribution of the arms are Bernoulli B(p), with the only unknown being the parameter p. The
algorithm kl-UCB is designed precisely to take advantage of the knowledge that distributions belong to a so-called
one-parameter exponential family, and that algorithm can use fully the Bernoulli assumption. See [2, 1].

6. (optional) Implement the kl-UCB algorithm for Bernoulli bandits (see [2, 1]), and compare with UCB and
UCB-V on various Bernoulli bandit problems, for examples the settings of questions 5.d and 5.e.
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