{ "cells": [ { "cell_type": "markdown", "id": "5fc8df5b", "metadata": {}, "source": [ "### OXT - OXTR binding model\n" ] }, { "cell_type": "raw", "id": "63738386", "metadata": {}, "source": [ "Author: Preeti Dubey\n", "Title: The simulations for Variant E339K OXTR complex formation with increasing OXT in myometrial cells " ] }, { "cell_type": "code", "execution_count": 1, "id": "cec9cdc0", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.integrate import odeint\n", "import csv\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "c7fb474e", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAH6CAYAAABcYk7OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xUVdrA8d+ThCQkMVRBihQRUbAAAioWQLFixbZ2XRELoLi+rnVta1vXgou6a9l17SIK9o6LIEUQBAEVkSpFkCaEEEIyz/vHuQMzkzuTmcmkkDxfP/OZmXPPPfcEITPPPeURVcUYY4wxxhhjTO2TVt0dMMYYY4wxxhhTOSzgM8YYY4wxxphaygI+Y4wxxhhjjKmlLOAzxhhjjDHGmFrKAj5jjDHGGGOMqaUs4DPGGGOMMcaYWsoCPmOMMcYYY4yppWpUwCciaSJyvYj8KCJFIvKLiDwiIrkJtHGSiEwWkS0isl5ERotI+yh1G4jISBFZ4V1vnohcLSLiU/ccEXleRGaLyHYRURFpF6Xd8d7xaI/PEqjfI96f3RhjjDHGGGNCZVR3ByI8BlwLjAUeAfbz3ncTkf6qGoh1sogMBN4EZgM3Ag2A4cAkEemhqitD6mYCnwHdgJHAD8CJwFNAc+CuiOavAQ7x2l4IdIrRlfuA53zKzwVOBt7zObYWuN6nfFGM6xhjjDHGGGNMVKKq1d0HAESkCzAHGKuqZ4aUDwP+AVygqq/GOL8esAQoAbqoaoFX3hWYAfxbVQeH1L8GeBK4VlVHhpS/BZwCdFTVpSHlbYCVqloiIk8AQ4D2qrokgZ/xR6Ad0FJV14eUjwfaqWq7eNsyxhhjjDHGmPLUpCmd5wECjIgofxYoBC4s5/w+QEvguWCwB6Cqs4DxwLleUBh0vtfusxHtjADq4UbjdlDVZapaUv6P4U9EjsSNCo4NDfYi6qSJSL7flFJjjDHGGGOMSVRNmtLZEwgA00ILVbVIRGZ5x8s7H2CKz7GpwNHAPsA8EUkDugMzVbUoou40rx/lXS9Rl3vPflM9AVoBBUB9oFBEPgFuVdUfk71gWlqa1q9fP9nTjTGm1igsLFRVrUk3OY0xxpgqUZMCvpbAWlXd5nNsBdBbRDJVtTjG+cG6fueDC6rmAY1wgVWZuqq6TUTWeXVTQkTygbOBxcAXPlUWA5OA74BS3FrBocAxInKEqs6J0m7M+bg5OTls2bKlIl03xphaQUS2VncfjDHGmOpQkwK+HMAv2AMoCqkTLeDL8Z792iiKqBOrbrB+TpRjyTjPa+8/6rNoUlUviyh6U0TexU1FfRQ4NoV9McYYY4wxxtQRNWl6SyGQFeVYdkidWOcTpY3I82PVDdaPda1EXY4buXs+3hNUdSIwAegnIr7zMlVVYj1S03VjjDHGGGPMrqomBXwrgaYi4heEtcJN94w2uhc8P1jX73zYOYVzA7DVr653/Sb4Tw1NmIgcgFsP+LGqJtrmEiAdNwXVGGOMMcYYYxJSkwK+6bj+9AotFJFsoCvwTRznAxzmc+xQYBPwE4CXz28mLr9fZIDZy+tHedeL1yDvOdpmLbF0xKWZ8N3V0xhjjDHGGGNiqUkB3yhAcYnSQ12BW//2SrBARFqIyL4iErrO7ktgFTBIRPJC6h4E9AVGq+r2kPqvee0OJtxwXJD1RgV+luC1s4ALgNXA+1HqNBCRdJ/yAcDhwGc+O4kaY4wxxhhjTLlqzKYtqjpHRJ4EhorIGOBDYD/gWlwwF5p0/QHgEqAfbmMTVHW7iFyHCxwnisizQD5wPfAbcGfEJZ8FLgMeFZF2wA/AScAZwL2quji0sogcBRzlve3hPQ8VkY3e9e/1+bFOx00PfShGDr9+Xh/eAxbhgs1euLyDaykbABtjjDHGGGNMXGpMwOcZjlu3NhgYgAt4RgJ3eNMwY1LV0d7W27cDD+N24RwH3BS5fk5Vi0WkP3AvbhfNJsBCYBjwpE/zR1M2aLwh5LVfwBfMvffvGN2eD8wATgaa45K+Lwf+BdyfxLo/Y4wxxhhjjAFAfLIEmFoiNzdXLQ+fMcaAiBSqam5198MYY4ypajVpDZ8xxhhjjDHGmBSygM8YY4wxxhhjaikL+IwxxhhjjDGmlrKAzxhjjDHGGGNqKQv4jDHGGGOMMaaWsoDPGGOMMcYYY2opC/iMMcaYKETkFhEZLSKLRERFZEkC517jnaMi0tTneJqIXC8iP4pIkYj8IiKPiIhv+ggR6SQib4vIBhHZIiITReToKHUTatsYY0ztZXn4ajHLw2eMMU6yefhERIH1wEzgYGCTqraL47yWwA+4G6t5wO6qujaizuPAtcBY4CNgP2AYMBHor6qBkLodgGlACTAC+B24AtgfOFFVP0+2bWOMMbVbRnV3wBhjTPULBAIUFBSwadMmfv/9dwoKCigoKGDLli07Hlu3bt3xKCoqCnsUFxezbds2tm/fvuM5+CgpKaGkpITS0tKw16WlpQQCgR3Poa9VdUdZ8LWqoqrsvffezJ07t6r+aDqo6iIAEZmLC97i8SSwCJgLXBh5UES64AKwMap6Zkj5YuAfwB+AV0NOeQBoCBysqrO8ui8C84AnRWRf9e7gJtG2McaYWswCPmOMqeECgQCbNm1i1apVrF69mrVr17Ju3TrWr1/Phg0b2LRpE5s2bWLz5s1hwVlRURHbtm2juLiY4uLiHcFXaIAVDKJ2JWvWrKmyawWDvUSIyBnAqcBhwDVRqp0HCG60LtSzwIO4IPFVr71cr73xwWDP61uBiDwH3AP0xI0AJtS2McaY2s8CPmOMqQIbN25k0aJFLF68mOXLl7Ny5UrWrFnD2rVr2bhx445RtS1btuwYMQsGZ7taQFbZAoGaOxtRRPKBJ4CnVXWaiEQL+HoCAXYGaQCoapGIzPKOBx0IZAFTfNqZGtLetJDX8bZtjDGmlrOAzxhjkrBp0ybmzJnDjz/+yKJFi1i+fDmrVq1i7dq1bNiwgc2bN1NYWEhxcTGlpaXV3d1aJcmAL8dbj+dLVSX5HoX5G27d3i3l1GsJrFXVbT7HVgC9RSRTVYu9usFyv7oArZJs2xhjTC1nAZ8xxkRYtmwZ06dPZ86cOfz0008sW7aM1atXs379erZs2UJxcXGtHnUTEUSEtLS0HY/09PQdj4yMjLDnevXqkZGRQb169cq8Dr7PzMzcUZ6ZmbnjWLA8IyODrKysHe+DdUJfZ2VlkZGRQfPmzav7j8iXiPQGrgQuUNXfy6meA/gFZABFIXWKvWei1A+tm0zbxhhjajkL+Iwxdc7atWuZNGkS06ZN4/vvv2fx4sWsXr2ajRs3UlRUVH4D1SQYhIUGTpmZmWRlZVG/fn3q169PTk4Oubm55Obmsttuu5GXl0deXh75+fk0aNBgx/Nuu+1Gfn4+jRo12lGemZlZ3T9iZUpql854iUgmbo3c56r6Wjz9AZpFOZYdUif0OSuOuom2bYwxppazgM8YUysVFRXx5ZdfMmHCBGbNmsXChQv59ddf2bx5c7WtARORHSNV9evXDwvEGjduTJMmTdh9991p1qwZzZs3p3nz5rRq1YoWLVqQn59fLX02cRsC7AvcICJ7h5Tv5j23F5H8kE1gVgKdRSTLZ+plK9yUzOKQusHySMGy0OmeibRtjDGmlrOAzxizSwsEAkyZMoWPP/6YqVOnMn/+fH777bcqGalLS0sjKyuL3Nxc8vPzdwRsLVq0oHXr1rRt25a2bduy995707p1a9LS0iq9T6batMWt3fsoyvFpwBZ2pnWYDhwH9MLlxgNARLKBrsCEkHPn4KZoHubT7qHe8zchZYm0bYwxppazgM8Ys8sIBAL873//45133mHy5MksWrSIjRs3Vsp6unr16pGXl0fjxo1p0aIFbdq0oUOHDnTq1IkDDjiAfffdt7ZPgTSJeR74yqd8CNAX+COwIaR8FHArMJyQoAyXTD0HeCVY4KVfeA8YKCIHqepsABHJAwYBCwjfkTPuto0xxtR+Ups3HqjrcnNzdcuWLdXdDWOStmzZMl566SU+//xz5s6dy7p161IW3GVkZLDbbrvRvHlz2rZtyz777MNBBx3EIYccwr777ktGht0Pq01EJKk1fCJyEW70Dlwy80zgEe/9UlV9qZzz/wtcAuyuqmsjjo0EhgJjgQ+B/YBrgUnA0aoaCKm7Ny6o2w48BmzCBXAHAANU9ZNk2zbGGFO7WcBXi1nAZ3Y1M2fO5L///S9ffPEFCxcurPC0zLS0NPLz82nRogX77LMPXbt25bDDDuPwww8nLy+v/AZMrVGBgG880CfK4S9VtW855/+X6AFfOm4UbjDQDliLG527Q1ULfNraD5c4vQ8u8JwJ3KWqn/vUTahtY4wxtZcFfLWYBXympps3bx7PPPMMn376KQsXLmT79u1Jt7XbbrvRpk0bDjzwQI444giOP/54OnTokMLeml1ZsgGfMcYYs6uzOUvGmCpTVFTEf/7zH1555RW+/fZbtm7dmlQ7DRs2ZJ999qF3796cdNJJ9OvXz6ZgGmOMMcb4sG9IxphKtWbNGv7+978zZswYFi9enPAavKysLNq3b89hhx3GwIEDOeGEEyy4M8YYY4yJk31rMsak3Jo1a7j33nsZM2YMK1asKP+EEHl5eXTp0oUTTjiBSy65hPbt21dSL40xxhhjaj8L+IwxKVFUVMTf/vY3nn/+eZYuXRr3efXr1+eAAw7g1FNP5fLLL2ePPfaoxF4aY4wxxtQtFvAZYypk7Nix3HfffXz77bcEAuXv9C4itGnThhNPPJGhQ4fSpUuXKuilMcYYY0zdZAGfMSZha9as4eabb2b06NEUFJS/w3t6ejoHHnggF198MYMHDyYnJ6cKemmMMcYYYyzgM8bE7aOPPuKWW25h9uzZ5dZNS0ujW7duDBkyhEsuuYS0tLQq6KExxhhjjAllAZ8xJqZAIMD999/PiBEjWLduXbn1O3XqxNVXX82QIUNsN01jjDHGmGpm38aMMb42bdrEsGHDGDVqFNu2bYtZt1GjRpx33nncfffdNG3atIp6aIwxxhhjymMBnzEmzJo1axg8eDDvvfdezE1YRIRevXpx3333ccwxx1RhD40xxhhjTLws4DPGALB+/XouvvhiPvzww5jJ0fPy8rjooot48MEHyc/Pr8IeGmOMMcaYRFnAZ0wdV1hYyB//+EdGjx4dc0SvTZs23HXXXVx22WVV2DtjjDHGGFMRFvAZU0cFAgFuu+02HnnkEbZv3x61Xrdu3XjyySc57LDDqrB3xhhjjDEmFSzgM6YOeuONNxg8eDC///571Dq9e/fmueeeY7/99qvCnhljjDHGmFSygM+YOmTp0qWceuqpfPfdd1Hr9OzZk1deeYWOHTtWYc+MMcYYY0xlsEzIxtQBgUCAIUOG0L59+6jB3r777su3337LtGnTLNgzxhhjjKklbITPmFpu0qRJnH766axdu9b3eJMmTXj22Wc544wzqrhnxhhjjDGmstkInzG1VElJCX/4wx844ogjfIO9jIwMbr/9dtauXWvBnjHGGGNMLWUjfMbUQlOmTOHkk09m/fr1vsf79OnDmDFjaNy4cRX3zBhjjDHGVCUb4TOmlrnmmmvo3bu3b7CXn5/PBx98wPjx4y3YM8YYY4ypA2yEz5haYtmyZRx11FEsXbrU9/j555/PCy+8QEaG/bM3xhhjjKkrbITPmFrg+eefp0OHDr7BXqNGjfjqq6945ZVXLNgzxhhjjKlj7NufMbuwQCDA2WefzZgxY3yPn3nmmbz++usW6BljEiIiDYE+wIFAM0CB34A5wARV9V8gbIwxpsaxb4HG7KKWL1/OoYceyooVK8ocy87O5vXXX+e0006rhp4ZY3ZVInIqcBVwLNFnAamIfAb8U1XfrbLOGWOMSYpN6TRmF/TRRx/RoUMH32DvwAMPZNWqVRbsGWPiJiJ9RWQGMBY4HkgHJMojDTgOGCsi34hI3+roszHGmPjUqIBPRNJE5HoR+VFEikTkFxF5RERyE2jjJBGZLCJbRGS9iIwWkfZR6jYQkZEissK73jwRuVpExKfuOSLyvIjMFpHtIqIi0i5Ku329436P9yvab1O33XXXXZx00kkUFxeXOfZ///d/zJ49m4YNG1Z9x4wxu7IvgK7sDOrmAy8CtwPXAEOAvwAvAz+F1OsOfF713TXGGBOvmjal8zHgWtwdxkeA/bz33USkv6oGYp0sIgOBN4HZwI1AA2A4MElEeqjqypC6mcBnQDdgJPADcCLwFNAcuCui+WuAQ7y2FwKd4vh5ngEmRpQtr0i/Td0VCAQ47bTTeP/9svcM6tevz/vvv8/RRx9dDT0zxtQSy3GfW6+p6qJYFUWkA3A+MBhoWQV9M8YYkyRR1eruAwAi0gW3GHysqp4ZUj4M+Adwgaq+GuP8esASoATooqoFXnlXYAbwb1UdHFL/GuBJ4FpVHRlS/hZwCtBRVZeGlLcBVqpqiYg8gbvb2V5Vl/j0pS/wP+AyVf1vOT93Qv1ORG5urm7ZsiWZU00NU1RURM+ePZk7d26ZY+3bt+ebb76xvHrGxCAihaoa92yRukZE/gi8qKolCZ5XD7hIVf9TOT0zxhhTUTVpSud5uOkhIyLKnwUKgQvLOb8P7i7jc8GgCUBVZwHjgXO9D6ag8712n41oZwRQDzg3tFBVlyX6QQggIrkikp3Cfps6Zs2aNbRt29Y32Dv99NP5+eefLdgzxlSIqv4nmc84Vd1uwZ4xxtRsNSng6wkEgGmhhapaBMzyjpd3PsAUn2NTgXxgH3BrBXHrDr712g81zetHedeLx+NAAbBVRH4Sket81gfG3W9T9yxevJi9996bNWvWlDn2wAMPMHbsWNLSatI/Y2OMMcYYU5PUpDV8LYG1qrrN59gKoLeIZKpq2Z0qdp4frOt3PkArYB7QCKjvV1dVt4nIOq9usrYD7wIfAiu9vl2OGz3sClyWZL/DiEjM+bg5OTkJdNnUNN999x2HHHIIRUXh9yTS09MZNWoUZ555ZpQzjTEmMSJycTLnqeqLqe6LMcaY1KpJAV8O4BfsARSF1IkW8AWjG782iiLqxKobrJ90tKSqk4CwPfFF5FlcAHipiPxbVb+Koy+R/TZ1xJQpU+jTpw/bt28PK69fvz5fffUV3bt3r6aeGWNqqf/ikqsnQnE7eRpjjKnBatJcsEIgK8qx7JA6sc4nShuR58eqG6wf61oJ83YYfcB7e1LIoUT6HdmmxHqkpuemqk2aNImjjjqqTLCXn5/Pjz/+aMGeMaayRMu7F+thjDGmhqtJI3wrgc4ikuUzrbMVbrpntNG94PnBuj/4nA87p0huALbiM21TRLKAJsCXCfQ9Xku856YhZYn029RykyZNom/fvpSUhO+dsPvuu/P999/TtGnTKGcaY0yFTCDxET5jjDG7gJoU8E0HjgN6EZK7ztvhsivuw6i88wEOo2wS2EOBTbhksahqQERm4vL7RQaYvXAjn98k92PE1NF7Xh1SFne/Te02ZcoU32CvdevW/PDDD+Tl5VVTz4wxtZ2q9q3uPhhjjKkcNWlK5yjc3cXhEeVX4NawvRIsEJEWIrKviISubfsSWAUMEpG8kLoHAX2B0aoaOkfuNa/dyBx3w3E58d5I9gcRkSY+ZVnsTOb+XgX6bWqhuXPn0qdPnzLB3p577smCBQss2DPGGGOMMUmpMYnXAURkJDAUGIvb4GQ/4FpgEnC0tw4OEfkvcAnQT1XHh5x/Ni5wnI3Lr5cPXI8LJA9W1RUhdTOBycBBuMTuP+DW1p0B3Kuqf4no21HAUd7bk4FDgEeAjQCqem9I3em4qZoz2LlL54W4Eb6RqnptRNtx9zsRlnh917B48WI6d+5cZjfONm3aMH/+fLKzY6VxNMbEwxKvx+Z9xiVMVcubfWOMMaaa1bSALx03wjYYaAesxQVCd4QmJY8W8HnHTgZuBw7E7Xw5DrhJVRf6XK8hcC8wELdubyHwFPCkRvzBiMhdwJ3R+h66SYqI3AScDuwNNAS2AN8Cz6jqa1F+9rj7HS8L+Gq+X3/9lY4dO1JQUBBW3rp1axYsWGDBnjEpYgFfbCISIIldOlW1Ji0NMcYY46NGBXwmtSzgq9kKCwtp164dv/32W1j57rvvzqJFi2wapzEpZAFfbCEBXyI7b6qqpldSl4wxxqSI3ZkzphoEAgG6du1aJthr0KAB33//vQV7xpiqtgzbpdMYY2olC/iMqQZHH300CxYsCCurX78+c+fOtdQLxpgqp6rtqrsPxhhjKkdN2qXTmDph0KBBfPlleJrHjIwMpk6dSuvWraupV8YYY4wxpjaygM+YKjRy5Ej+/e9/h5WJCO+++y4HHnhgNfXKGBONiNwiIqNFZJGIqIgsiVJPRORCEXldRH4WkUIRWSYi74rIIVHOSROR60XkRxEpEpFfROQREfFdayginUTkbRHZICJbRGSiiBydirZj/Px7i8h93nU/F5EsETnKe2Qm0pYxxpjqYZu21GK2aUvN8sUXX9C/f38i/809/fTTDB4cmQ7SGJNKyW7aIiIKrAdmAgcDm/ymP4pINrAVmAV8ACwGWgBX4VLzXKyqL0ec8zgu9dBY4CNcKqJhwESgfzAVkVe3AzANlyd2BPA7Lk/t/sCJqvp5sm3H+NkHAyNxyz8Et8avHvArbmfrs1R1bHntGGOMqV4W8NViFvDVHMuWLaNjx44UFxeHlQ8fPpzHHnusmnplTN1RgYBvL1Vd5L2eC+RFCfgygMNV9cuI8ubAPKAUaBGST7YLMAcYq6pnhtQfhssNe4GqvhpS/gZwJi436yyvLM9ruwjYN5hOKNG2o/zcRwDjcYFecOdOVdV0EXkGGAS8oKqXxWrHGGNM9bMpncZUspKSEnr27Fkm2OvXr58Fe8bUcMFgL456JZHBnle+GvgSaOY9gs7DBVIjIk55FigELgwWeNMwTwXGB4M9r+0C4DlgH6BnMm3HcCPuO0Ix8GHEsenec4842jHGGFPNLOAzppL179+fNWvWhJW1bduWzz//PMoZxphapjUucNoYUtYTCOCmae6gqkW4aaGhAdyBQBYwxaftqSHtJdN2NIfhpnDeAjwQcWyZ99wijnaMMcZUMwv4jKlEt912W5kdOXNycpg5cyZpafbPz5gqlONtuuL7qKyLishJQC9glBdwBbUE1qrqNp/TVgBNQzZFaRlS7lcXoFWSbUfTwHv+zudY8JeXJQw1xphdgH3jNKaSfPLJJ9x///1hZSLCF198QePGjaupV8aYqiIiHYGXcEHWDRGHcwC/gAzcmrxgndBnv/qRdRNtO5r13nNXn2N9vOe15bRhjDGmBrCAz5hKsH79ek4//fQy5Y899hiHHOK7Q7sxpnIVqqpEe6T6YiLSHhiHmxZ5oqr+Ftkf3DRNP9khdUKf/epH1k207Wi+xq0DvAe3GygAInIv8CfczzXV/1RjjDE1iQV8xlSC3r17U1RUFFZ2xhlncN1111VTj4wxVUVE2gH/w015PFZV5/hUW4mbWukXmLXCTcksDqkbLPerC+HTPRNpO5qnvOf6wEW4AA/cmr4M7/U/y2nDGGNMDWABnzEpdvXVVzN//vywsj333JM333yzmnpkjKkqItIWF+w1wAV730apOh33Gdwr4vxs3DTKb0KK5+CmaB7m086h3nNo/UTa9qWqnwIPEZ6WgZDXD6nquPLaMcYYU/0s4DMmhT766CP+9a9/hZXVq1ePqVOn2iYtxtRyXrA3HmgEHKeqM2JUH4UbNRseUX4Fbn3dK8ECL/3Ce0BfETko5Hp5uHx4CwjfkTPutmNR1ZuBAcBbwI/eYwwwQFVviacNY4wx1c8Sr9dilni9ahUWFrL77rtTWBi+NGb06NGcddZZ1dQrYwxUKPH6RUBb7+0wIBN4xHu/VFVf8urtBswG2gMjiUiJ4PnMy8sXbHskMBQYi8t1tx9wLTAJODqYpN2ru7fX5nbgMWATLoA7ABeAfRLR77jbNsYYU7tZwFeLWcBXtY466igmTpwYVnbxxRfzwgsvVFOPjDFBFQj4xrNzV8pIX6pqX69eO2BxOc31U9XxIW2n40bhBgPtcLtejgLu8Eb1IvuyH/Cg159MYCZwl6qWSeqZaNs+5zfFpXfQyDWIInIAbmrnKp/NaIwxxtQwFvDVYhbwVZ1nnnmGK6+8MqysVatWLFu2zKZyGlMDJBvw1VUi8iJwAW5U8oSIYx8AJwAvq+ol1dE/Y4wx8bNvosZU0K+//sqQIUPCytLS0vjf//5nwZ4xZld1uPf8ms+xUbgRvsN9jhljjKlh7NuoMRV0/PHHU1JSElZ2991307Fjx2rqkTHGVFgL73mFz7GVEXWMMcbUYBbwGVMBzzzzDN99911Y2QEHHMDtt99eTT0yxpiUKPWe9/M5FiyzjV+MMWYXYGv4ajFbw1e5Nm3axO67705x8c78xRkZGaxYsYJmzZpVY8+MMZFsDV9iRGQ2bgfQ1cDxqvqdV34A8AnQHJirqgdFb8UYY0xNkFHdHTBmV3XKKaeEBXsA999/vwV7xpja4GNcwNcMmCEii3G5/fYC0r3XH1df94wxxsTLRvhqMRvhqzzvvPMOp59+elhZx44d+emnn6qnQ8aYmGyELzEi0hyYh0siL7gAD+81wHpgf1X9tRq6Z4wxJgEW8NViFvBVjkAgQOPGjfn99993lKWlpfHzzz/Tvn37auyZMSYaC/gSJyI9gNHsTDwftBQ4R1WnV32vjDHGJMqmdBqToGHDhoUFewDDhw+3YM8YU6uo6jci0gnoD3TGje7NAz5X1eKYJxtjjKkxbISvFrMRvtRbvnw5bdu2JRDYuTld06ZNWb16teXcM6YGsxG+8onIg8AYVZ1W3X0xxhiTOvYN1ZgEnHbaaWHBHsCrr75qwZ4xpjb4MzBFRH4RkX+ISD8RsV9uxhizi7Nf5MbEaezYscycOTOs7IgjjuDYY4+tph4ZY0xKDQG+wKVcGAp8DqwWkedEZICIZFZr74wxxiTFpnTWYjalM7WaNm3KunXrdrxPT0/n119/pWnTptXYK2NMPGxKZ/xEpCFwKjAQOBaoj9ulswD4ABgDfKSq9gFjjDG7ABvhMyYO9957b1iwB3DDDTdYsGeMqXVUdaOqvqiqpwNNgbOA14EA8AdgFPCbiLwtIhd7AaIxxpgaykb4ajEb4UuNoqIiGjZsyLZt23aUNWzYkHXr1tnaPWN2ETbCV3EikgEcA5wJnIKb+qnA3ap6T3X2zRhjTHSWlsGYcvzxj38MC/YAnnjiCQv2jDF1iqqWAJ8An4iIAEcAZwArq7VjxhhjYrIRvlrMRvgqbvny5bRp04bQfyd77703CxYsqMZeGWMSZSN8FecFeR2BbFX9rrr7Y4wxJj42RGFMDOeffz6RN0Vee+21auqNMcZUDRE5XkSe8nLzISKNgK+BH4BvRWS6iDSo1k4aY4yJiwV8xkQxb948Jk6cGFbWp08fevToUU09MsaYKnMxcCWwt/f+WqAHIN6jO3Bz9XTNGGNMIizgMyaKCy+8MOy9iPDqq69WU2+MMaZKdfeex3nPx+M2aFkCbMEFfSdXfbeMMcYkygI+Y3xMmjSJWbNmhZWdfvrptGzZsno6ZIwxVWsP73mZ99zFez4MuMF73b5Ke2SMMSYpFvAZ4+PSSy8Ne5+ens5///vfaumLMcZUg+AGN4UisgewG7BKVVcDP3nH6lVLz4wxxiTE0jIYE+H999/n559/Diu79NJLyc/Pr6YeGWNMldsINAEGAgu9smCg19h7Xl/FfTLGGJMEC/iMiTB06NCw95mZmTz11FPV1BtjjKkW3wL9gWu89wpM9l639Z6XV3WnjDHGJM6mdBoT4sMPP2Tp0qVhZUOHDiUzM7OaemSMMdVihPcc3JVzC/Afr2yA9zwZY4wxNZ4lXq/FLPF64tq1axcW8GVnZ7N582YyMmww3JhdmSVeT5yI9MNN6fwdeElV53vlN+BmCH2sqrOrsYvGGGPikPC3WBE5EOgHHAg0w03z+A2YA3ypqt+mtIfGVBG/0b1rrrnGgj1jTJ2kqv8D/udT/kg1dMcYY0yS4hrhE5H6wBW4JKz7llP9J+CfwLOqurXCPTRJsxG+xLRv354lS5bseJ+VlUVBQYEFfMbUAjbClxwRaQCcg0vLkIf7HtDKO/yL2jQhY4yp8cpdwycilwILgMdwwZ6U89jHq7vAO9eYGu+TTz4JC/bARveMMXWbiAwAFgP/Aq4FLgPScTN6FgHHVV/vjDHGxKvcET4RCeCmbQqwFZgAfI0byVvvlTcGOgG9gCOB+t7pAVWN+xuziKQB1+HuILbDTRV9A7hDVeMaqhKRk4DbgYOAbcA44M+qutinbgPgXtwahSa4raefAP4VeddSRM4BTgS6A51x02Hbq+oSn3b74O6IHuX9HEW4P68ngNd92h4P9InyI/VU1W/K/8nLshG++HXq1Imffvppx3sb3TOmdrERvsSIyAHANCAT9zkPoKqaLiIvA+fjPiuvidaGMcaYmiHeb7PTcMHK2+UFXiKSB5wODAN6JNifx3B3EccCjwD7ee+7iUh/VQ2Uc+2BwJvAbOBGoAEwHJgkIj1UdWVI3UzgM6AbMBL4ARfQPQU0B+6KaP4a4BCv7YW4ADeavwGtvZ9jDi6B7bnAq8DRuOmxkdYC1/uUL4pxHZMC33zzTViwB3DFFVdYsGeMqctuAbJwN3y/xX1WBn2FC/gOq4Z+GWOMSVA8I3xHq+oXSTWewLki0gUXHI1V1TNDyocB/wAuUNVXY5xfD1gClABdVLXAK+8KzAD+raqDQ+pfAzwJXKuqI0PK3wJOATqq6tKQ8jbASlUtEZEngCHEHuH7SlVLQ8rScIvfjwIOUNW5IcfGA+1UtV3sP6XE2AhffHr06MGMGTN2vM/IyGDz5s1kZ2dXY6+MMalkI3yJEZGVuJuf9wKfAhPZOcI3AHgP+E1Vm1djN40xxsSh3DV8yQZ7SZx7Hm7ayIiI8meBQuDCcs7vA7QEngsGe14fZgHjgXO9oDDofK/dZyPaGQHUw43I7aCqy1S1pPwfA1T1y9BgzysL4EYfAfb3O09E0kQkX0TE77hJvQULFoQFewDnnHOOBXvGmLquiff8pc+xYu+5YdV0xRhjTEXUpMTrPYEAbvroDqpaBMzyjpd3PsAUn2NTgXzchjLB0bbuwLde+6Gmef0o73rJaO09r/Y51goowOU7KhCRMSJS3o6opoKuvPLKsPdpaWk8+eST1dQbY4ypMTZ5zx19jgU/HzdUUV+MMcZUQFyLlETkqEQbVtUJCZ7SElirqtt8jq0AeotIpqoW+xwPnh+s63c+uKBqHtAIt7FMmbqquk1E1rFz2+mUEJGWuM1oFuHWP4RaDEwCvgNKcWsFhwLHiMgRqjonSpsx5+Pm5ORUtNu12po1axg/fnxY2fHHH0/Dhg2rpT/GGFODzASOBe4Bng8Wisgg4Gbc2r4Z/qcaY4ypSeLdlWI87pd7vDSBtoNycLtq+ikKqRMt4AtGN35tFEXUiVU3WD9l0ZKI5OA2cMkFTlHV7aHHVfWyiFPeFJF3cX/uj+I+dE2KDR06lMg1rM8880w19cYYY2qU/+A+e5riNkEL/rJ8Grf8Qr06xhhjarhEp3RG5tyLVSdRhbgdwfxkh9SJdT5R2og8P1bdYP1Y14qbiGQDb+N2LL1MVSfGc55XbwLQz0t871dHYj1S0f/aqri4mLFjx4aVHXbYYbRu3TrKGcYYU3eo6ijgNcp+pgdfv6aqb1V5x4wxxiQs0YAvcpTPL/F6slYCTUXELwhrhZvuGW10L3h+sK7f+bBzCucGXE7BMnW96zfBf2poQkKCvf7AFar6coJNLMEluW1U0b6YcHfeeSclJeF78Dz11FPV1BtjjKmRLsTtSD0DN/OlCDfVcwhwUTX2yxhjTAKS2bTld9xOlh1VNS3KIz2Jdqd7/ekVWugFTV2B8pKPT/ee/fICHYpbgP4T7NgxcyYuv19kgNnL60dSyc6DvHbHAscBg1U1makvHXFpJtZXpC+mrMjgrkOHDnTt2rV6OmOMMTWQOv9U1Z6qmus9enhliSzzMMYYU43iDfhOAT73XjcArgPmi8j7InJ8ivoyCjeCODyi/ArcerpXggUi0kJE9vXWxgV9CawCBnnJ34N1DwL6AqMj1s695rU7mHDDcUHWG8n+IF6w9zZwPHCVqj4Xo24DESkTIHt5jg4HPvPZSdRUwAsvvMCmTZvCyh588MFq6o0xxtQ8InJVOcfri8jTVdUfY4wxySs38XpYZZFOwLW4qRzBoEqBn4EngP+q6uakOyMyErc75VjgQ2A/73qTgKO9kTlE5L/AJUA/VR0fcv7ZuMBxNi6/Xj5wvdfHg1V1RUjdTGAycBAusfsPwEnAGcC9qvqXiL4dhUuaDnAybifNR4CNAKp6b0jdN4EzcUHyCz4/6neq+p1X93Tcxizv4XbwLMGNMl6IG9k7XFV/Ku/Pzo8lXvfXtm1bli1btuN948aNWbduXTX2yBhT2SzxemJEJACMAQap6saIY/vjPmv3TXJGjzHGmCqU0E6aqjofGCIitwB/xM3j74CbejgCt9bsngr0Zzhu3dpgYACwFhgJ3BEM9srp32gR2QrcDjyM24VzHHBTaLDn1S0Wkf7Avbik702AhcAwwC8R29HAnRFlN4S8vjfkdQ/vub/3iHQ3LgUDwHzc+oiTgea4pO/LgX8B90f221TM119/HRbsAVx33XXV1BtjjKnRzgAOFpELVHUygIgMAf6O29zMpnUaY8wuIKERvh0niQhwKi5AC456CXCXqlYk4DMpZCN8ZR1xxBFMmjRpx/usrCwKCwtJS0tmOasxZldhI3yJEZH57Ey6XgLcj1tPfwo7N2j7QFVPqfreGWOMSURC33JFpJGI/Bk39XAMLtgT3K6XDwFR16oZU90KCgqYMmVKWNnAgQMt2DPGRCUit4jIaBFZJCIqIkvKqd9JRN4WkQ0iskVEJorI0VHqponI9SLyo4gUicgvIvKIiPgGppXZto+uuNkuwby6f2FnsLcVGGLBnjHG7BriGuHzNj4Zhpv6mM3Ou3uzcGv3XrWNRWoeG+ELd/311zNixIiwslWrVrHHHntUT4eMMVUm2RE+EVHceuqZwMHAJlVtF6VuB2AabkRsBG5X6yuA/YETVfXziPqP49apjwU+wq1bHwZMBPqHLmWozLbL+fkH45YYKO6zfzvQR1WnxnO+McaY6hdvwBcg/Jf9GOAJVZ0U80RTrSzgC9ewYUN+//33He8POOAAvvvuuxhnGGNqiwoEfHup