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Part 1. Rock Paper Scissors

1. When playing ”Rock Paper Scissors”, the player has 3 possible actions, and the adversary
has 3 possible actions too, hence M = N = 3. Now we can choose different matrices depending
on the chosen order of the actions. We can choose for instance the matrix:

L =

 0 −1 1
1 0 −1
−1 1 0


Full information feedback

2. Implementation of EWA.

(a) (Code)

(b) (Code)

3. Simulation against a fixed adversary.

(a) If the adversary chooses the action jt, the loss incurred by the player if he chooses action
i at time t is :

lt(i) = L(i, jt)

(b) The evolution of the weight vectors is shown in figure 1. It looks like the best strategy is to
always choose the action that beats action 1, which is the most played by the adversary.
Indeed, the expected loss is the lowest this way. In our setting, the action that beats
action 1 is the action 3 (because L(3, 1) = −1), so the player always chooses action 3 at
the end.

(c) The evolution of the average loss is shown in figure 2. Once the algorithm has converged
towards always selecting action 3, the average loss seems to stay negative. Indeed, the
expected loss when choosing action 3 is: Ej [L(3, j)] = 0×0.25+1×0.25−1×0.5 = −0.25,
so in the long term, the player should observe an average loss of −0.25 it he keeps this
strategy. On average, the player is winning on the long term.

(d) The evolution of the cumulative regret is shown in figure 3. Since the player chooses only
action 3 after EWA converges, the cumulative regret stops increasing because action 3 is
the optimal action.

(e) The average loss obtained, in average, in maximum and in minimum over the n simulations
is shown in figure 4. The algorithm seems to be stable, as both the maximum, average
and minimum loss converge towards a similar value. As explained in question 3b, this
value should be Ej [L(3, j)] = −0.25 because the player only selects action 3 in the end.
However, the max and min average loss seem to take a long time to converge, which is an
undesired behaviour (we would like to have a fast convergence in all cases).
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(f) The regret over time for different values of η, as well as the final regret as a function of η,
are shown in figure 5 (figure 6 shows the same values but averaged over 100 experiments
to better capture the expected behaviour). One can see that the larger η is, the lower
the final regret seems to be, and the best value in practice between the ones that we have
tested is η = 1. In theory, the best value for η in EWA is supposed to be: η =

√
logM/T =√

log 3/100 ≈ 0.1. However, we are here in a particular context, where the adversary has
a fixed strategy and does not adapt over time (oblivious adversary).

4. Simulation against an adaptive adversary.

(a) The average loss over time when playing against an adaptive adversary (playing EWA with
η = 0.05) is shown in figure 7. One can see that the average loss converges towards 0,
which seems reasonable since both players are playing a zero-sum game with a similar
regret minimizing strategy.

(b) The evolution of ||p̄t − (1/3, 1/3, 1/3)||2 over time in log log scale is shown in figure 8. As
expected, p̄t converges towards the weight vector (1/3, 1/3, 1/3). Indeed, as the subject
says, (p̄t, q̄t) converges towards a Nash equilibrium. Such an equilibrium cannot be reached
if one player uses an unbalanced strategy: if some player plays one action more often than
the other ones (for instance ”Rock”), the other player should change its strategy to play
the action that beats it (for instance ”Paper”). Hence, the only Nash equilibrium is when
both players use a uniform strategy.

Figure 1: Evolution of the weight vectors (question 3b).
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Figure 2: Evolution of the average loss (question 3c).

Figure 3: Evolution of the cumulative regret (question 3d).

Figure 4: Stability of the algorithm (question 3e).
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Figure 5: Regret over time, and final regret depending on η (question 3f).

Figure 6: Regret depending on η, averaged over 100 experiments (question 3f).

Figure 7: Average loss over time against an adaptive adversary (question 4a).
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Figure 8: Convergence towards a Nash equilibrium (question 4b).

Bandit feedback

5. Implementation of EXP3.

(a) (Code)

(b) (Code)

6.

(a) Here the answer is the same: if the adversary chooses the action jt, the loss incurred by
the player if he chooses action i at time t is :

lt(i) = L(i, jt)

The difference with the previous questions (full information feedback) is that the player
does not observe the loss that he would have incurred with the other choices of actions,
that is, lt(̂i) = L(̂i, jt) for î 6= i.