6iLv9VwgL0bA9wZuw66DVXWWV5YHzMPlsNs3mM5ARLoAc4CxqnpmSBvDcBuJXaCqr1ZF2zF+9muAv+F2tA7e6FVcntrLVHVceW0YY4ypfskkXt8O9AFGi8jKKA/baMTUKO+++25YsAfw17/+tZp6Y4zZVQSDvfJ4UyVPBcYHAzLv/ALccod9gJ4hp5yHC6JGRDT1LFCI26m50tuO8fN8hts0Lddr6w3cKKcArYFPvVFEY4wxNVxCu3R66nsP8TkWHAW0nbtMjfKXv4Rl2SA/P5/TTjutmnpTswVKAhQXFFNcUMz2rdsp2VrinreVULK1hNJtpZQWl1K6rZSS4hIC2wOUFpcSKAlQur0ULVUCpQECJQG0VNFSpbSkFA3ojmMaUAhAIODVUQVlx2tVDSsHdtYJeM/e7ITQOjveQ1gd8M7b8canfjnlqkqAAIFAgFJKCQQC7r0GUJSA7nwdrKuqO8qCbQbYWUdVw44Fy90ldz6XKfOpU6bPIeVoyOuI8rD6UvZXt98sEI08Mcb5Pif7fnooGnf5bm1247437yv/WlXrQCALmOJzLDj9sSduWmbwdSDkPQCqWiQiswgP4Cqz7WiO8Z63AENV9QURqYcb8bsO939lqPfaGGNMDZZIwOcX4CVTx5gqtWbNmjJTNy+55JJq6k1qBEoCbFqxiY2LN/L78t/ZsnoLW1ZvYev6rWzdsJVtm7ZRvLmY7YUuYCspKnHBWbELxAKl7qGlIcGT3aapduL9Z2L7bcVvyZyW463H86WqFf2Db+k9+81wCZa1iqi/VlW3RanfW0QyVbW4ktuOZSZwnqouAFDV7cCfRORTXI7ZpuWcb4wxpgaIN+C7rFJ7YUwluu2228Leiwj3339/NfUmtsK1hayYvoI1c9ew7qd1/L7MBXNb121l2+ZtboRte6kFZ6ZOkwrHZpUix3v2C7KKIuoEX/vVjaxfXMltRzMCl8N2e+QBVf1YRA7EBX3GGGNquLgCPlW1X+pml/Xmm2+Gve/Vqxd5eXnV1Bso2lTEwo8XsuyrZayZu4aNizey5bctlGwtCZ92aIxJpcrOw1foPWf5HMuOqBN83SxKW5H1K7NtX6r6p3KOrwZOiFXHGGNMzZDMGj5jdhkTJkxg48aNYWV33HFHlV1/49KNzBs1jyXjl7Bm7hq2rN5CaXFplV0/WaVppQTSApRklFCaXkppunvv91DRqM+hj2AZUOZYaJnf66DIMr9joSLLoq0xi7dcVHZMuwx9naZpYe/dsrOy9XaUh5axc8QqrCyk/o73EXV3vPdWTkfWDXut0cvLlEW8jlYnmbqhP0Msfv0LludLfrnnV4OV3nMrn2PBstApmSuBziKS5TP1shVuSmZxSN3KajsmEdkbN8unC5AHDAAO8Q5PjbcdY4wx1SfhgE9EHga+xc3t/1EjVvSLSCtgvapuTU0XjUnenXfeGfY+Ly+Pk046qdKut3b+WqY/NZ1Fny9iw6INlBZVbnAn6UJ6vXTSs9KpV78eGTkZZOZmkpmXSeZumWTtlkXWbllk5meSnpfOYl3M/JL5/FzyM78EfmENa9icvpmSjJIdwV0gLVDtq3EFIU3SSE9LJ13SqZdej3pp9aiXXo+s9Cwy0zPJTM8kOyObzPRMstKzyM7I3vmol022ZpO/Np8GaxqQtzqPvLV57LZ+N3I25pCzKYecghzqb6tPdkk29UrrkRHIIF3TqVdaj3RNJz2QTr1APdID6Tve79Lr6yTkkRbxSA95Dj4yIl4H39cLeV/PpyzD571fmV87kW2mR3ldM1eOzcFNozzM59ih3vM3IWXTgeOAXrjceACISDYu6fmEKmo7Ki8H30jc/5nghmzbgTeBJsBZuDx/xhhjarBkRvj+xM57rltF5Dtc8Pet9/gD0I/4dgEzptKUlJTw1VdfhZWlemfOQCDAnJfnMOPZGayasYqSrSUVblPShczcTLIaZJHbLJe8PfJo0KYBDds1pNFejWi0dyOa7N2EzLzMqG0UFBfwzvx3eHfBu8xYNYNffv+FLdu9nIx+k8JSSBDqpdUjKyOL+vXqk1cvj92ydqNBVgMa129Mo/qNaFK/Cbvn7s7uObvTPK85u+fsTrPcZjTPa052Rnb5FwGXfnoGbt/C2cDPuDGOdbh9BWv+QGp4gJXpPbJwk+6Cj5yQRx5uk/xc7/Vu3ut873We97qB9z6fnRP4TKVS1QIReQ8YKCIHqeps2JErbxCwgPBdM0cBtwLDCQnKcMnUc4BXqqLtaETkCOApdt4mCPYlICJve9c9FQv4jDGmxksm4GsMdI94XIW7PxwMBGOuDTCmKjzxxBOUlIQHYPfdV/Gt3AOBAN+99B1fj/ia1XNWu50uEyTpQv3G9WnQpgFNOjWhRfcWtD6kNXt034PMnOiBXDQ//PYDz896ni8Wf8FP635ic/HmhNsoT1Z6FnmZeTSq34hmOc1osVsL9szfk3YN29GhUQc6NulI+4btycxIvP8xLQA+B74Gvgd+ATYQfUuKqiC4356Z7AzKgoFXA6AhbvyjMbA70Dzk0cI7nmgWVFMtROQioK33dncgU0Ru994vVdWXQqrfgktn8KmIPAZswgVZrYABoTNiVHWOiDwJDBWRMcCHwH7AtcCXQGRi9Mps28+NuL+l24BxQOjUiOm4gK9HHO0YY4ypZuKXYynhRkR2w30Y3IWbbDNMVV+vcMOmQnJzc3XLli3V3Y1qs/fee7Nw4cId79u2bcuSJUuSbm/t/LV8fN3HLP5iMYHtgbjPS89Kp0GbBuzRdQ/aH9OefU7Zh/yWFVuDtHjDYv75zT/5cMGHLFi/gOLSii+jyc7IpnH9xrTMa0mHxh3Yt8m+dGvRjZ4te9Iyv2X5DVTUUuA9YBIwF1gO/E7V7EiahhtZy8EFbI1wX+1b4L5O7wm0B/bCffW31c+7HBFJatMWERkP9Ily+EtV7RtRfz/gQe+cTNwMmLtU9XOfttNxo3CDgXbAWtzo3B1eUvXI+pXWts/5a3C3LW7ABXgTAVXVdBE5HvgIt3yjZk6wNcYYs0NKAr4djbnpJXOBh1X1iZQ1bJJSlwO+X3/9lRYtWoSV3X///dxyyy0Jt/X9W98z7pZxrF+wPq76GfUzaHZAM/YZsA8HXXIQDds2TPiakQKBAGN+HMPT3zzN1BVTKSgu9/uaL0FomN2QNg3a0Hn3zvRq1Yuj2h5F1+ZdSUuroiGnAO7r49u44O4n3FfRypiCKbgRuHzcV9eWuOBtL2Af3DYUHXFfnU2tlmzAV1eJyDbcrY1jcaN8oQHficAHQLGq2qRhY4yp4VJ6n9pbZ/AicD1gAZ+pNvfcc0/Y+/T0dG644YaE2pjz2hw+veFTClaVH1zltcij44COHDr8UJp1ibYbemICgQAvz3mZJ6c9ycxfZ1ISSGx9YJqk0Sy3GV1278JRbY/i1H1O5cDmB1ZdYBf0K/AS8Clu64k1pG7UTnCjck1wI3F7A52Bg71H4xRdx5i6Zz0utUNX3ITqUMERz7VV2SFjjDHJqYyJSb/hJkIZU23eeuutsPc9evQgMzO+YZxF4xbx9sVvs3ll7HVweXvksf95+3Pk7UeS0zgnZt1EfLXsK+743x1MXDYxoSAvp14OnZp0om+7vpzb5VwOaX1I+SdVhgXAc8AnuNG7VOzXm42bYtkONyrXC+iLm2ZpjKkMX+M2ZbkHtysnACJyLzs3b5taPV0zxhiTiGTSMvzGzrQMM4GZqvqzd0xwOXq+id6CMZVr4cKFrFmzJqzsT3+KmUMYcDnz3jjzDVbNWBW1TlpGGnsdtxcnjDiBJh2bVLivQZuKNnH7/27npe9eYmPRxrjOyU7PpvPunTm106lc3v1yWue3Tll/ErIG+BfwLjAPKKpAW1m4jU064baDOAY4EptyaUzVewoX8NUHLmLnuPwt7EzR8M/q6ZoxxphEJDPCNxk4COjvvVcR2Qz8iLsHvztwiYjUU9XtqemmMfG7++67w95nZmZy1llnxTzns5s+Y8rDU9CA/1zDejn16HVtL/re3ZeMzNQNjE9fMZ1rP7qWr1d8jcYxz7FZbjOO3etYhh86nB4tq2mDvADwDvBv3G+DDUm2sxtuhK4nLrAbgFtrZ4ypdqr6qYg8BPw5WOQ9B1M0PKSq46q+Z8YYYxKV9KYtItIQN7e/m/fcFbftcwbug6EEN6FrDjBbVf9W0c6axNTVTVsaN27Mhg07o5C+ffvyv//9z7fubz/8xsvHv8ymXzb5Hq+XU4/DbjyMPnf0SenatxdmvcAd4+9g2e/Lyq27R94enLXfWdxyxC1Vs1umnwJc+uXXcKkREt1gJRO3u2Uv4HTgZCw/nKlStmlLcrwNWv6IWx0L8APwb1X9qPp6ZYwxJhGp3qUzE9ifnQFgN+BAIE9V01N2IROXuhjwzZo1i27duoWVffjhh5x44oll6k57YhofX/ex76iepAs9ruzBCY+fQFpG6gK9Z2Y8w21f3Mbawth7HeRl5nHKPqdw39H30b5RNS1UWwv8DRiNS5mQiPrAvsDxwMW4W0HGVCML+IwxxtRVKQ34ol5EpIOqLiy/pkmluhjwnXnmmYwZM2bH+/r161NYWBhWJxAIMOqMUfz07k++bbQ5sg3njjmXnKap24hl1NxRDPlwCOu2rotZ78DmB3JP33s4bd/TUnbthBQA9wOvAOUPPu6UgUtzcBJwFdAh9V0zpiIs4DPGGFNXlbsYSUTuAh5X1YRW6ohIY+A6Vb3Tgj1TVT799NOw93379g17X7SxiH8d9C9+X/Z7mXMz6mdw+n9Pp8s5XVLWn6+Xf835b53Poo2LotbJTM/k7M5nM+KEETTNqYYcxgFc2oRHcFk0470HtDtuc/arcGvwjDG7LBGJ/ksqOlVVu71jjDE1XLkjfCISwN33fxV4HfhSo5zk7dLZFzgfOBfItamc1aeujfBNmjSJI444Iqzsq6++4vDDDwdgw+INPN3tabb9vq3Mua0Pa81Fn19EZk5qtoPcVLSJs0afxWeLPotaJz8rnxsOu4Fbj7yVjLTKyJBSjqXAjcB7xLezpuCSlJ8FXIfL0GXMLsJG+GLzPusTmfIjeInYK6lLxhhjUiSegG87kM7OD4ItuLQLC4B1uF/6jXEbqXcHgh+oAmxX1azUd9vEo64FfGeccQZvv/32jvd5eXls3uxy6a2YvoLnj3ye0m1ldxs58vYjOfqvR6esH49MfoRbx91KcaDY93iDrAbc1fcuru11bdUnQQeXUesvuH11y5OGW4V7OTAYS49gdlkW8MXmBXyJsoDPGGN2AfEMK+wPPIzbNB0gDzeRq49PXQl5/R47t3M2ptJ98cUXYe+POcbNM1z21TL+2/e/aGn4zY30zHQu+OgC2h+dmk1Rlm9azrEvHcuPa/0jqaz0LG498lZuP/L2qg/0SoC7cTttlp3NGk5wm6xcjZuuWQ2Dj8aYKtevujtgjDGmcsS9aYuIdAOG4CZ0RcuW9TtuT79/quq3KemhSVpdGuGbO3cuBxxwQFjZxIkTaSNt+G+fssFe5m6ZXPntlTTu0Dgl139o0kPcOu5WSrXsCKIgXHjAhTx36nNkZlTxENkm4Brcv0r/AcedmgGXALdj+fBMrWMjfMYYY+qquO/dewHcIBEZjEu5cABu2wYB1uDy7c1S1WSmhRhTIQ8++GDY+/r169OuXjueP+L5MsFeXos8rp57NTmNK74LZ0FxAX3/25cZq2b4Ht+3yb68e967dGzSscLXSsga3BTM93CbskSTDhyFS7/Qswr6ZYzZpYhIfeA43ApegJ+BT1W1MPpZxhhjapIqSctgqkddGuFr2rQp69btTHlwfO/jOXz64QS2h0c7Ddo2YOhPQ8nIrPg8xc8Wfsbpo06ncHvZ7z310urx+AmPc3XPqyt8nYSsAS4FPib29gsNgUHAX7EE6KZOsBG+xInIH4Ancb8xQm0Ehqnqq1XdJ2OMMYmz1Tlml7d06dKwYC+ddA6ddWjZYK9NA4b+mJpg76bPbuKhyQ/5Hju4xcF8euGnNM5JzXTRuGzETcd8j9iBXnvgAdweusYYE4WInILLyCkRhxRoBLwoIgWq+m6Vd84YY0xCLOAzu7y//e1vYe/P4AykMPw7Sn7rfIbOH0pGdsX+yheXFNPvhX5MXj65zLF0SWfECSMY2mtoha6RWIdwG6u8CJRdPrhTd+Bf2LRNY0y87mBnsFcMBPP07YXbrzcNt9+vBXzGGFPDWcBndnnvvPPOjteHczj7s3/Y8awGWQz5YUiFg73lm5bT/enu/Fb4W5ljrXZrxcTLJtK+UWp2/IzLvd6jbFrBnXoDz+F23TTGmPjtjxvN+xoYqKq/AojIHsBbwGFAl+rrnjHGmHhVQxIwY1Jn7dq1rFy5EoC2tKU//cOOp2WkccX0K8jMq9jumDNXzWSfkfv4Bntndz6bZcOXVV2w9yFuR82/ED3Y643bWmESFuwZY5Kx0Xt+MBjsAXivg9MqNlR1p4wxxiTOAj6zS3v88ccBqE99BjIQiVhu8od3/kCTjk0qdI33579Pr2d7sbVka1h5mqTx1ElP8cbZb1RNXr01wCG4jJhl406nOy6h+iSgQ+V3yRhTa73tPfslaWngPb9VNV0xxhhTETal0+zS3nzzTQBO5VQa7PgO4vS7tx8dT6pYOoSXZ7/MxW9fjEbshJJbL5cJl02ge4vuFWo/bn/BbbYSbZ3eXrh1fIdXTXeMMbXercCRwAMi8hvuNhK43zL3ATOB26qpb8YYYxJgaRlqsdqeliEQCFCvXj26B7pzMieHHWt1SCsGTR1Uofaf//Z5/vjuH8uUN8tpxpyr59Asr1mF2o/LfFwGrGVRjufjNk2/sPK7YsyuzNIyJEZEgreXhLJ7//qVAaiq2o1kY4ypYcr9xSwi/6ngNe5T1YUVbMOYMl577TUaBhpyPMeHldfLrcfFX1xcobafmfEMV75/ZZnyfZvsy7dXfUt2RhUkr7sBeAz/r1XpwLXAw9jEbGNMZQgGdYp/agZ8yo0xxtRA8dyJu5TYmb3K8xxgAZ9JueeefY6TOZl61AsrP+/d88jMSX6Tlhdnv+gb7PVq2Yspl0+p/PV6y4C+wOIoxw/GbYTesnK7YYyp86IFdBboGWPMLiSRqRfJ/IK3+aKm0mz/ajt7sVdYWbfLu9H+6OR3y3x//vtc+valZcqP2PMIvrz0y8oP9p7Cjdz5rdWrDzyPJU03xlSFKswxY4wxpjIlEvDdDyxIoP7zCfbFmLiNf3M8R5QeEVaW3iCdk585OcoZ5Zu0bBKnjzq9zAYtfdv25X+X/i/pduNSApwAjIty/BjcqF5O5XbDGGMAVHVpdffBGGNMaiQS8H2oqpPjrSwiFvCZSvPOJe/QkIY73pdQwiVvX5L0CNyCdQvo90I/SjV8aO3QVodWfrA3DzgKWO9zLAt4GTircrtgjDHGGGNqp3gCvu9wUzMLEmw72fOMiWnq41NpWNgwrGxpk6W069suqfY2FW2ix7M92B7YHla+b9N9mfTHSVHOSpFngKuBgM+xbsAXEBLXGmNMlRGRc4DrgH2Axj5VbFdOY4zZBZT7i1pVuybTcLLnGRNLoCTA57d8Hla2ilUc+/djk2svEKDr013ZtG1TWPme+Xsy+8rZlbtm70LgFZ9yAe4Bbq+8SxtjTCwiMhx4JPi2GrtijDGmghK+MyciaarqNx4RWqexqvpNUDOmQj645gNKt4ZPu/yET3jqkqeSau/Yl45l8cbw7TAbZDXg+yHfk5mR/E6fMRUAPYEffY7l49bx9aicSxtjTJyuxQI9Y4ypFZIZvpggIq2jHRSRfrjpnMakVOHaQr7997dhZXOZS72O9ZIaibvl81v4YskXYWX10uoxY/AM8jLzKtTXqBYArfEP9noBq7FgzxhTE7TALct4G3eLqr3PY69oJxtjjKk5kgn4egOzRGRgaKGIpInIfcCnuA8KY1Jq9Lmj0cDOHTRLKOFzPmfAgAEJt/Xhgg95cNKDYWWC8NEFH9GhcYcK99XXR0AX4HefY9cDXwNVkM/dGGPi8LP3/IyqzlDVpX6Pau2hMcaYuCS7QKkRMFpEnhKRLBFpC3wF3AykJ9sZL2i8XkR+FJEiEflFRB4RkdwE2jhJRCaLyBYRWS8io0XEN5+QiDQQkZEissK73jwRuVpEykxjEZFzROR5EZktIttFREWkXYx+xN12ov2ui9YtWMeSL5aElX3N12xkI0OHDk2orZWbVnLGqDPKlD9+wuMcs9cxFelmdCOBAcD2iPIM4E3g0cq5rDHGJOlB3JTOi0SkkhOQGmOMqUzJ7K51P3ATLrC7EugH7AE08I5vAK5Ksj+P4dYNjMUtFt/Pe99NRPrHsXZwIO7r82zgRq9Pw4FJItJDVVeG1M0EPsPthTgS+AE4EZf6ujlwV0Tz1wCHeG0vBDrF6EdCbSfS77rq3UHvhr3fwhYmMpG8vDw6dIh/RC4QCNDruV4UlxaHlZ/V+SyGHTIsJX0t40+4v9mR8oFpxPibZIwx1UNVXxGR/YBbgaNEZDqwsWw1vbzKO2eMMSYhoqrl14o8SaQX8ALhX1UVt93EpckEKCLSBZgDjFXVM0PKhwH/AC5Q1VdjnF8PWIJLYd1FVQu88q7ADODfqjo4pP41wJPAtao6MqT8LeAUoGPodBURaQOsVNUSEXkCGAK0V9UlPn2Ju+1E+52I3Nxc3bJlSzKn1iibVm7isdaPEZoP/VM+ZTKT6dOnD+PHj4+7rfPfOp/X5r4WVrZXw71YMGxB5ezIeSYwxqe8AzATF/QZYyqdiBSqatyzReo6ETkI+B/uBqQQ9ht4J1VNelaPMcaYqpHsN9zpwGjvdfBDoAQXnCQ7GnUe7kNlRET5s0AhbhP7WPoALYHngkETgKrOAsYD53rBVdD5XrvPRrQzAqgHnBtaqKrLVLWk/B8j4bYT7Xed8/7g98O+amxlK9/wDQDnn39+/O3Mf79MsFc/oz5fX/F16oO9AHAk/sHeMcBPWLBnjKnJHiM8C6j4PIwxxuwCEv6WKyIdgUnAbbiv4cFf+hnAqyLyoogk81W2J+5r8rTQQlUtAmZ5x8s7H2CKz7GpuK/X+4BbKwh0B7712g81zetHedfzlUTbcfe7LiraVMTPH/0cVvY1X1NMMSLCxRdfHFc7BcUFnPPmOWXK3z//fZrmNE1JX3cowU3m/crn2OXA5yR/q8UYY6pGL9xn/GrccoS/AndHPO6Jp6Hasj5fRPqIyJMiMkdENovIbyIySUTOi9L2eK89v4ftx2yMqTLJrOGbhdtLUHAfBJcB+wP34UavLgCOAtol2G5LYK2qbvM5tgLoLSKZqlrsczx4frCu3/kArYB5uE1n6vvVVdVtIrLOq5uMRNtOpN9hRCTmfNycnJx4+lujfXjNh2E7cxZTzNd8DUCrVq3Izo5vW8tjXjiGrSVbw8oGdRvE0e2PTl1nXQehM26VZ6R7cbdJjDGm5tuI+yy7SlXfLadueWrF+nzgb7jEOmNxS1BycTN2XgWOBq7wOWctbh/mSItiXMcYY1IqmYCvvvf8KXCxqq4BPhaR/+F+6XUE9kyi3RzAL9gDKAqpEy3gC0Y3fm0URdSJVTdYP9loKdG2E+l3nVJSXMK8UeFx7gxmsBUXuB1zTHw7aj4z4xmmrQwbOKZ1fmuePvnp1HQ0qBj3NSbyY1xwk3ttawNjzK7jRdzO220r0oi3Pn8YMCZiff5i3Pr8P+C+O0Q7vx4ucPsFODJknftHuHXudwGh69wH4WbOhK6hf9ZbQ3+riDwfkU7iYsLX58cK+G4CvlLV0pD+PY5b6zhIRB5X1bkR52xR1ZdjtGmMMZUumYll24EbVfUEL9gDQFVn4KYyJvuLrRDIinIsO6ROrPOJ0kbk+bHqBuvHulYsibadSL/DqKrEeiTc8xpm4v0TCZTsvPFbSimTmbzj/ZAhQ8pto6C4gGs/ujasLF3SGX/J+NSu2yvB5diLDPbScKtdLdgzxuxa/odbbfygiNwvIqeIyFGRjzjaqTXr81X1y9BgzysL4EYfwc12KsOb0pofLS2TMcZUtmRG+A5X1W/8DqjqFuBi785bolYCnUUky2daZyvcdM9oo3vB84N1f/A5H3ZOkdwAbMVn2qaIZAFNgC8T6HuoRNtOpN91yjf/DP9rNoc5bGYzAFlZWfTsWf4yy4GjBrKtNPyv0/3H3J/a5OoluI/5nyPK04FPcJu0GGPMruUTdq7TvylKHaX87xFR1+eLyCwqvj7/aNw693kha+hnpnp9fjlae8+rfY61Agpws6MKReQT4FZV/bES+mGMMb4SHuIIDfZEpKOInC4iF0XUea3smeWa7vWnV2ihiGQDXQHfIDPifIDDfI4dCmzC3a0M3pGbiVs/EDmy1svrR3nX85VE23H3uy5Z9tUyCteED2xO3/FHBfvuu2+5bXy28DM+W/RZWFmHRh348+F/Tk0ngw4D5keUpeMmPVuwZ4zZtQWDvmiP8pS3Pr+pt+4u1vnBun7nw86bozHX0AMVWZ/vS0Ra4nISL6LsVl2LgYdwex2cjVtHeCLwtYgcEKPNaBu9aHlr940xxk8yI3yISFtcHr4jvSIVkTHAt7ivumep6rcJNjsKl+B1ODAxpPwK3Bq2V0Ku3wK3aHuZqgajgi+BVbh59I+FzPM/COgLPK+q20PafQ04HDf3f2RI+XDcmM0bCfY/VCJtJ9rvOuGzP4cHamtYw4qQz/ABAwbEPD8QCJTZlVMQPjj/g9R1EmAAZW8NpOHujad4PxhjjKlCy4iSey9BtWV9fhkikoPbwCUXOCXys1pVL4s45U0ReRc3FfVR4NhkrpuWlqb169cvv6IxtVhhYaGqqu15HqeEAz4RaYq7i9WSkLt7qrpFRJbgxjTOwAV/cVPVOSLyJDDUCx4/ZOdOXl8Svqj7AeASoB/uFyequl1ErsMFjhNF5FlcSoPrgd+AOyMu+Szurtuj3hbMPwAneX2/V1UXR/zcR+F2HwUIbqc8VEQ2ete/N5m2k+h3rVdcUMzyqcvDyqYyNez9lVdeGbON6z+5no1FG8PKrupxFZ2axlqPn6BBuL+locQrs5E9Y8wuTFXbpaipQqBZlGO70vr8MN7so7dx3wcuUdWJsc9wVHWiiEwA+olIfVXd6lMn5shpbm6ubtmyJYleG1N7iEiZfzsmumQi41twUyIEt4FLqI+98mS/7g4H/g+3/cWTuN27RgInl7dtM4CqjgZOxd3dexi37mAibt3hioi6xUB/4GncovIngX1xu4nd4dP80bg8RH/FbeEMcENIWdJtJ9LvumDcbePC7iuXUsoc5ux4n5ubS5s2baKev75wPU9OfzKsrEn9Jjxx4hOp6+QDwL99yl8Bjk/dZYwx1UtE8kTk1pDca2u9fHCXRm7CISKdRORtEdkgLl/cRBHxHeuXBHPTJdJ2DbMSN23TLwhLdH2+3/mQ2Pr8Cn+mhgR7/YErktiFcwluNlSjivbFGGPikUzAdwru6/ibwHERx5Z4z9G/jcegqqWq+oiqdlLVLFVtpap/Ct2Zy6t3qbcT5XifNt5X1UNVNUdVG6nqWarqlxUNVd2oqkNVtaV3vc6q+oSqlpnGoqp3JbIjZiJtJ9rv2m72C7PD3i/OXMz2kHsLBx54YMzzz3nzHErDN1LjlYGvpG5Xzndwk48jPYIL740xtYK3CchHuJt603E3+e7FfVl/HngwpG4HYDJuVe9DuHxxecAnItLfp/nHcNP6vsfdDByNm9Hynnfd0H4k2nbKiMiZIvKeiCzwHu95efHiVSvW5wd57Y7Fff8ZrKr/SaKZjrjlHesr0hdjTOJE5BYRGS0ii7x1sUvKqV8jbuQl2nakZL4BB4O553C/sEJt9J53T6JdY1g0bhHbfg9ffjGuZFzY+zPOOCPq+TNXzWTc4vD63ffozvF7p2jYbR5wlk/5n7yHMaY2OQQ4AviHqv5RVZ9R1RG49euLcZt1BD0ANASOV9UHVPUpr95K4MnQ0UAJz003UFWfVdXgb5F+uNktJNN2KonIP3Frzk8C9vIeJwGjvWPxGIW7STw8otx3fb6I7OutjQsKXeeeF1I3uM59tM/6/BzCc/NBCtbne8He27h5HFep6nMx6jYQkXSf8gG4Nf6f+ewkaoypfPfjZu0txM0KiKqG3ciLu20/yWzasg2Xy6YhEDmJfG/vOSVz5E3dM+HeCeEFObCqcFVY0eWXR09qd/bos8PeC8KYc8ekpnObcP8sI29znIwb3TPG1Db53vPK0EJVLRaRtXhrxbw7rKcC4738cMF6BSLyHHAPLh1AMDVBrNx0D+Jy072aZNspISJn4gLa4C6dkQaLyGeqGvMXbC1bn/8KcALwOS7FQmQOwe9U9TvvdT+vD+/hdvAswY0yXgispWwAbIypGh1UdRGAiMzFBVnRBG+2HRz8/SsiL+Ju/z8pIvsGZ+5F3Mg7M9iAiCwG/oG7kRf5+66y2i4jmYDvR9wvxZtwEWnwonvjolOlbD45Y8oVCAT4ZdIvYWUrm63cOVEYaNSoEY0bN/Y9f9TcUSzaEJ75/Nwu59K2YdvUdLAXeGkAd9oXN8XTGFPT5UiMLe2jbJQxDTdz5c/etJ+vcdv+XwocDFzl1TsQF/xFyxUH4UFZIrnpEm07VUJHyN5kZ8qBw4EzcUHglUA8d9SG436TD8btbbwWtz7/jnjX54vboOF23Dr3bcA44Ca/9fne3fF7cYF1E9yd/GG49fSRjqZs0HhDyOvQgC8YEPb3HpHuBoIB33xgBu6WYHPcjfLlwL+A++vi+nxjaoJgsFeeGnYjL+62o0km4HvL60TXkMYF98tN2Lm+z5iEzH5hNoHt4Z/947aFT8/s0aMH0Vz70bVh77PSs3j+9OdT07kLKZtrrxHu49w2BTamVlLVDSJyKm4JQ+hUwM3Amar6tvc+kVxxwfqxctP1FpFMbzOTRNtOle64z/O/qWroquV/iMj9wM1enXKpailuHkTMuRCqeikumPY79j7wfpzX2wgM9R7l1b0LuCvOdtvFU8+r+wMu954xZtdUk27kJdK2r2S+qo7EDTcG74Yq4VM+5uKSixqTkK9HfB32PrdFLot+Db8Rc8454bn1gp6Z8QxrCteEld18+M1kZ2T71k/Ic4SsMvHUwwV7KcvoZIypZIWJbLwVogD3ufYwMBCXkOVn4FURCeZRSyRXXPB1PLnpkmk7VRp4z1/6HAuW5fscM8aYqpDjbbri+0hB+6m+kddURDKroG1fCQd8Xs6YvrjFggFcoCdAqVd2TJQOGRNVcWExq+esDitL75lO5KamF14YuWTCTQW96fObwsp2y9yNO/r4ZddI0DzCt2UIGgW0r3jzxpiaS0QOwC2q/0xVb1TVsar6b9xGLr8Cz3obcySSKy74OlauuND6ibadKsHNDPymLgbLNlbCdY0xpiaoSTfyEmnbVzJTOlHVdcC5ItIA2Mcr/klVf0+mPWMm/31yWO49BKZEjHQ3a9aM7OyyI3YPT3m4TJL1v/b7a8XTMJQAfXC3NUINxy3/N8bUdtfjgqrRoYWqWigiH+CmDLYjsVxxePU7i0iWzw3SyNx0ibadKt8AJwJ/EpGOhK/hC6ZnqlCKA2OMqYBCVY0rJUGy7XvPidzIaxalrYreyEukbV9JBXxBXoA3vdyKxpRj1vOzwt436dSEyTMmh5X5rd8LBALc8+U9YWWN6zfmukOvq3inBgDrIsp64jbGNcbUBcGAqsz2+uz8/MwA5uDuvkbLFQfhwdF0XB63XsDEYGFIbrrQ7YoTbTtVnsYFfOACvFNCjgXX6z9dCdc1xpiaoCbdyEukbV/lBnwikkxSUVXV6HvnGxOiYE0Bvy8NHxzucVUPVl4fthM6Z51VNgHe/V/dz5bt4dlBHj724Yp36ing04iyfMK/hhljarvvcYHZpYTvSt0QOA037XGhqpZ42+8PFJGDVHW2Vy8Pt+ZvAeGL7UcBt+LmC0wMKS+Tm87btS2RtlNCVd8VkSeIvvHJE6r6bqqva4wxNURNupGXSNu+JHKNVJkKIgHCJ9vFRVX97oiaKpSbm6tbtkSmSqx5xt06jq8e+GrHe0kXur7ZldPOOC2s3tatW8tM6WzwYAM2bdu04/0eeXuw6obwvH0JWwh0wq1K3dEp3Ibs5e6DZIypiUQk4ek/ItIWmInbk/cVYBLQGBeYtQOGeEnQg6mJpgHbcfMANnn1DgAGqOonEW2PxAVTYwnPTTcJODo0XUGibaeSt0vpJbgkNIJLu/RfVX2vsq5pYttVPtuNqUzJ/E73aWMukBdtB14RGY3brKt7xM22ebiArVNIrrwDgNnA2IhcecNwufIuUtWXq6JtP/FO6Yy1g5mfVOyOY+qI79/8Pux9sy7NeP2N18PKmjRpUibYe2LaE2HBHsDf+/+9Yp0J4NbtlUaU34kFe8bUMaq6VER6AXcAx+CS224FZgE3hCYdV9WfReRwXE6km4FMXLB4gqp+7tP8cOLMTZdE2ynjjeLZSJ4xplYQkYuAYILm3YFMEbnde79UVV8KqX4L7nf/pyISerOtFe5m2454R1XniMiTwFARGUP4jbwvKZsnrzLbLvtzxzHCF5mQNC6qency55nU2RXuApYUl3Bf9n1htwj6P9Sf8584n2XLlu0oO+644/jkk/Cb2E0fasq6rTsX2TWp34S1f15bsQ4NxqWxDNUDW6lqzC4uFXeD6xIRaYrbClxVdU7EsQNwN4JXqepv1dG/umxX+Gw3prIl+ztdRMbjbu37+VJV+0bU3w93s60PO2+23eV3s83btXk47ttkO9yNvFG4G3kFPvUrre1I5Y7wWeBmKtO3//62zHjwwVcfzPKbl4eVDRw4MOz9i7NfDAv2AO7qe1fFOjOBssFefeB/FWvWGGN2QY8CFwCfASdEHHvQK3sZN93TGGN2CZEBXRz1f8Ct2Y6nbinwiPeo1rYjVXDfencX0LsTaEzCInfnbNC2AROnTCQQCM+FcMEFF4S9v2XcLWHv87PyGdor2t4CcSgmfA+6oDeBvOSbNcaYXdTh3vNrPsdG4Ub4Dvc5ZowxpoZJKuDzgrynRWQdsBpYLSLrvbLdU9tFU5v9OvvXsPedTuvEyy+Hrztt1KgReXk7o65Pfv6ElZvDd/C8sfeNFevImbjZ06HOBU6qWLPGGLOLauE9++X4WxlRxxhjTA2WcMAnIq2BGbjtoBvh7vIJ0NAr+0ZE9kxhH00tteCjBQSKw0fyet/QmwkTwneX7datW9j7Gz8LD+7qZ9Tn1iNuTb4jHwHvR5TtThxLYI0xptYKbl21n8+xYFnA55gxxpgaJpkRvr8D0QI6AVoDf0u6R6bOmPZEeOqo+o3rs1vr3fjll1/Cyk8//fQdrxdvWMycNWH7B3BZt8tIS0tydnIxbiQvlOBy8FV4wrMxxuyyFuF+G94qIgcGC70NW27Brb5eVE19M8YYk4B40zKEOh73i34LcBcQTKB2BG7r6nzKLvA2poxlE5eFvW9/THsmT55MaWl4ToSLLrpox+thHw0LO5YmafytfwXuL5wLbI4oG4xLY2mMMXXXx7g8f82AGSKyGPfZvxeQ7r3+uPq6Z4wxJl7JBHz1vOebgwlnPdNEZBsuj1Ay7Zo6ZMPiDRRvLg4rO/T6Q3ngpQfCyvLz82nYsCEARSVFfPxz+PeLY9ofQ15mkruqfAG8HVHWDHiqbFVjjKljHgUuxy3dSAc6eOXBvLwbcEngjTHG1HDJTFqb4T0v9jkWLPs6ue6YumLmszPD3qdnp7PnYXuWWb/XuXPnHa9v++I2SjV89