(b) The evolution of the weight vectors is shown in figure 9. One can see that the EXP3

algorithm can take a far longer time to converge than EWA, which is why the experiments
were done at least over 1000 time steps. It can also stay stuck in a poor strategy for some
time, for instance here it keeps playing the action 1 until step 300. In some cases also,
the algorithm does not find the optimal strategy. Still, most of the time, EXP3 finds the
optimal strategy before the end of the 1000 steps.

(c) The evolution of the average loss is shown in figure 10. Once again, and even if it takes
more time than EWA, the average loss seems to stay negative once the EXP3 algorithm has
converged towards the optimal strategy. Note that sometimes, when the algorithm does
not converge towards the optimal strategy, the average loss stays positive.

(d) The evolution of the cumulative regret is shown in figure 11. Because the algorithm
takes more time to converge, the final regret is larger than when using EWA. Also, since
sometimes the algorithm does not converge towards the optimal strategy during the 1000
first steps, the regret can keep increasing.

(e) The average loss obtained, in average, in maximum and in minimum over the n simulations
is shown in figure 12. The EXP3 algorithm seems to be less stable than EWA: even if the plot
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looks similar at first, some differences are crucial. First, recall that the experiments are
led over 1000 experiments: that is, even after 10 times more steps, the extreme cases are
far from the average behaviour. Also, notice that the maximum loss is still positive after
1000 steps, which indicates that in this extreme case, the algorithm has not converged
towards the optimal strategy.

(f) The regret over time for different values of η, as well as the final regret as a function of η,
are shown in figure 13 (figure 14 shows the same values but averaged over 100 experiments
to better capture the expected behaviour). One can notice once again the unstability of the
EXP3 on the first plot: when performing different simulations, the behaviour can change
drastically, and it is difficult to analyse the influence of the parameter η with only one
simulation for each η. The second plot is more meaningful since it shows the behaviour
of the algorithm in average: once again, the performance seems to increase with η.

7.

(a) The average loss over time when playing against an adaptive adversary (playing EXP3

with η = 0.05) is shown in figure 15. The average loss converges towards 0, however, this
time the strategy that the algorithm finds is different than what EWA did: in fact, both
the player and adversary end up repeatedly playing the same action over and over again,
leading to endless draws. Indeed, EXP3 does not observe the losses for the other actions,
and only observes the loss of 0 that they receive, whereas EWA would see that another
action leads to a better reward and change its strategy.

(b) The evolution of ||p̄t − (1/3, 1/3, 1/3)||2 over time in log log scale is shown in figure 16.
As said in question 7a, p̄t does not converge towards the weight vector (1/3, 1/3, 1/3). In
particular, p̄t does not converge towards a Nash equilibrium.

Figure 9: Evolution of the weight vectors with EXP3 (question 6b).
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Figure 10: Evolution of the average loss with EXP3 (question 6c).

Figure 11: Evolution of the cumulative regret with EXP3 (question 6d).

Figure 12: Stability of the algorithm EXP3 (question 6e).
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Figure 13: Regret over time, and final regret depending on η with EXP3 (question 6f).

Figure 14: Regret depending on η, averaged over 100 experiments with EXP3 (question 6f).

Figure 15: Average loss over time against an adaptive adversary with EXP3 (question 7a).
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Figure 16: Evolution of ||p̄t − (1/3, 1/3, 1/3)||2 with EXP3 (question 7b).

Optional extentions

8. The average loss of EXP3 over time when playing against UCB is shown in figure 17. Before
running the simulation, one can expect that EXP3 performs better: indeed, UCB is not suited to
adversarial contexts and cannot adapt its strategy against an opponent. On the contrary, EXP3
is designed to perform well in adversarial contexts. As expected, when playing for 500 time
steps, EXP3 wins against UCB.

9. After implementing EXP3-IX and running 10 simulations, the average loss obtained on aver-
age, in maximum and in minimum is shown in figure 18. One can see that is it far more stable
than EXP3, and that the maximum and minimum loss are far closer to the expected final value
with EXP3-IX. Surprisingly, we had to choose a quite large value for the parameter γ to observe
a real difference, that is, we chose γ = η = 1.

10. The behaviour of EWA on the prisoner’s dilemma is shown in figure 19 (for the action
weights) and 20 (for the average loss over time steps). The behaviour of EXP3 is shown in figure
21 (for the action weights) and 22 (for the average loss over time steps). The convention is
the following: action 1 corresponds to remain silent, and action 2 corresponds to betraying the
other player. We only show the results for one player since the behaviour is the same for the
second one.

In the first case (EWA) where both players see the consequences of their actions and the loss
of other actions, both players end up always falling in the Nash equilibrium, that is, they always
betray each other and choose action 2. In the second case (EXP3), the algorithm is less stable
but most of the time, both players choose to betray each other. In both cases, the average loss
seems to converge towards 2. This value is sub-optimal, since each player would always incur
a loss of 1 if they did not betray each other. This illustrates the main point of the prisonner’s
dilemma: two completely rational individuals might not cooperate, even if it appears that it is
in their best interests to do so.
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Figure 17: Average loss of EXP3 over time when playing against UCB (question 8).

Figure 18: Stability of the algorithm EXP3-IX (question 9).

Figure 19: Action weights of EWA on the prisonner’s dilemma (question 10).
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Figure 20: Average loss of EWA on the prisonner’s dilemma (question 10).

Figure 21: Action weights of EXP3 on the prisonner’s dilemma (question 10).

Figure 22: Average loss of EXP3 on the prisonner’s dilemma (question 10).
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Part 2. Bernoulli Bandits

A bit of context: why Bernoulli bandits matter

1. Follow the leader.

(a) We consider the case where there exists an arm k̃ ∈ [K] such that pk̃ = mink∈[K] pk < p?

(otherwise, the pseudo-regret is always equal to 0). We also assume that T > K.

Let Σ be the following event: in the first K steps (where we draw all the arms once)
Xkt
t = δk̃(kt), where kt = t, for t ∈ [K]. One has:

P(Σ) = pk̃

∏
k∈[K],k 6=k̃

(1− pk) > 0

Moreover, if the event Σ occurs, then all the empirical means are 0 except the one of k̃.
Therefore, for all t > K, kt = k̃ and:

RT = Tp? −
K∑
t=1

pt −
T∑

t=K+1

pk̃

≥ Tp? −Kp? − (T −K)pk̃
≥ (T −K)(p? − pk̃)

As a consequence:

ERT = E[RT |Σ] P(Σ) + E[RT |Σ̄] P(Σ̄)

≥ E[RT |Σ] P(Σ)

≥ T −K
T

(p? − pk̃)P(Σ) T

≥ 1

K + 1
(p? − pk̃)P(Σ) T

To conclude with, for α =
1

K + 1
(p?−pk̃)P(Σ) the expected regret of the Follow-the-leader

algorithm (FTL) verifies ERT ≥ αT .

(b) (Code)

(c) We can see that the regrets are split into 2 groups: 0 and 10, corresponding to the 2
arms. It means that the algorithm rapidly chooses one arm and keeps playing this one.
If this arm is the first one, it is associated with regret 0 and the regret at time 100 is
0. Otherwise, the associated regret is 0.1 so the regret at time 100 is 100 × 0.1 = 10.
Moreover, the two groups contain almost the same number of examples, so the algorithm
is not good at choosing the best one (we expect a larger group at regret 0).

(d) We can see that the mean regret is linear with regard to time. It is not optimal, since we
can find a O(

√
T ) solution. FTL is not a good algorithm for stochastic bandits.

2. UCB.

(a) Let λ ∈ R and X a Bernoulli random variable with parameter p. One has:

φX(λ) = logE
[
eλ(X−E(X))

]
= logE

[
eλX

]
− λp

= log
(
eλp+ (1− p)

)
− λp (law of the unconscious statistician)
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Figure 23: Histogram of the regret RT of FTL over 1000 repetitions of the experiment, at time
T = 100 (Question 1.(c))

Figure 24: Mean regret of FTL over 1000 repetitions, as a function of t ∈ {1, ..., n} (Question
1.(d))

(b) Let X a random variable such that φ′′X ≤ σ2.
Let ϕ the function ϕ := λ 7→ ϕ(λ) = φX(λ) − 1

2σ
2λ2. ϕ is twice differentiable and

ϕ′′(λ) = φ′′X(λ)− σ2 ≤ 0 for all λ ∈ R, so ϕ is concave.

Recall that φX(λ) = logE
[
eλ(X−E(X))

]
so:

φ′X(λ) =
E
[
(X − E(X))eλ(X−E(X))

]
E
[
eλ(X−E(X))

]
=⇒ φ′X(0) =

E [(X − E(X))]

1
= 0

Therefore, ϕ admits a minimum in 0 so ∀λ ∈ R, ϕ(λ) ≤ ϕ(0) = log(1)− 0 = 0.

We conclude that X is σ2-sub-Gaussian from the fact that:

ϕ(λ) ≤ 0 =⇒ log

(
E
[
eλ(X−E(X))

]
e

1
2
σ2λ2

)
≤ 0 =⇒ E

[
eλ(X−E(X))

]
≤ e

1
2
σ2λ2

(c) Let λ ∈ R and X a Bernoulli random variable with parameter p. According to question
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2.(a), one has that φX(λ) = log
(
eλp+ (1− p)

)
− λp, so:

φ′X(λ) = −p+
eλp

eλp+ (1− p)

φ′′X(λ) =
eλp(1− p)

(eλp+ (1− p))2

=
eλp(1− p)

(eλp+ (1− p))2 − (eλp− (1− p))2 + (eλp− (1− p))2

=
eλp(1− p)

4eλp(1− p) + (eλp− (1− p))2

≤ eλp(1− p)
4eλp(1− p)

≤ p(1− p)
4p(1− p)

= (1/2)2

Therefore, according to question 2.(b), X is 1/4-sub-Gaussian.

(d) Let x ∈ [0, 1]. We denote by g the function λ 7→ eλx − 1 + x − xeλ. g is differentiable
and g′(λ) = x(eλx − eλ), so g′(λ) ≥ 0 if λ ≤ 0 and g′(λ) ≤ 0 otherwise, because x ∈ [0, 1].
Therefore, one has ∀λ ∈ R, g(λ) ≤ g(0) = 0. Hence:

∀x ∈ [0, 1], ∀λ ∈ R, eλx ≤ 1− x+ xeλ

Now, let X a random variable supported on [0, 1] with mean p, Y a random variable with
distribution B(p) and λ ∈ R.

φX(λ) = logE
[
eλX

]
− λp

≤ logE
[
1−X +Xeλ

]
− λp (according to the previous calculation)

≤ log
(

1 + (eλ − 1)E [X]
)
− λp

≤ log
(

1 + (eλ − 1)p
)
− λp = φY (λ) (according to (a))

So ∀λ ∈ R, φX(λ) ≤ φY (λ).

(e) Let X a random variable supported on [0, 1] and denote p its mean.

The random variable Y with distribution B(p) is σ2-sub-Gaussian according to (c) (with

σ = 1/2), so ∀λ ∈ R, E
[
eλ(Y−E(Y ))

]
≤ e

1
2
σ2λ2 =⇒ φY (λ) ≤ 1

2σ
2λ2

Moreover, ∀λ ∈ R, φX(λ) ≤ φY (λ). Therefore φX(λ) ≤ 1
2σ

2λ2 which implies that:

E
[
eλ(X−E(X))

]
≤ e

1
2
σ2λ2

This proves that X is sub-Gaussian, and we can conclude that all random variables sup-
ported on [0, 1] are sub-Gaussian.

(f) (Code)

(g) As we can see, compared to 1.(d) the algorithm achieved a better mean regret, as it is
no longer linear but in what seems to be log(T ). It is expected since UCB is a better
algorithm for stochastic bandits.
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Figure 25: Mean regret of UCB over 1000 repetitions, as a function of t ∈ {1, ..., n} (Question
2.(g))

(h) When plotting the mean regret at T = 1000 of UCB(σ2) for different values of σ, we see
that the optimal parameter changes according to p. For p = (0.5, 0.6) the optimal σ2

is around 0.25 ∼ 1/4 (theoretical parameter obtained before), while it is around 0.1 for
p = (0.95, 0.85). Therefore, the more we go away from p ∼ 0.5, the less the value 1/4 is
optimal (see Question 3.).

Figure 26: Mean regret of UCB over 1000 repetitions as a function of σ2 at time T = 1000 for
p = (0.6, 0.5) (left) p = (0.95, 0.85) (right) (Question 2.(h))

3. We can see that the variance of B(p) is bounded by the sub-gaussian constant. Moreover, we
can observe, as it has been mentioned in 2.(h), that for p away from 0.5, the value 1/4 is way
less optimal than the new σ2(p).

Figure 27: Variance of B(p) and sub-Gaussian constant σ2(p) as a function of p ∈ [0, 1] (Question
3.)

4. Let X a σ2-sub-Gaussian random variable. One has using a Taylor expansion for λ→ 0 and
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the fact that E
[
eλ(X−E(X))

]
≤ e

1
2
σ2λ2 :

E
[
1 + λ(X − E[X]) +

λ2

2
(X − E[X])2 + o(λ2)

]
≤ 1 +

1

2
σ2λ2 + o(λ2)

=⇒ 1 + λ(E[X]− E[X]) +
λ2

2
E
[
(X − E[X])2

]
+ o(λ2) ≤ 1 +

1

2
σ2λ2 + o(λ2)

=⇒ 1 +
λ2

2
Var(X) ≤ 1 +

1

2
σ2λ2 + o(λ2)

=⇒ Var(X) ≤ σ2 + oλ→0(1)

The above equation gives for λ → 0 that Var(X) ≤ σ2, so a σ2-sub-Gaussian random variable
has variance bounded by σ2.

Adaptation to the variance

5. UCB-V.

(a) Using the definition of v̂kt = 1
Nk

t

∑t−1
s=1 I{ks = k}(Xks

s − µ̂kt )2, one has:

Nk
t v̂

k
t =

t−1∑
s=1

I{ks = k}(Xks
s − µ̂kt )2

=

t−1∑
s=1

I{ks = k}

(
Xks
s −

1

Nk
t

t−1∑
s′=1

I{ks′ = k}Xks′
s′

)2

=

t−1∑
s=1

I{ks = k}(Xks
s )2 +

1

(Nk
t )2

t−1∑
s=1

I{ks = k}

(
t−1∑
s′=1

I{ks′ = k}Xks′
s′

)2

− 2

Nk
t

t−1∑
s=1

I{ks = k}

(
Xks
s

t−1∑
s′=1

I{ks′ = k}Xks′
s′

)

=
t−1∑
s=1

I{ks = k}(Xks
s )2 +

(
t−1∑
s′=1

I{ks′ = k}Xks′
s′

)2
1

(Nk
t )2

t−1∑
s=1

I{ks = k}

− 2

Nk
t

t−1∑
s′=1

I{ks′ = k}Xks′
s′

t−1∑
s=1

I{ks = k}Xks
s

=

t−1∑
s=1

I{ks = k}(Xks
s )2 +

(
t−1∑
s′=1

I{ks′ = k}Xks′
s′

)2
1

(Nk
t )2

Nk
t

− 2

Nk
t

(
t−1∑
s′=1

I{ks′ = k}Xks′
s′

)2

=

t−1∑
s=1

I{ks = k}(Xks
s )2 − 1

Nk
t

(
t−1∑
s=1

I{ks = k}Xks
s

)2

(b) Using previous question, we can write:

Nkt
t+1v̂

kt
t+1 −N

kt
t v̂

kt
t =

t∑
s=1

I{ks = kt}(Xks
s )2 − 1

Nkt
t+1

(
t∑

s=1

I{ks = kt}Xks
s

)2

−
t−1∑
s=1

I{ks = kt}(Xks
s )2 +

1

Nkt
t

(
t−1∑
s=1

I{ks = kt}Xks
s

)2
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Then,

t∑
s=1

I{ks = kt}Xks
s = Xkt

t +

t−1∑
s=1

I{ks = kt}Xks
s , so µ̂ktt+1 =

Nkt
t

Nkt
t+1

µ̂ktt +
1

Nkt
t+1

Xkt
t .

Moreover, Nkt
t+1 = 1 +Nkt

t . Using all of this:

Nkt
t+1v̂

kt
t+1 −N

kt
t v̂

kt
t = (Xkt

t )2 − 1

Nkt
t+1

(
t∑

s=1

I{ks = kt}Xks
s

)2

+
1

Nkt
t

(
t−1∑
s=1

I{ks = kt}Xks
s

)2

= (Xkt
t )2 − 1

Nkt
t+1

(
Nkt
t µ̂

kt
t +Xkt

t

)2
+

1

Nkt
t

(
Nkt
t µ̂

kt
t

)2
= (Xkt

t )2 − (Nkt
t )2

Nkt
t+1

(µ̂ktt )2 − 1

Nkt
t+1

(Xkt
t )2 − 2

Nkt
t

Nkt
t+1

Xkt
t µ̂

kt
t +Nkt

t (µ̂ktt )2

= (Xkt
t )2 − 1

Nkt
t+1

(Xkt
t )2 +

(
Nkt
t −

(Nkt
t )2

Nkt
t+1

)
(µ̂ktt )2 − 2

Nkt
t

Nkt
t+1

Xkt
t µ̂

kt
t

= (Xkt
t )2 − 1

Nkt
t+1

(Xkt
t )2 +

Nkt
t (Nkt

t + 1)− (Nkt
t )2

Nkt
t+1

(µ̂ktt )2 − 2
Nkt
t

Nkt
t+1

Xkt
t µ̂

kt
t

= (Xkt
t )2 − 1

Nkt
t+1

(Xkt
t )2 +

Nkt
t

Nkt
t+1

(µ̂ktt )2 +
1−Nkt

t −N
kt
t+1

Nkt
t+1

Xkt
t µ̂

kt
t

= (Xkt
t )2 − 1

Nkt
t+1

(Xkt
t )2 +

Nkt
t

Nkt
t+1

(µ̂ktt )2 +

(
1

Nkt
t+1

− Nkt
t

Nkt
t+1

− 1

)
Xkt
t µ̂

kt
t

= (Xkt
t )2 − Nkt

t

Nkt
t+1

Xkt
t µ̂

kt
t −

1

Nkt
t+1

(Xkt
t )2 −Xkt

t µ̂
kt
t +

Nkt
t

Nkt
t+1

(µ̂ktt )2 +
1

Nkt
t+1

Xkt
t µ̂

kt
t

= (Xkt
t )2 −Xkt

t

(
Nkt
t

Nkt
t+1

µ̂ktt +
1

Nkt
t+1

Xkt
t + µ̂ktt

)
+ µ̂ktt

(
Nkt
t

Nkt
t+1

µ̂ktt +
1

Nkt
t+1

Xkt
t

)
= (Xkt

t )2 −Xkt
t (µ̂ktt+1 + µ̂ktt ) + µ̂ktt µ̂

kt
t+1

=
(
Xkt
t − µ̂

kt
t

)(
Xkt
t − µ̂

kt
t+1

)
Eventually, Nkt

t+1v̂
kt
t+1 −N

kt
t v̂

kt
t =

(
Xkt
t − µ̂

kt
t

)(
Xkt
t − µ̂

kt
t+1

)
. The practical advantage of

this formulation is that it allows to update the variance at time t + 1 without having to
actually compute a sum of t terms, since it uses the means that have to be computed
either way.

(c) (Code)

(d) We observe that for this setup UCB is better than UCB-V.

(e) As p gets far away from 0.5 and σ2 = 1/4 gets less optimal, UCB-V becomes better than
UCB(1/4). The extreme case of p = (0.0, 0.1) shows for instance than UCB-V gives better
results when the actual variance of the Bernoulli arm is close to 0.

Algorithms for parametric distributions

6. Here we observe that KL-UCB is better than UCB(1/4) and UCB-V in all the cases, it gives
results really close to UCB-V when p gets close to 0, and results close to UCB when p gets close
to 0.5.
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Figure 28: Mean regret of UCB Vs UCB-V over 1000 repetitions as a function of time t up to
T = 1000 for p = (0.6, 0.5) (Question 5.(d))

Figure 29: Mean regret of UCB Vs UCB-V over 1000 repetitions as a function of time t up to
T = 1000 for p = (0.1, 0.2) (left) and p = (0.0, 0.1) (right) (Question 5.(e))

Figure 30: Mean regret of UCB Vs UCB-V Vs KL-UCB over 1000 repetitions as a function of
time t up to T = 1000 for p = (0.5, 0.6) (left), p = (0.1, 0.2) (middle) and p = (0.0, 0.1) (right)
(Question 6.)
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