G/kiSOT60AAODuiTHDr+WwqpzGmjlPV1bjZOsGpGMH1+gBLgRNV9Ve/c40xxtQsyYzE3YYbG7lCRD5T1RLYkRBwEFAEVGAHDVMX/PzRz2Hvm3ZymT0WLlwYVn7sscfueP3sjPAkefs22ZdOTTsl14EhwPqIsj8C3ZNrzhhjahtV/UZEOgH9gc64gG8e8LmqFsc82RhjKsHatWu58sorq7sbu5xkAr7LgSW4RIGLRSQ4mtcLaAV8D1wtIleHnKOqenlFOmpql7U/rg17v/eJe7N8+XKKiorCyi+5xOX0fev7t9hcHL7Y7sH+DyZ38QXA0xFljYBnkmvOGGNqKy+w+9B7GGNMtVi5ciWDBg3i448/RlWruzu7nGQCvktxi7XBBXhneK/FK+/sPSJZwGcAWDt/LSVFJWFlBw8+mH+99K+wsszMTDp0cMtG7pt4X9ixRtmNOG3f05LrwAB2/g0OGoVN5TTG1Fkikq+qkdlIK/1cY4yJZfHixVx++eWMHz+eLM1iL/ZiT/ZkPOOru2u7lGQ3V5E4XoeyUNzs8O2/vw17n1E/g0btG/HJJ5+Elbdv3x6AguICZv06K+zYhQdemNzFn8KN8IXqDxzrU9cYY+qOpSLyJPBPVfVLtl6Gl5d3KHAlbp6EMcakxJw5c7j+7OvZMH8DrWjF1VzN7uyOeKGGBXyJSSbguzvlvTB1ys8fR6zf28+t35szJzy/Xu/evQG4e/zdaMg9A0G4p989iV+4GPi/iLIsYGziTRljTC3TAJdf72YR+Qr4ALcB2wJgHe6GbmOgE24JxwDgcKLf6DXGmLgVrClg7qtz+fr1r/lpxk/kleRxJEdWd7dqjYQDPlW1gM9UyLqf1oW973hSR4qKili/PnwXlXPPdRnRX5j9Qlj5/s32p2F2w8QvfAWwNaLs70CSWR2MMaYWeRU4Dze5/UjvUZ7gUo6XK7FfxphaqHB9IbOen8WPb//I6tmr2bZ5247Ru2Y0q+be1T6WL89UqTXz1lC6LTy1wsFXHMzYseHDbCLCsccey8xVM/mt8LewYzcdcVPiF14KvBRRticwzKeuMcbUMap6oYiMAO4ATqL8Vc2luI1c7lbVmeXUNcbUccUFxcx+aTbfv/k9v878laKN4Zv0SRyTBRQlIzuDRu0awY+V1dPaKemAT0Q6AvvgpniU+b+kqi9WoF+mlopcv1cvpx4N2jRg7P+FB3zNmzcnLS2NW8eFZ/jIzsjmvC7nJX7hgfhv1GKMMQZwaRiAU0VkT+AcoA9wALC7V+U3YA4wHnhDVZdXRz+NMTVfSXEJc1+by7xR81gxbQVb10VOsSrfNrZRlFlEpx6d6HxyZw684EAatGkAwFAZmuou12oJB3wi0hR4ETg+RjX16hgTZuGn4Xn2mnZ26/emTZsWVt69e3cCgQBfLP4irPzEvU8kLS3B7TQ/AyLvP/cFDkusGWOMqQtU9RfgEe9RYSKSBlyH29ylHS5wfAO4Q1W3xNnGScDtwEHANmAc8GdVXexTtwFwL+5WXxNgIfAE8C+N2M9dRM4BTsRlYe2M+17UXlWXROlH3G0n2m9jdnWrZq5iyqNTWDxuMQW/FiR8/jrW8Qu/8Kv8SqcjOvHomEdp3LRxJfS07klmhG8kcEKqO2LqhvULwtfp7XPyPgAsXx5+o/jkk0/mpe9eYntge1j5A8c8kPhFB0W8TwdGJ96MMcaYpDwGXIvbIusRYD/vfTcR6a+qgVgni8hA4E1gNnAjboOZ4cAkEemhqitD6mbibvN1w31f+QEX0D0FNAfuimj+GuAQr+2FuE1povUjobYT6bcxu6JAIMD3o79nxjMzWDF1BdsLt5d/UoiNbGSx998SlrC13lYuvfRSXhnxCjk5OZXU67opmYDvBNwIngDzgLWxqxvjrJ2/ltLi8PV73S/vzsyZMyktDS8/77zz6P9G/7CyFnkt6NQ06mexv9eAZRFlVwJNE2vGGGNM4kSkC2619BhVPTOkfDHwD+APuA1jop1fDxdc/QIcqaoFXvlHwAxckDU45JRBQE/gWlUd6ZU9KyJvAbeKyPOqujSk/sXASlUtEZEniBHwJdJ2Ev02ZpdQtKmIaSOnMW/UPH77/je0NP7Ma5vZHBbgbWADAOnp6Vx88cU89dRTZGdnV1bX67RkAr7gfLqhqvpUKjtjare5r88Ne59RP4P81vm8+dSbYeW5ubnk5+eXyb13duezE7/odRHvs4HHE2/GGGNMUs7D3SAeEVH+LPAgcCExAj7cOsKWuOmfO+aIqeosERkPnCsiQ1Q1OLRwPlDotR9qBG4a5rnAQyHtRN4SjCWRthPttzE11tr5a5nyyBQWfLiAzSs2x33edraz0PtvMYtZGzFGlJaWxtlnn81zzz1HXp5tmV6Zkgn4vsTl31md4r6YWm7xF+FLFhq2bwjAl19+GVbeoUMH/jPrP5Rq+KjfLUfektgFH8etFAlrBNub1hhjqk5PIACELdRW1SIRmeUdL+98gCk+x6YCR+M2kJvnrRXsDsxU1aKIutO8fpR3PV9JtB13v32uFXPIxKa6maqweu5qvrzrSxZ9tohtm7bFfV5GTgbLd1vOe2veY6WuDMujHCQiDBgwgBdeeIHGjW2NXlVI5qvvDUBv4O8ishmYqqqbUtstUxv9Ni88+trzsD0B+PHH8L11e/fuzVPTwwePW+e3Zo+8PeK/WAC3TD5Uvk+ZMcaYytQSWKuqft8YVwC9RSRTVYtjnB+s63c+QCtc4NQIqO9XV1W3icg6r24yEm07kX4bUyNsWr6J8XeP58exPya0q2Zu81z2Om4vJstk/vHaP9i+OvrA9THHHMOLL75Iy5Yto9YxqZdM4vUFIvIscBPwEbhIvWw1tXEUs0OgJMDW9eG/PDqd3omSkhI2bNgQVj7glAE8880zYWXndDknsQveD0RuEPUg5WeWMsYYk0o5uN0p/RSF1IkW8AWHs/zaKIqoE6tusH6yw2OJtp1Iv8OoasyEZLm5ufEvmjKmHEWbiph430TmvDIn7umakiY07tiYzmd35tDrDuXlMS9z6f9dyubN0c/v3bs3L7/8Mu3bt09V100CkknLMAT4Mzs3bjGmXAs/W1gmD17HEzry2bjPiNzJenHjxQQiNm275YgEpnMGCFmh4WkGXB1/E8YYY1KiEPcb2E92SJ1Y5wNkxXF+rLrB+rGuFUuibSfSb2OqVElxCdNGTmPmMzNZ99O6uM7JyM6gxcEt6HZ5Nw666CDSMtIYN24c+3TdhxUr/Aayne7du/Piiy/SpUuXVHXfJCGZUbjrsUDPJOjHseHTNus3rk9aRhrvvPNOWHnjxo15btZzYWVtGrShaU4C22qOACJvMqUkm5QxxpgErQQ6i0iWz7TOVrjpntFG94LnB+v+4HM+7JwiuQHYis+0TRHJwuXN+zLyWJwSbTuRfhtT6QKBAHNensPUx6eyetZqNFD+QHFGdgZt+7bliFuOoN1R7XaUz58/n3PPPZfZs2dHPXffffflpZdeokePHqnovqmgZAK+lrixmjHA34B1uDEVY6L6ZcovYe+DCdcnT54cVr5Pp32YtiY8Cfv5+5+f2MX+GvF+d9w+cMYYY3yJyBcVbGKYqvqtR5sOHAf0AiaGXC8b6ApMKKfd6d7zYcDnEccOBTYBPwGoakBEZuLy+0UGmL1wk/q/ieuniZBE23H325jKtGHxBj79v09Z8MECSreVlls/LSONlr1a0vv/erPfGfuFHVu/fj0XXHABH3/8cdTzmzVrxjPPPMNpp51W4b6b1Ekm4PsB90v636qa1C9OU/dsXLQx7H37fm4O98KFC8PKG/ZuWGY6501H3BT/hf4JbIwouzf+040xpo7qS5mJ93ER77wGUY6PAm7FJRyfGFJ+BW4N2ys7GhJp4bWzTFWD0x2/BFYBg0TksZB8dgd5fX4+IrXBa8DhuBx3I0PKhwMlwBuJ/oBJtp1ov41JmUAgwMxnZzL5oclsWLSh/BMEmu3fjJ5DetL9iu6kpYVveFBSUsKwYcN49tlny+RNDsrJyeGvf/0rf/rTn1LxI5gUSybgux14D7hIRD5VVRvdMzEVri9ke2H459r+5+1PYWEhBQXhO6usaLkibDrmnvl70jC7YfwXuyPifSMsta0xxsQvpUs2VHWOiDwJDBWRMcCHwH7AtbigKDQH3wPAJUA/YLx3/nYRuQ4XOE70No3Lxy0v+Q24M+KSzwKXAY+KSDvcTeqTgDOAe1U1LD+QiBwFHOW9Dc49GyoiG73rh94yjLvtJPptTIVtXLqRT2/4lJ/e/ymu0byGezWk22XdOPRPh5KZk+lb55FHHuEvf/kLW7f679qZnp7OlVdeyeOPP05Ghu3XWFMl83/mbGAx8AfgKBGZBvweUUdV9fKKds7UDt+P/j7sfVpGGrvvtzuvvPJKeHlaGj8Vhs9wOXmfk+O/0GsQkdOzbABojDEmlmuBOXHWFSCeqaDDgSW4228DcL+pR+KSkpd701hVR4vIVtwN54dxO1+OA25S1RURdYtFpD9ubsd5uLV1C4FhwJM+zR9N2eDrhpDXOwK+RNtOpN/GJCsQCPDtc98y6aFJbFhY/mhebvNc9j9vf4667ShymkbftHbcuHGcf/75rFmzJmqdAQMG8PLLL9OwYcNkum6qkETukFjuCSIBdk77EKJMAVHV9Ip1zVRUbm6ubtmypbq7weunv878d+bveN+gTQOGLx3OBRdcwKuv7ry523jfxqz/w/qwc38e9jMdGneI70LtcV8pgvJxy+wtFYMxdZ6IFKpqbnX3o6YK+Ww/UlUnl1e/oueZ5NWUz3ZTvTYu3chn//cZ89+fT2lR7NE8SRfa9W3HsQ8dS4vuLWLWXblyJQMHDuTrr7+OWqdbt26MGjWKjh07JtX3VLDf6YlJduxVorwOshwxZodVM1eFvd+ju0ugPn369LDyjJ7hfx0bZDWIP9ibTniwB3AdFuwZY0x83sV9dse3R3vFzzPGJGHhZwv56NqPWPdj+f/k8lrk0eOqHhx+8+FkZMb+yh8IBBgyZAjPPPMMgYD/wPuee+7Jiy++SN++fZPpekp8t/o7Hpv6WLVdf1eVTMB3d8p7YWq1zSvDcyR0PNHdEfrll/CdOze3Dq93ZJsj47/IkIj3mdh0TmOMiZOqnl6V5xljEjP75dl8ccsXbFq+KWa9REbzgl588UWGDBlSZl+FoN12243HHnuMyy+v+tVagUCAN394k2dmPMPU5VPZst1Gt5ORcMCnqhbwmbitW7AOLQ0f8O1yThfWrFlDUVHRzsIs2JoZviD42kOuje8iy9m5AXbQ2SQ/fm2MMXWciJyoqh+VU+cWVX2gqvpkTF0TCASY8sgUJj04ia3r/TdNCUpkNC9o3rx5DBw4kJ9+8s8QkpaWxlVXXcXIkSPL7NxZmTYWbeSJaU8wau4oflj7A6Va/gY08RCRu4i9YVKJqtaLo+6NqvpwRNtpuLllVwLtcJszvYFbq1wmShWRTrj0dn1wwxQzgTtVtaIpcnwl/ZVYROrjdqfa1yv6EfhQVWP/jTR1yvx354e9z8jOILthNi8+82JYuXQWVHYGhplpmRzb4dj4LjI04r0A/0iis8YYY4I+EJFHgZtVtST0gIjsgUun0Be3s6YxJoVKikv44rYv+Oapb8rsch4qOJrX/8H+tOzRMu72CwsLueCCC3j77bej1unduzdvvfUWe+yxRyJdT9q8NfN4ZMojfPzzx6wqWFX+CckZA/zsU34gcCMuC0Gk6ym7JeAMn3qP4Ta9Ggs8ws7diLuJSP/QDapEpAMwGZfO5SHc5pdXAJ94N9sic3dWWFIBn4gcjftl3yzi0BoRuSDZ6DTR6DhKGyfhdsQ6iJ07Yv05citmr24D3G5bA9m529YTwL/UZzebeNsWkfG4iD2az1V1RzRTTv2eu3K+w6UTloa9363VbgB88UX4X5G0A9MoZecdnIP2OCi+CxQB70eU9QEaJ9hRY4wxka7H7cZ9nqouBBCRAcDzQFNsvb4xKVW0qYiPr/2YOa/OIbA9+ga2GdkZdL+iO8c+dCwZ2Yl9lX/wwQe58847KS4u9j2+xx578Morr3D00Ucn1G4yvln5DQ9+9SCfL/qc37dFbvgfXU69HAopLL9iBFX9DvguslxEnvZe/tvntLdVdUmsdkWkC2633jGqemZI+WLcEMQfKJuCpiFwsKrO8uq+CMwDnhSRff3ikIpIOOATkb1xi7TrE75hiwLNgXdEpJuq+kXQ5Yk7Oo7St4HAm8BsXKTeALcd9CQR6aGqK0PqZgKfAd1w20P/AJwIPOX9HHcl2zZwH/CcTxfPBU7G/w7CWtyHa6RFMX7kGm/N3PDtfJsd4O4RzJo1a2dhGpS2Dh+uv/igi+O7wB1A5Ej/U4n10RhjTBnrcbfOegAzvZxy3QifUzGrGvplTK2zaeUm3r/yfX7+8Gc0EP17flaDLHr/X2+OuPWIhKdYjh8/nvPPP59Vq/xHzzIzM7nrrru45ZZbEmo3UV8v/5oHv3qQcYvHsbl4c/kneJrnNue4vY5j+GHD6d6iO3JbalKGikgOLiBbAXwcpU4+UBg52yHEebiYaERE+bPAg8CFeAGfiOQCpwLjg8EegKoWiMhzwD1AT2Bacj+Rv2RG+P4MBBN3bAWCc/Y64YLAHFxAdGUijSYRHUeeXw8XuP2C2x66wCv/CDf0ehfhKbgH4f5Ar1XVkV7ZsyLyFnCriDyvqkuTaVtVP4vSx9txI4Mv+xzeoqp+5bu0gpXhC4Db9WkHRGzY0hKot/OtIAzqPii+C0SG1Z1wtwmMMcZURGfcb9iTgd3YeedbgAAur9zt1dM1Y2qHgl8LePO8N1n65dKY4+V5e+TR9+6+HDz44ISvUVhYyBlnnMGnn34atc5pp53Gq6++Sk5O9Lx8FTFhyQQemvwQ45eMj3vTlTRJY58m+3B257O59pBraZrTNLJKjohE/VNT1XgjwnNwibz+oeq7WPA73O/AUi/3+F991jf3xP1eDAvSVLVIRGZ5x4MOBLKAKT7XmhrSXrUHfMfg/lp+BQxU1XUAItIEeAs4CuifRLtxR8dR9MGFDncEAzIAVZ3lTZk8V0SGqGpwMvT5QKHXfqgRuCme5+Lm1SbTdhkiciQuHHldVddHqZMG5AGbUz2UWx2KNhVRUhR+M6TTaZ0oLCyksDBkKD4i88KeDfYkOyO7/Au8i8uzF+qepLpqjDEmhKquAU4VkRuAv3vFAmwHBlTGGhNj6opASYD3r36fWf+ZFXNEr1GHRhz/6PF0OrVTUtd5+umnue6669i2bZvv8X322Ye33nqL/fffP6n2Y/li8Rf8fdLfmbBsAoXb45t+WT+jPr1a9WJQt0Gcf8D5VbVRzOW4uOY/EeUbgWdwa+024L7DD8etb/6jqv43pG5LYK2q+v1BrwB6i0imqhZ7dYPlfnUBWiX+Y8SWTMAX7OjDwWAPQFXXicgjuIAv/pWjOyUSHUc7H6JHzEcD+wDzvMCqOzBTVYsi6k7z+hF6vbjbjtG/4F62flM9wf3PLcCNkhaKyCfArar6Y7QGY93ZACrtTk28FnywIOy9pAuN2jfijTfeCK8YkbfzmPbHxHeByHvL+bj7NMYYYyrMW7f+J9yXIfGeM4C/ichFqvp9dfbPmF3RtCem8flNn8fcjGWPrntw0lMnsedheyZ1jaVLl3LSSSfx/ff+/0Tz8vJ44oknuOSSS5JqP5q5q+dy2xe38dmiz9haEt8ejrn1cunTtg83Hn4jfdv1TeRyFU687u2UeQQwLnI/DlUd4VP/P8Bc4DEReTNkECgHN4PPT1FInWJ2zpL0qx9aN6WSCfi247YPbeRzLLhVRrQ5rrEkEh1HOz9Y1+98cEHVPFzf6/vVVdVtIrKO8Og6kbbL8Ob+ng0sBvw2tFkMTMING5cCh+DWSRwjIkeo6hy/dmu6RZ+FLz/M3d39uwybVpBNmdsDV/e4uvzGlwORfyqXJtpDY4wxfry1JJcF3+Lucu/pPboC34jIbapqGZCNicOSCUsYc/4YNq+Ism5NoO1RbTn56ZNp2qnM9MW4BAIBbrjhBv7xj3/4Jk8XES699FKeeeYZMjJSk7uqoLiAv375V16Y/QKrt6yO65y8zDyOaX8MN/a+kcPbHJ6SfiSpvMGYMN7g1r9wS7l6A8EvtIWU3cgyKDukTuhzVhx1UyaZ/9sLcAu3HxSR33GBCsDhwP24O4D+CT1iSyQ6jnY+UdqIjJhj1Q3WD42uKxqNn+cd/4/fVE1VvSyi6E0ReRcYDzwK+OYnKG9+cm5ubrVOC101M3xhcON93P2Ab74J2XS0HRAyYp+VnkXPVuUN5uLuOYdKw22VY4wxJhX+6D2X4naz/ituHsW/gTNwX0wexm22ZoyJYtPyTbxx1hus+NpvzMBpdWgrzhl9Dvmt85O+zoQJEzjrrLP47bfffI936NCBDz74gE6dkpseGmnU3FE88NUDfLf6OzSODXvzs/Lp374/Nx9xc3zf8yqZiGQAF+M2qBqbwKlLvOfQqHwl0FlEsnwGrlrhBrSKQ+oGyyMFy6L/ZUlSMgHf27iArzkun0Wo4JSPRP7gghKJjqOdD/FFzLHqBuuHXqui0fjluA/N52PUCaOqE0VkAtBPROrvivkNNy7ZGPa+9aGtAVi8OGTUPGL9XufdO5ffcAB4J6LsCNzqR2OMMamyDLhIVSd67zcCZ4rIVbidtONYbG1M3VRSXMK7g95lzstzom7Ikt86nzNeOYN2R7VL+jqFhYWcffbZfPjhh77H69WrxwMPPMANN9yQ9DWCfvjtB24ddysfL/yYopLIFVFlNcxuyLF7HcvNR9xM9xbdK3z9FDsFF8s8HmV2YTTBhUihw5nTgeOAXkDw9yUiko2bETEhpO4c3ADSYT5tH+o9pzwdWzKrIR/DJS0Mji5JyGtwI4Ajkmh3JdBURPyCqsjoONr5wbp+58POiHkDbofRMnW96zchPLpOOhoXkQNwawA/VtVEI/YlQDr+02drtEAgwLbfw//9dBzQkZKSEjZt2rSzMCLgO33f08tv/EnKjvPaPWZjTCURkcYi8rCI/CwiRSLym4j8z9uMK7ReJxF5W0Q2iMgWEZno5a31azNNRK4XkR+9Nn8RkUe8Lbv96sfddoqMBbqFBHs7qOq/cJ9rcyvx+sbssiY/Mpm/Nfgbc17yD/bq5dTjxJEncv0v11co2Pv3v/9NkyZNogZ7Rx55JGvWrKlQsFdYXMit426l5SMt6fxUZ96e/3bMYC8rPYsBHQcw+6rZbLhpA2+c/UZNDPZg53TOMrn3RCTDy9UdWb4ncDWwDjfNPWgU7v/08IhTrsDN8HslWOCt+3sP6CsiO5JOi0geLoPAAlK8QyckMcLn5Yk4EvgnLo9EMNhT3OjfNaE7WSYgkeg42vngIubI3cMOBTbhTTVV1YCIzMTl94scfu2FC4RDo+u42/YRzC8Q1/zgCB1x6yF9d/WsyZZPXl6mrM0RbRg3btzOgkaUSZB+1cFXld/4iIj3rXBb8BhjTIqJSFvc9Po83BeDn3B5WA8k5CagiHTAfQEowe3w/Dvuw/4TETnRZ1fLuPPOJtF2hYWmR4py/HsR6ZXq6xqzK1v42ULevvhtCn71/xosaUK3y7sx4KkBpGUkvwPlsmXLOPnkk5kzx3+Lh/z8fF555RVOPvnkpK8x5ZcpXP/J9UxbMa3cKZuC0GX3Ltx4+I1ceMCFVbW7ZtJEpCVwAjAtyj4ZecBiEXkbl6c7uEvnIO/YeaEz71R1jog8CQwVkTHAh+z8nf4lZbMM3ILLevCpiDyGiyOuwH2mDKiMnfqTWrGpqquBgSLSEBeUCPCTqm6sQF9GAbfiouPQO4plomMRaYH7wF2mqsGplF8Cq4BBIvJYSK68g4C+wPMRaRNew607HIzLsRc0HPehGrqVZKJtB/uZBVyAG/Z93++H9u4gFETm/hCRAV7/PvLZSbTG++mD8Pg3q0EWaWlp4XehIkb3GmU3olletFm9nsWUTUU/JOluGmNMeV7GfVYeqKr+GYudB4CGwMHBZLoi8iJuM68nRWTf4Id4Enln42471bzPqHOALrgvOleyM9D9Jdp5xtQlJUUlvH766yz8ZGHUOm2OasPZo88mr1nF1p88+OCD3HbbbVE3Zbn44ot57rnnktqUJRAI8I9p/+ChSQ+xqiDWrztn95zdueCAC7iz7500zG6Y8PWq0aW4GXTRBmO24lLNHQKcjvvdtxY36POQqvqNwA3HzcwbDAzw6o/EpXQL+5+lqj+LyOG4tHM34zbDnAmcUFkpbyq0RY8X4E0vr16cbSUSHT8AXAL0w915RVW3i8h1uMBxoog8i1tgfj3wG3BnxCWfxe1A9qiItMNF8CfhFqPfG7o9axJtB52Omx76kKpG27m0n9eH93ChTAlulPFC3F+W4VHOq9GWTwkf4WvYtiEAU6dO3VkYEfAd0uqQ8hu+KeJ9OnBjwt0zxphyichRuBXC16rqKhGpB9QLudEYrJeLm/EyPhiQwY4ZMc/hMoSGJtKNO+9sEm2njHfj8SXcDdbgGv1rcGtQcnFfaj5J9XWN2ZXMf3c+b53/Ftu3+KdZaNC2AWe+dmbSKRaC1qxZQ//+/aOO6rVr147333+fLl26JN52wRr+9OmfePP7N9lWGns5W2Z6Jke3O5r7jrmvpk7VLJeq3o/baDLa8W3snKEXb5uluNkaj8RZ/wfgtESuURFxB3xeagFweS/KBC/ebjc5AKq6KfJ4nIYTZ3TsR1VHi8hWXIa2h3GLIscBN0Wun1PVYhHpj9t97DxcYLYQd9f1yYq0HSLq/OAQ84EZwMm4xaP1cEkH/gXcn8S6vxph3fx1Ye9bdG8BwIIFXm6+NKB9+DmXdr00dqMB3KznUH2o4G0LY4yJ6iTveZl3U+5EIF1EFgD3qOrL3vEDcZt6RcvVCuFBWSJ5ZxNtOyW89edv4u4871in7312vgecj/uyYgGfqZNKikp4/YzXWfix/6heZl4mxz92PN0HVTwoeu6557jmmmvYvr1sUJmRkcFf//pXbr755oTbnbBkAn/69E/MXDWz3Gmb+zXdjxsOu4HLul5W46dsmrLi+qosIifj9kUsBg7AbdoSqR1uAXeGiJyuqr5TGGOJNzpW1UuJknXNu25c1/ZGKId6j3jqx922V/+4OOr8gMvRV6ts+W1L2Pu9+u9FIBBg/XpvOWILwvZ3E4QzO8dcMuImVkVObn2woj01xtQROSIS9RtNlDQ3wf3Ln8UtpL8EF3z9CXhJROqp6vPEn6s1KJG8s4m2nSq34H5WBb7F7c4d9BUu4PPbZc6YWm/BhwsYfc5o/1E9gYOvPJiTnjypwoFRQUEBJ554Il999ZXv8Z49e/Lxxx/TuHFj3+N+AoEAD01+iBFTR5SbNy87PZuzO5/Noyc8StOc5HIDmpoh3rGRc3F3+Maqql+wF5yP+ibuQ+BcEgiMTO1S8GsBWhr+varjgI7MnTuXHctM2oWf0yq/FRlp5fx1jAzumhF+H9wYY1JrN+95M9AvuFO0iIzFTcG/X0ReIPFcrYnkna1oHthk9cUFe/fikguHrq0Prt1riTF1SElxCaPOGMXPH/p+FSavRR4XfnohzfdvXuFrjR07lgsuuICtW8tm5crIyODxxx/nmmuuibu9Xwt+ZfjHwxn741iKS2Nteg+tdmvFjb1vZFivYTaaV0vEG/AdjPvF/1E59T7CBXwHV6RTZte2eNzisPdp9dLIbpjNB//8YGdhu/BzDt/z8NiNrsGtsgx1uV9FY4zxVaiqvikPYgh+03otNC2Qqm4QkXdxSXs7kXiu1kTyzlY0D2yymnjPX/ocC/5ZNKyE6xpTIy34cAFvnvsmxQU+wZJAzyE9OeHxEyocIBUXFzNw4EA++OAD3+P77bcfX3zxBXvssUdc7S1cv5BB7w7iy6Vfxpy2KQiHtDqER49/lMP2tMH72ibegC/eHbkqc3qJ2UX8Mjn8r0n9xvUBmDzZS1mSBrQJP+f8A86P3WjktjhpuNWUxhhTeYK7T/3qcyy4hV0jEs/VuhLo7JMWKFg/NO9s0nlgK2gTLnFOR8rm2wvOrdhQCdc1pkYpKS7hjYFvsOCDBb7H81rkceHHF9L8wIqP6k2YMIFTTz2V33//vcyxtLQ07rzzTu6444642pq5aiaD3xvMjFUzYtarn1GfP+z/Bx4+9mEa58Q/NdTsWuIN+IL1yiQhjBDc2MW20ajDVs8JnxPeoI37a/PDD94QXQvC7lULwskdy8kV80bE+4OpnElMxhiz0zTgKqC1z7Fg2RpcQLgN/zVth3rPkbld4807OyfBtlNlJnAsbhfQ50P6OAi3jbjiNhwzptb6+ZOfGX3W6Oijelf35ISRFR/VCwQC/PGPf+SFF17wPb7nnnsybtw4OnbsWG5b45eM55oPruGHtZHToiLazN+TW464hSsPvtKmbdYB8f4fXuM9DyinXvBb+5qYtUyttnHxxrD3zbq4mUsrV3o3qtuF12+d3zr2L5tvKJt6/paK9NAYY+LyNm793oUisiN5lpcL9nRggar+7OVmfQ/o6+VnDdbLw23tvYDwXTRH4QKm4RHXK5N3Nom2U+U/3nNTXPKb4Fywp3E5qULrGFOrBEoCvH7667xywiu+wV7eHnlcNeuqlGzM8t1339GiRQvfYE9EGDZsGMuWLSs32Hvr+7doN6Id/V7oFzXYE4TD9zycGYNnsOz6ZVzd82oL9uqIeP8vT8Nt2nKZiPjuKCkiZ+Ly2imV8+FjdhFb1obv0NmyV0uKiop2LjxuF16/3PV7kbMX6uOyJRpjTCVS1Q3A/+GmTk4VkT+JyM24dAiZhO/wfAvwO/CpiNwsItfgRu9aAcNCE6Or6hxc+p+BIjJGRAaJyCPAo5TNO5tQ2yn82UcBr+E++0N3MA2+fk1V34qnLRFJE5HrReRHESkSkV9E5BEvx2BcROQkEZksIltEZL2IjBaR9lHqNhCRkSKywrvePBG5WkT8dmKNu20RGS8iGuPxWQL1e8T7s5uqtX7heh5p+Qjz35lf9qDAwVcdzPUrrk/JFM57772Xrl27smZN2XGSJk2aMG3aNP7xj3/EbOO5mc/R4pEWnDX6LJb+vtS3TpqkcdLeJ7H8+uV89cevdtn8eSZ58U69fBWXOiANeF1EBuN27VqHW9jd33sEE7O+EqUdU8uVFJdQWlQaVrZX/734/PPP3Ruf9XsXHHBB9AYDwBcRZSdUtJfGGBMfVX1GRNYCfwb+ivutNAU4X1UnhdT7WUQOx+0nfDMuIJwJnKCqn/s0PZw4884m0XaqXIhLwfBHoLNX9gMut+y/EmjnMeBaYCwu7dJ+3vtuItK/vDy7IjIQlxNwNm60sQHuz2+SiPRQ1ZUhdTOBz3BpJEZ6/T0ReAqX6/auZNsG7gOe8+niubgZTpGZYsH9f73ep3xRjB/ZVJPZL87mnT++U2ancYDc5rlc8PEFtOjaosLXKSoqol+/fkydOtX3+HnnncfLL78cdfQtEAjw8JSHefCrB9lQFH0pbUZaBmd3PpunBjxFw+yGFe632XVJPDcGvbti44EjvSK/k4LB3gRV7ZeqDprk5ebm6pYtW8qvmEJLJizhhT4h0xIE7gzcyfXXX8+IESPc/egrQg8LJX8piT6l4GXgooiyuUCXlHbbGFPLiUgyu3SaChKRLrh1iGNV9cyQ8mHAP4ALVDVyRDP0/Hq4wLgE6OJNcUVEuuLWEP5bVQeH1L8GN3p6raqODCl/CzgF6KiqS5NpO0Yff8TNXWmpqutDyscD7VS1XXltJKI6Pttru0AgwNgLxzL3tcj9iQCB7oO7M+CpASmZ/jh9+nT69+/Ppk2byhzLy8vj7bff5phjjol6/qNTHuXO8XdSUFwQtU5WehaXdb2Mx054jOyM7Kj1djlLgbuBd0HW2e/0RMT1N9ebLnI28F2UKsFpEt/h7nSZOmrp+PDpBFm7ud1Zpk+f7grahdcvd/3ewxHvm2PBnjHG7DrOw31HGBFR/iwuncSF5ZzfB5fv77lgQAagqrNwN6LP9QK3oPO9dp+NaGcEUI/w7yiJtl2GiByJS80xNjTYi6iTJiL50aaUmupVsKaAkXuP9A32MvMyuXzK5Zzyr1NSEuzdc889HHLIIb7B3jHHHMO6deuiBnsvzHqBJg814YZPb4ga7OXWy+Xmw2+m4NYC/nnyP2tHsPcrMAS34V873BZS66qzQ7umuHfTVNU1InIYbqpDMPdQ0Hzgv8DjqlpU9mxTV6yauSrsfd4ebm3/woULXUG78Pox1+8VUvYWQ4zZn8YYY5IjIpGT5+Ohqhp9KMLpiZsGG7a2X1WLRGQWO1M8xDof3DTaSFOBo4F9gHkikgZ0B2b6fBeZ5vUj9Hpxtx2jf8GMsH5TPcHNaynArT4vFJFPgFtV9ccYbZoqsuCjBYw6YxSl20rLHNuj6x5cNvEyMvMyK3ydwsJCjj76aL7++usyx9LS0hgxYgTDhg3zPffd+e9y1ftXsapgle9xgEbZjbjliFu44bAbascmLOuBB4DX2Zkcx1RIQukTVHUr7n/BAyKSg0u6ulFVKyPpq9kFrZsfftulcUeX02Xt2rWJr997mPDJwwL8JRW9NMYYE6Ev/ss1ogku4yhPS1xewch8g+DyB/YWkczQxPY+5wfr+p0PLqiah8uJWN+vrqpuE5F1hOczTKTtMkQkHzf7aTFlV5vjlU/C3bosBQ7BbfRzjIgc4W3e49duzD/XnBzLSZQKn97wKVMe9Yv14ZDhh3DCY6nZMODrr7/m2GOPZfPmzWWONWnShIkTJ7LffvuVOTZhyQQue/cyFm2IvtyzWW4z7jv6PgZ1H5SSvlarAtz3vhdx/3JMSiWdL88L8izQM2E2rwr/hdaiewuWL19OSUkJ7EGZ/HsndTwpemOROxTvg7vFYIwxpjJUxpTDHFweQT9FIXWiBXzB6MavjaKIOrHqBuuHRkuJtO3nPO/4f/x2SlXVyyKK3hSRd3HTRR/F5Tk0Vay4sJjnj3ieX7/9tcyx9Kx0zh1zLh1PKj/fXTzuvvtu7r77bvz2yzjuuOP44IMPyMgI/yr+3ervuHDMhcxZ43s/AICG2Q35+7F/3/UDvQBubPxx3PZK8dxCqofLQDqxvIomlCVINylVvDn8M7ttn7Z88MEH7s2e4XWb5zWPPvVgPWX3MLvCr6IxxpgUiAxOUqUQaBblWHZInVjnQ9jtwqjnx6obrB96rUTa9nM5buTu+Rh1wqjqRBGZAPQTkfrezKnIOjED79zc3JSn4agrVkxfwYvHvFjmuwpAg7YNGDR10I6lKBVRWFhIv379mDatbJaytLQ0Hn/8cYYOHRpWvnjDYs5/63ymrvDfuRPcGr07+tzBnw//c4X7WK0m4DZfmQhsj6N+OnAwblHZubgZY7YiNiEW8JmU2bB4AxoI/xxqc3gbJvxngnvTOrz+Qc0PIqr7It6nAf7T240xxlSQqpbN+pwaK4HOIpLlM62zFW66Z7TRveD5wbqR2aSD0zOD0y83AFsJn7YJgIhk4dJIfZlk25HtHYBbA/iBqvrWiWEJbgptI6+/pgpM+vskPr/pc99RpC7ndmHgqwNTsv4t1hTOpk2bMmHChLApnL8W/MrFYy/ms0WflakflJWexXWHXMcDxzyw667RW4bLq/w2LqtoedKAA4BrgEHEnznc+LKAz6TM4nHhk67Ts9LJyM5gzhxvWkLECN+Je58YvbHXI94fiMs8ZYwxpkqJyEFAcI7bz94ulvGaDhwH9CJkEpaIZANdcff6yzsf4DDg/9k7z/Coqq0BvysJaUDoiFJVpIiiNMFCUUQINopgQVCu6EUEwatcUBGxg6L4iXpVUJpYQEFFpEoRLyIlcAVpSlMECb2FAMms78eeCXOmJJNMGmG/z3OeydlnnXXWTKactfcqvj0HmwFHgM0AquoSkSRMfz9fB/MqzC3jypzoDoAnli5YsZbMuATTCiJgVU9L7uJKc/Fx4sdsm++fGCaRwq1jbqVBzwa5cq1hw4bx/PPPBwzhbNu2Ld9++21GCGeaK43e3/Zm3JpxuIK0ooyKiKLnlT15O/FtoqPOwpugVOBVTOfOP0KQF6AOpjtpH+x9Xy5iHT5LrrFzmbOUUnw5k/qwY8cOKA6UdcrffdndgRX9wZl5Vw99AwlaLBaLJa9wtxz4AJNB7T2+GeitqosDnujkc+ApTDCWd9bNg5j8t8lees/HND7/w6sY3GJgN9BLREZ59cq7ArNKNk5VvYPCPgWuxdwyjvYaH4BxsqZ4jWVXt8fOGEzN6D3At4GetIiUAo6parrP+M1u+2bZquZ5z6mUU7x76bsc3uG/pBRfPp5/LP0H5S4pF/Z10tLSuPHGG1m82P8jERERwejRo+nTp0/G2H9W/Icn5j1ByunAEcMREkGXS7sw9raxlIgOP8Q035mCcfRWY/L0suIC4D7MN8VZ+HTPBqzDZ8k1ktclO/ZL1SiFy+UyYQ21nLLxxeKpWCJIWscLPvtR5F12icVisVj8EJFrgHmYEgm+2TK1gTki0lpV/5uZHlVdKyLvAH1FZBrwHVAXeBTjcHk3XX8Fc9t3PaawCap6WkT6YxzHJSIyBkgAHgP2As/6XHIM5hfjDRGpgQnVbA90BF5U1Yxlnhzo9tABEx76qqqmBZG53m3DDExGehpmlfFeYB/GAbXkISn7Unjn0ndI2evvVNW4vgbd53YnIir8OMFdu3bRuHFjdu/2b5tQoUIFlixZQu3appPZT3/+xF1f3sUfhwMvdwnCTRffxMQOE4PfIxVWdgCDga8JLVC5BHAr5p7v4jy0ywLkkcMnIpepqn8HS0uR5vAfzhm0ipdXZM2aNSa0wSd/7+IymXy6v/LZ9wTiWCwWiyW/eAVnQJXnFi7O/RiNybZuFYKuAZi8tYeAmzEOz2hgqGqQWDYvVHWqiJwAhmAKt58EvgcG+ebPqeopEbkReBFTRbMcsAWTBf5OOLq98PTe+zATszcBq4BbgPMwjvNO4D3g5Rzk/VmywaEdh3iv/nucPOKTNipww0s30PzJ5rlynQULFtC+fXtOnvQv9NquXTtmzJhBVFQUyceS6TK1Cz/8ETyC+eoqV/Np50+pXrp6rtiWL7iAd4FR+BfaC0QUJoD6GWyN2nwmVx0+dxjEsxifvVhu6rYUfk7sd07pVGlahXnz3UnIPvl7zasH+bL9DXMr4M2/csU8i8VisYROY0x5i81AN1VNAhCRhsDHmEybrJqmA+AOa3zdvWUmdz9wf5Bj3xIkfDKA7CFMIkBIyQDZ0e2WvykEmQ2YHn2WfGbPL3sY23QsaanOxdeIqAi6z+tOjVY1cuU6w4cP56mnnvLL1xMRRo0aRf/+/XG5XDzy3SO8v/J90tW/uTtAlYQqfNr5U66rdl2u2JUvrAMGYWIAQqmyWRt4BHgYG1tYQIT8sovIZZgvz2qYWar/qOpq97E6wHCMoxdqM1ZLESLtVBrpp5xfZhe1vohlA5aZ1bkLnPJ3XnpnYEUv++zHAJ1zy0qLxWKxhMgJTGuCZzzOHoCqJonIUEyWju3FaylUbP9hO5NaT8KV5lw4joyN5IGfHuD8K88P+xoul4uOHTvyzTff+B2Li4vj+++/5+qrr2bCmgn0ndWXY6eOBdQTFxXHiBtH0K/pWVKC/BRm3f8D/OssBKI8cA9mGahsFrKWPCckh09ELgWWYkpveOguIq0xwXoTMOEdtivGOcruVT6x6wKlqpViw4YNJpjFKzAoQiKCz2TN9NlvmptWWiwWiyVE5mI6XgWawPWMfZd/5lgsmbNh+gam3jHVrz1UdMloev+vN2UuLBP2NQ4cOEDjxo3Zts2/4me1atVYtWoVf5z+g4vfupitBwPHOApC9/rdGXPrmLOj8uaPmGIqSzFdJzMjEmiJmby392+FilBX+AZi0iuVM05dNCZq91KcTUv/AEbkloGWs4O/ljvTEYrFmYjeXbt2maV8L84rHqTh+h+YNHlvzpKJL4vFYiliDAJaAM+JyK+quhFARGoDwzA5eYMKzDqLxYuksUnMeGiG3/REfIV4Hln/CPHl48O+xooVK2jVqhUpKf4L24mJiXw27TO6TO3C3K1zg+pockETvuj6BdVKVQvbnjzlFCYL9j3878sCUQUTsvkENmSzkBLqv+U6zMfIBcx2j7XFxPh7HMBtmATuiZlUrbIUUZLXOit0xpWNO1Oh0yd/78pKVwZW4jtNUAzolFsWWiwWiyUbLMYUaLkA+FVEDrrHPcskB4ClIo7AHlVVW2/Pkq8seWUJC55a4Ddeqnop+qzrQ3SJ8FfR/vOf/9C3b19cLv8aQ8899xxVb61KxZEVOZnuX7wFoFKJSnzc8WNaX9Q6bFvylA2YGrXzyXo1Lxpoh0noqpuFrKXACdXhq+x+HKyqrwOIyOPAaxhHcCLwT1U9lfsmWs4G9v+237Ff4oISrF+/PmCFzvaXtA+s5Cuf/YbY6pwWi8VSMNTA/L57Inu8s3DUve89ZvP3LfnOnH/NYdmoZX7jFS6rQO/VvXOl7UKPHj2YNGmS33h0dDQTv5jIa7tfY9U3qwKeGxMZw/PXP8+/r/132HbkGS5MM5PhmHX7rLgEeBzTSdPeo501hOrwxWK+yFd6jXn//YR19s5tjuw84tgvW7Msc+bMMfPDPsm6d112l7+CZPyTgB/OTQstFovFkk2C5eXbfH1LgTPt3mmsnbzWb7xa82rct+i+wKkj2SAlJYWmTZuybp1/l7GKFSvSa2wv7l1zL2ku/6A2QeharyvjO4wnNio2LDvyjGRMCOYXZN03Lx7TyXI4fpP4lrOD7Ebaejt1Ge9wVd0fQNZyDnFin/PbouJlFfls2WdQySkXGxVL+fjy/gpe89mPBLrnqokWi8ViCZ3rC9oAiyUQLpeLyYmT2TrXvyhKnY51uHNakCrg2WDTpk00bdqUw4cP+x1r1LIRRzod4eUk37LihotKX8Tse2dzSblLwrYjT/gOU4TlfyHI1sR0qLwvTy2y5APZdfh+9InXBxAR8Y30VVW1aZvnEKeOORd4L2h8ARsmbwCfCshVE3wS+jxM9dmvjw0VsFgslgJCVRcXtA0Wiy8ul4uxV431rwwONPxnQ25979awr/H999+TmJjI6dP+DeYa9W/E6rKrcR30z+WLlEiGtRrGkBZDwrYh1zmFaY/wPnAwC9koTG7eG5jwTUuRILtOma+3p0HGLecQqYdS/cogV25amZ07d5rWvF5cUekKfwXHgB0+Y//IVRMtFovFYrGcxbhcLj5o8AF7ftnjd6z5kObc8MINYV/j/fff5+GHH/Zrph5RJoJS/UqxKmJVwEzVK867gtn3zqZSiUr+BwuSvzHVzr/CKy4vCJUw3bYHYSttFkGys4YSyKmTIOOWc4g/f/rTsS+RQmxCLEeOHPFb4bvxwhv9Fbzrsx8BPJSrJlosFoslm4hIUxGZLCIrRGSLiGz12bYUtI2Wc4fJiZMDOntt32ybK87ewIED6d27t5+zV6xFMVyPujgY4b80Fh0Zzfu3vM+a3msKl7O3AtMH7wJMjl4wZ0+AazC99nYDT1PknT0R0SDbsQCytUXkKxE5KCLHRWSJiAR8s4lIhIg8JiIbRSRVRP4UkddFpHgQ+ZB15wah/lt75pUBlrMf39CK6OLRbNiwAY1W8E7XU+hYp6O/gk999mviaNRusVgslvxFRO4B/EsTeolgq3Ja8omv//G1f86eQKfJnbj87svD0u1yuejYsSPffPON80AZiLgrgtPn+Yd2AjSv1pxv7/6WhNiEsK6fq0wEhuIfNeVLAtAD00ytEJmfjywBPvAZc/yjReRiTLv5NOBV4DCmNukcEUlU1fk+548CHgWmA69jmlU8CjQQkRtV1RWG7rAJ1eHb5n5crapHc9sIy9lN8q/OHnzxFeKZO3cunOeUi46KpmKJiv4KfvXZ75Cr5lksFosl+wzBRvBYCgELhy1kzbg1fuNdpnbh0s6XhqX71KlTNG7cmLVrfap9NgBuAVekf65e8WLFmdBhAp0v7RzWtXMNT37efzBuQ2bUxDRUD7+uzdnOVlX9OAuZV4DSQCNVXQMgIhMxd63viEgddS8Hi0g9TPDsNFXNeGOIyDbgLeAu4JOc6M4tQnX4FmE6dbTAeKQWSwYHtzjDHBKqJjBn2Ry/cM4LSl7gf/IcfOZUgP65ap7FYrFYss9FmBW8nzAz1/sK1hzLuUjSh0n88NwPfuPt3moXtrOXnJzMFVdcwd9//31mMAa4BQiyaHhbrduY2mUq0VGFIAwp1Pw8Aa4FRgNX5rlVZw0iEg1Eq2qgUM7iwG3AIo9DBqCqx0RkLPA80ARY7j50N+aVftNHlafD4b24Hb4c6M4VshOpa2f6LAE5usu56FvuknL8uuxXuNgpV79iff+TffP3ymJizi0Wi8VSkPyJcfpeUNU5BW2M5dzjt1m/MePBGX7j1wy8hqb9moale926dTRr1ozjx4+fGTwf6IJf72CAMrFlmHbnNFrVaBXWdXOFDcADwDIyD6qOxjyfN3Gm11gA7sA4YZEishf4HBiiqp410voY9/+nAOcucz96O2VNMAtjDidNVVNFZI37uIfs6s4VbOF7S9ikHkx17J9X/zz+/PNPvxW+6y8M0NZpic9+q1w1zWKxWCw5423MRG9iQRtiOffYnbSbT2/91M+hqXdXPdq82iYs3d9++y0NGjRwOnvNgF4EdPZ61O/BvoH7Ct7ZWwM0Bi7FuArBnL0ywDDgOPAxRdnZi8+kAEtmrvByzCt0B6bD4AJMfdIlIlLCLeNZevgrwPmescpeYxcA+1T1ZBD58u4VxZzozhWyW4vHJmhb/Dh9whmTWblpZQ6nHIYKTjm/gi1/4N8P5pFcN89isVgs2URV/09EagP9RKQp5hbzUAC55/PbNkvR5vAfh/no2o/QdOctZ9XrqnLHp3eEpfv//u//eOyxx85U4ozD1A2o7S8bGxXLl12/pP0l7cO6Ztj8jCnnsTYLuZqYIixd89yisxpV9V0enigiv2Bevf7ux3j3sUAOnGeVI95rLD6IrK/8qRzozhWy6/B9ISLBnpA3qqoXZy1mOds5/Mdhv2mA1NKpaAV1rB9HSRTVS1d3Cv6fj7JoIM8K0losFoslVESkOtAWs8p3lXsLhHX4LLlG6pFU3rviPdJSnUlp5WqV4/7F94el+5FHHuHdd73ySKph1ngCVKmsV6EeP9z/A2XjAyz55Rc/AP8ENmYic27n56WoasCWBzngNUzpm5sxDl+KezwmgGys5/retgABqhIGlM+u7lwhuw7f+VkcV2yp5nMK3x58EcUiWLh4od875bwSPiU7Ab722Q+vsrLFYrFYco/RwIWc+V0PhP2tt+QaaafS+E+9/5B6yJkmUrxicXr/rzcRETnLQnK5XCQmJprq4WDezc0xKSQBVD5x9RO8dtNrObpWrjAHE+2UWZfLCOBWTGOBYG6GJWRU9bSI7OJMAOwu92Og0ErPmHdI5i7gUhGJCRDWWRkT7nkqh7pzhdxur2gLu5xj7E5y9uCLSYjh559/9nP46lWo5xxIA3xa6nBvrptnsVgslpzRCuPQpQCLgf2YogQWS67jcrkY03gMR3YecYxHl4imz699iIrN2e1qWloaDRs2PNN2oSTQCTOV4UOJ6BLM6jaL66pdl6Nrhc3XmIDCzHroRWJWJd/DFPW35AoiEgtU4UzRlLWYkMurA4g3cz+u9BpbAdyEiYTIqE7h1nslZr3WQ3Z15wrZ/QSNw2ReWSwA7NvorNRd/LzirFu3ztQg8qJF9RbOgc/xnxt+KNfNs1gsFkvOSAWKAw+q6mcFbYylaPNJ+09IXuvs6RsZHclDSQ8RXz5n6UwpKSlcdtllbNvmbiVdE+iIeVf70LRyUxb0WEB8dK6nTmXNFOAxzqz7BCIKuAd4ByiRiZwlU0SknKruD3DoBcyrPAMyWiTMADqJyBWq+j/3+SUw5X1+w1lF83PgKWAAznKED2Ly8SZ7BnKgO1fIrsP3oaraPnyWDA5tO+TYL129NNt/2Q43OuU61OngHPBtd3k+eZCiarFYLJYc8iVmGi5QnonFkmt80+sbtsxxxi9KhNBjQQ/KXVIuRzoPHDjApZdeyp49e0z4Y2tMrpsPgvDC9S/wdIunc3SdsPge+AeZL6MUA+7HtO6OzUTOEipDRKQZsBDzypcA2gPXY8rjjPaSfRLzzpkrIqOAIxgHrjJws3djdFVdKyLvAH1FZBrwHVAXeBQTIeHddD1bunOL3A7ptJxjHNvj7FdZvk559v2yz/HOknShXkWfkM6ffRS1yhPzLBaLxZIz3sXcBL0uIp6eUYd9hVTVRv1Ycsyi5xax+sPVfuN3TLmDatdWy5HOnTt3ctlll3H48GFThbMrAUM4y8SWYUGPBVx5/pU5uk6OWQN0A9ZnIhODmW4ZiSloZ8ktFmEaW9wHlAPSMStqTwNvqGpGAqmq/i4i12Iapw/G/CeSgHaqOj+A7gHAdsx/7mZgH8aBHKqqjnD4HOgOG+vwWcLi5GFnbmrZS8uSVtpZXatUbCnnSfvwb8fQK/dts1gsFkuO+R9nCrb8J4iMYu8jLDlk9bjVLB622G+87ZttubTzpTnSuWnTJho2bEhKSoopv3EPAXvr3Xjhjcy8ZybRUfnoTe0A7iZwu20PcUA/TJ1I+8nKdVT1a/xLBmYmvwG4PUTZdOB195arunODUEse/eHeUrMStJw7uFwu0k+mO8Z2Re7yqxh1cXmfDh3v+SiKwrZjsFgslsKJJ7RIvDZ8/s4UEYkQkcdEZKOIpIrInyLyuoiEXFJdRNqLyFIROS4iB0RkqogEWLcBESklIqNF5C/39X4VkYdFJKC9oeoWkVaZNHr+Nly7zyX2/LKHGb1m+I1f/cTVNOvfLMAZWbNy5Urq169vnL2aBGykHimRvNP+Heb1mJd/zt4+TNDghQR39mKBZ4BjwAiss2fJdUJ9SzUKkuQYEO8kREvR5fAOv+geVm1d5efw1T/Pp4LLVz4nXZKrZlksFosldwjm0GW3IvcoTC7LdMzstye3pYGI3Ogb7uR3MZFOwBeYVceBQClM+NR/RaSxqu7yko0G5gENMOFUG4BETIjqecCwnOr24gOchRkAdoZj97lEWmoa41qMQ13ONKV6d9bjptduypHO77//nrZt25Kenm5qH7bBb0kjISaBZQ8so26FujkzPLukYIL7PiV4fdsooDfmE2KdPEseEurb61cReVBV/adjvHDPnj2Fmaew6aVFHN+WDBHFIli5ZiVc5JRrVaOVc+BXH0U357ppFovFYgkDVc1Z0zMfRKQeJkhtmqp29hrfhilFcRf+BQ28zy+Gcdz+BJqr6jH3+CxgFcaB867x3AtoAjyqqp4CDGNE5EvgKREZp6o7cqjbw0+q6lt6LFy7zxnGtxrvlw5ywVUXcMdnd+RI3xdffMGdd96JS1wmQK6Bv0ztcrVZ+dBKSkTnQ4nLNIx7/w5wOohMBCa3cAy26qYlXwj1C70i8JWIfCgiJQMJiEhN4L/A85i6QtnGhn2cXWEfe3/d69iPLhHNhq0boIzXoEL7S9qf2V+Df2Bwnzwy0GKxWCwFzd2YFcE3fcbHYNZAsurA2hK4ABjrcZoAVHUNpgDDnW7nysM9br1jfPS8ibk3uTMM3RmISHExPbZyy+5zgu+f+p6/fnb2lI4tE0vPJT1zpO+DDz6ga9euuOJcpgxHAGevY52OrO+zPn+cveFAAubdFszZuwnYjVn5s86eJZ/I7gze/cAvItLSe1BEHsHcyjclvObro4A3MLWL+gFTMWEfM0QkS1vd4RPfYtJeBwKvAS0w4RMX+Mh6wj56Y/pn9AM2YcI+ng1HtxcfAN19tpG5pLvA2b/ZGeUbVzaOv1x/Od4BEWkRlI8vf2bAN3+vOAGrZ1ksFoul4BGRxu6J0XnubbSINM6GiiaYgDZHXyl3Nbw17uNZnQ+Bs5+WYW6va7ltjQAaAqu9q+25We62w/t6Iev24f8w2VYnRGSziPQPMFGcU91Flm0LtvHjKz86xiRC6LmkJ1HR2Y9nHD58OP/85z/RimoK2gco6vni9S8y7c5pRETkyoJ1cGZhAoafBE4EkbkK+B2Yg1/qi8WS14T6CXsDE3cuQHXgexF5C+McvYPpuub5sjsIPJJdQ2zYx9kX9nH4D2cOX4lKJUhNdf7Glo4p7Txpro+SALNxFovFYil4ROQpTENib24A+ojI06o6PAQ1FwD7VPVkgGN/AdeISLSqnsrkfI9soPPB9K76FRNfEhdIVlVPish+t2xOdINZs/kG02Nrl/v8BzDrOVcC3stU2dWdgYhk2oMrPv7sa1qbciCFT272v4VLfDuRivWy7/0MHDiQkSNHQh2gE36tC4pFFOOru75yRhjlBTvc10/KRKYOMAnIzjSJxZLLhDTloapPYPrx7PA6rz9mRczb2ZsPXK6qn+XAFhv2cZaFfRz729mDj7KYMshe1D3fKznaxZl3kIeueWCYxWKxWMJCRG4AXvTsBtheEpFWIaiKBwI5e3AmwD8zD8ZzLJAO3/Mzk/XIe18rO7pR1f+q6u2q+r6qzlDV94FmmDWb+0XkupzqLup82OxD0lKdLZtqd6hNk4ezWuD1p2fPnsbZa45ZCvBx9srElmHDIxvy1tk7hbmLvJDgzl5VYDambJB19iwFTMhr3Kq6BLgc+NA95P3Fn4JZKbspjKpTNuwje7rJJE9Qs5ohzA1O7HfGLexx7fELU2hSxetl/A7/SlU5C9u3WCwWS97yqPtRgJWYydA3cf5G9w9BTwqmjXQgYr1kMjufIDp8z89M1iPvfa3s6A6Iu8LoK+5dbw8jx7pVVTLbMrOnMPLV/V9x4LcDjrGEKgl0/TL7M76dO3dm/MfjoTPQ2v/45RUvZ+djO7m47MX+B3OL1zH1Vj/lTNMSbxKACZhmZm3zzgyLJTtkK6hZVY9j5ipOY97mnrf6YWBzmLZkFfZR3p13l9n5HtlA58OZUI5Mwz6AnIZ9ePCEffwbuA2TJ3gI82P5URh2FypOHXNG4GxL2ebn8LW+0OsbebKPgvLYhGWLxXJWISLxIrLNPbH2doDjtUXkKxE56C7CtcS9WhZIV7YKlWVHdy7QFPMbP0ZVr1LVf7m3ZpjIGMGsbmXFLszvdyDHpzLmdz9YOKfnfI9soPPhzG/lQUwGlZ+s+/rlcP7WZkd3Zmx3P3rHuOSW7rOatZ+u5X8TnF26IopF8MBPD2Q7r65Dhw5MmzvNTBRf7n/87svu5peHfyE+Oo8WThdh7tieIHBX6khM8tNBoEfemGCx5JSQP20iUk1EFmAKikRxZnVPgUrALBF5R0Ry+kmzYR8h6PamIGcBXS4X6aecTdfXHF0D3jVcXXDDhV73Iv/1UWJDHCwWy9nH8/gFrxtE5GJgKaYT2KuYIlwlgDkicmOAU0IuVJYD3eFSzv04LcAxz1jZAMd8WYG517jKe9Cd6nAlZvUwq/PBPG9fmgFHcE84u1fbkjD9/XwdzKvcdnhfL2TdWeDpJrsnD3SftRzacYivenzlN37H53eQUCUhW7puv/12vl7ytcmY9HGhBeH1m17nk85ByzyExy7Mf+x6THXNQLQGkjGf6DyuD2Ox5ISQ3pYi0hP4BZNv5nH0vgVuAbZ4jfUG1ojINTmwxYZ95FB3QXDkzyN+YxvZ6NiPPBl5ZqbNhX9b2py13LFYLJYCQUQaYubw/So5u3kFKA20VdVXVPVdTKbRLuAd75B+n0JlnVR1jKr+C/gX5tbyrpzqziWOuh8bBTjmGTsW4Jgvn2Mmhgf4jD+ImczMiP0QkfNFpI7PxPFizG12LxEp4SV7BdAKmKqq3gXwP3Xr9S12NgDTIW1KTnWLSDl8cDuWw9y73r2Ks2t3kcKV5uLDZh/iSnPmcTTq3Yi6HbPX+PzWW2/lm+XfwD9wtn0CoiOjmd9jPv+6+l9hWhyANMxqYlXg5yAyF2Jc+/mENv1hsRQQoc5DfIhZuxHMj8CDqnqbqn4HXIGp1OkJ76yJWfjOLjbsIzzd+UqgpuvH4py//WWivb6Zv8M/1v3uvLHNYrFYchsRicSEMs4mwKqXOwzzNmCRu+gWAO5iXGMxudjeueEhFyrLge7c4H9u+4aKyCgRucO9jQKewXyj/y9TDcbGtZh7hE4iMk1EeonI65iVzcU4q2+/gkkbucrr/NOYXMGqwBIR6SMigzE1n/fi73yPwVS4fsMdHttLRKZhaikOV9VtYeieLSJfi8hQt96hwFrgWmC0qi4PQ3eR4pNbP/Er7Fb+0vLc8p9bsqXnlltu4du135qmYD4pIOXjy/Nbv9+ckUS5xQRMnt54/GsPgGkpNQbYio1WspwVZGfhWYAfgCtU1VO4BVU9oar9MKmpnjWcyBzYYsM+wtOdrySvTXbsF4svhpZ2enSXVbnszE6g/L1zpj6ZxWIpAjyGKbDeN8jx+phIjWAFuMC/GFiohcqyqzs3mOB+LIYJM/3cvT3KmYiUCQHOC8QATOZTPYzzdxemHdEt7t/jTFHVqRiH9ySml+0gYAlwrar+5SN7ClM9/H2MU/0O5v/WDxgajm7gC0ymej/gP5jV2L+Ae1T1UR/Z7OouMix7cxlbZm9xjBWLL8YDPz2QLT3t27dn5u8zTQdjn1rnF5W5iB39d1CtVIDme+HwB+bTdj+BY6siOFOVoVfuXtpiyUtCdfhOYr6sr1fV7YEEVHU+Jo12Ug5tsWEfZ1HYx/7fnU3X0+PToYJTpuUlLc/s2Pw9i8VSsMTntKqxiFwIPAc8H+w3kOwX4MpOobJ8L+6lqhOAr3FW5Mbr8Su3TCi60lX1dVWtraoxqlrZXQDmmI/c/e4c9EUBdHyrqs1UNV5Vy6jqHaq6xVfOLXtIVfuq6gXu612qqm+rasD/c6i6VXWEql6tqhVUtZiqllbV61X100yee8h2FwV2J+1mzr/mOAcF7p17L7EJmXWocpKYmMis3bNMgyyfjtGNzm/Epr6bcrc4iwszlXEhZs02EM0xd2v/8bfJYinshPqWbayqfs1BfVHVI8B97vCJbKGqa0XkHaCv+/zvgLqYj2CgsI/7MHkOi9znnxaR/hjHcYmIjMEUx32M4GEfPTFhHzUwYSTtgY7Ai75hH9nUPVtEdmHCSjzNWe/FrPD5hX1kU3eh4PB2Z9P1I1FH/Cp0trm4jfnD5u9ZLJazm/8A2zBhiMHIbgGuUAuVncqB7tyiM2ZF8z7MKhnARkyg2zt5cD3LWcyplFNMuH6CX/pGq2GtqHZt6Ctx7dq1Y87ROdDB/1jbi9vy3T3fZbvCZ6Z8j3Es9wc5XgX4DBO4a7GcpYTk8Pk6eyJyASZ3rxSmJcMv3uEJqvp1Du0ZgMlzewi4GdiHCfsYGmrYh4icAIZgwidOYj7KgwKFfbgrm72ICfsohylA048AP2TZ0Y0J++jg1lUaOA6sBp4NNBOYTd2FAt/Y/J2RO50hF2lwdRV3lOq32Pw9i8VS0KSoasB2B5khIvcCNwEtsoi2yG4BrhT8psmCyhdIcS/37+5b7s1iyZTxLcZz8ohzTqJa82q0HNoyyBn+3NT2Jua55plPnDcK3et3Z2KniblgqZsjmCn+BUGOR2Fq8j6Ze5e0WAqKbC1Ki8hVmBlOv3wzEVkKPKGqwWoZZYmqpmNaWr6ehdz9mAjrQMe+xbgYoVzvEGb2MlhORo50q+oIYEQoOrOru7Dg23R9e+x2x37EiYgzM3C+lZJt/p7FYjkLcIfiv4GJOPlbRGq6D3nCJ0u5x/aR/QJcu4BLRSQmQFinb6GyfCvuJSKeevkpqpoW4HgU7m9wd1SPxcK8f89j9ypnMbe4snF0n989ZB3X33g9i4ovgoY+BxQGXjuQV9u8Gr6hHt7AOHLBSgE2B77CVt60FBmy04fvNkxo5dX4x/MLZrF7sYjcnttGWgofvk3X/yruvNcoIV7ltGz+nsViOTuJw2Qn3wz85rUtch+/173fC5P5c5LgBbjAvxhYqIXKsqs7R4jILZgq1nuAGkHEamA6jh1wy1vOcXat3MXS15Y6xiRS6PljT6KiQ1tXaHFjCxaVX+Tv7Llg5E0jc8/Z+xW4GHicwM5eaWAmpkShdfYsRYhQ+/BVwhRj8Q0n8e77o0A0MFFEzs8d8yyFkUBN1/eW2+vYr1baHa/vwn/e2ebvWSyWs4PjQJcAWx/38dnu/W/cBUhmAK3cRbcAcBfj6oVxDL0rcoZcqCwHunPKnZjf9emq+nsgAff4F5j7hztz4ZqWsxiXy8Xk9r5luOGW926hQt0KAc7w59o217KkyhJTtcGbdJjQaQKPX/N4+IamYaZnLse0UvDF00l6P85OyRZLESHUkM5HMH34FBNa8iZmdnIPcB5mzWYAJrW1BObH8JncNdVSWDi686jfWEoFZ/rIdXWuM3/Mw+bvWSyWsxJ3zt4XvuPuQl8AW1TV+/iTQGtgrrtf3RGMA1cZuNm7SmQ2C5VlS3cYNMJ8Y8/KQm4WcA+Bm7JbziFmPDCDlL3O3/9LbrmEhr18l+oC0+SmJqy8aOWZOrRuItIj+Lb7tyRekhi+kd8A3YBjQY7XwSTUXBz+pSyWwkqoDl9b9+NaoLmqet/xbwJ+cFeXXILpYNIO6/AVWXat2uXYd0W6/FoytKvXzvzxmc/JZbH5exaLpUiiqr+LyLXAcGAwJuolCWjnbl3kywBCLFSWA905wZMP+GcWcnnSCsJydrHz552sGb/GMRaTEEPXL7uGdH7j9o1ZVWeVKZnnRVRaFEt7L6VJ5TBbS6YCt2Na3QciFrN88c/wLmOxnA2E6vDVxMz6jfRx9jJQ1aMiMhKY6Ja3FFH2/uoM3zxZ7KSJe/fggutrXG/+9s3fq5+XllksFkve4+7FJ0GObcDcZoaiJ6RCZTnRnUM89wSlspDzFHax3cjOUVwuF5/c7LsIDV2ndQ0pb695l+asqr3Kee8ARKdFs27AOi4pd0l4Bn4J9CB47dqbMd2W7QS05Rwh1KItnlLWvt3UfPEctx+hIsy+zfsc+wfiDjgFUiAh1n0/sN3n5FyIzrBYLBZLnpDsfrw5CzlPsZbkTKUsRZav7v/Kr1p33c51uaj1RVmem3h/Ij9W/tHP2SueVpwdg3aE5+ylYAKf7yCws3cesBQTwmnvVC3nEKE6fIfcj1mtz3iSyQ9lJmQ5uzm8w9l0PTne+ZsffSra/LEB8O1adW/e2WWxWCyWsFiOWbnsKSJdAgmISGegJybqJzcKxVjOMv747x+snbTWMRZTKoY7Psu6IlvXfl2ZXXo2lHGOlzldhr+f+ZtKJSrl3LApmLZPgfrqCaYz8i4C17q1WIo4oYZj/IKZM3laRBaq6lpfARG5DHgK8yPgd9xSdDi225n5nFzK6fCVKeb+JvftjxqHX2K2xWKxWAoNn2CqjkYAn4nIQ5gMqP2YTKsb3Ztgfuv9yzNaijSuNBef3vqp3/hdX91FRFTmawj/ePIfTI2Y6ufslT5Zml3P7yI2KjZnRh3DrDkvDnK8Cqaebr2cqbdYigKhOnzTMQ5feWC1iMzA9PxJBipiqnTeAkRifgSm5b6plsKCbxjHgbLOkM66ldy1lX3LCNTKQ6MsFovFEi7fYIqvNXfv3+DevPE4ez+o6jf5aJulEDCt+zRSD6Y6xurdVY8arWpket6jLz3KuOPj/Aq0lEwpye6Xdufc2ZuMaUySGuCYYMoivZEz1RZLUSJUh+8joD+mGEsEcJt788aTwP67W95SRPFtun64kjPEs31DdxObjT4n+t42nCMcOXKE5ORkTp/2jW+1WCzhUqxYMSpWrEhCQkLWwpZMUVV1h3LOJXAKh+d3/hdsD75zju0/bOfXz351jMWWiaXTpE6ZnvfM6GcYvWe0n7NX/Ghxkocn58zZO4Lpl+dbGM5DNcyqnm9vP4vlHCUkh09VU0XkdszHp1omon8Ct6tqoLkWSxHBt+n60SrOwq0drugAB/DveXMO5u8dOXKEPXv2ULlyZeLi4hAJWNjPYrHkAFXlxIkT/PWX6RJgnb7wUdVkEbkaszbSA6jtdXgTMB74P/s7f27hSnPx+e2f+43fPePuTEM5R3w0ghd/e9HP2Ys7HJdzZ28CppXCyQDHIoAngBHZV2uxFGVCLqmsqhtFpAEwEDOzd6HX4W3A55i2DQcCnW8pGqTsc5a9cuEiJcFrLBVTYWu0z4lRQGh9WIsUycnJVK5cmfh4Ww7MYsltRIT4+HgqV67Mrl27rMOXS6jqCeAV4BURicfUUzykqsGK3FuKOF/e/SWph5w+/uXdL6fatcHXAN6d8i6D1wz2c/ZiDsSQ/Foy8dHZ/F1MwXR5XhLk+IXAHCDMjg4WS1EkWz10VPUgpjDLUyJSHNOr57CqHs8L4yyFj+R1zgItJ6NOohGasR9xzD3T963PiVXz2LBCyunTp4mLiytoMyyWIk1cXJwNmc4j3E6edfTOYbZ+v5X1X6x3jMWVi6PD+A5Bz5n43UQeWfKIqfzgRbF9xdj3+j5KRJfInhHzgI5AoLvNCGAw8FL2VFos5xI5bprqdvKso3eOsXeDs+n60VhnOGdcutu5We1z4jlcBtmGcVoseYv9jFkseYMrzcWUTlP8xu+ZeQ8REYFDOb9c9CX3zbrPz9mLSo4i+bXk7Dl7LkwTEN+q3x4uxjiDFwY5brFYgBD68InIQRHZLyJXZUdxTs+zFG4O/n7QsX+kxBHH/vnx50Ma4OzNbpqgWiwWi8ViOWuY0mUKJ484k+Wu7HklVZpWCSg/e/ls7vjyDj9nL/LvSPa+tpfS8aVDv/gmTEuFQM5eBPAspkygdfYsISIitUTkeRFZJiJ7ReSoiKwRkafdkYvessNERINsTwTQHSEij4nIRhFJFZE/ReR1X71e8rVF5Cu3v3RcRJaISJ6VNwxlha8UpgRzdlcDc3qepRBz+A9nRc7DCc79Jhc2MfXdFCe35q1dFovFYrFYco/f5/zOpq82OcbiK8Rz69jAP+iL1y4mcVKin7MXsSuCXa/typ6z9xIwFLPC50slTHN1W4HTkn3+ATyCaUEzGTgNXA+8CHQVkWbuHGZvHsN/GWNVAN2jgEcxrexex7xDHwUaiMiNqprxbhaRi4GlmCWSV4HDwIPAHBFJVFXfxmZhkx1n7B8icmNuG2A5uziyy7mid7ScM6Tznhb3wFs+J5XDuv0Wi8VisZwlpJ1KY+odU/3Gu33XLWAo58+bf6bVB638nD3ZJfz5yp9UTKgY2oUPYFo4/S/I8e6YOrFZxqdZLAH5AnhFVb1XK94Tkd+Ap4EHgLd9zvlKVbdnplRE6gH9gGmq2tlrfBvmrvgu4BOvU17BFMNqpKpr3LITgV+Bd0Skjqr6Lp2ERXY+Mj0xC+ihbpYiSMpeZ+7+sbJevRfS4aa6N5k5C2/q5b1dlvzh008/RUT44YcfHON79uxBRDjvvPP8znnnnXcQkZC2GjVqZGlDv379uPXWMzPMO3fupF+/flx99dXEx8cjImzfvj3cp+rH+PHjM+zcvHmz3/FFixZlHJ8/P7TJublz55KYmEi5cuWIjY2lVq1aDBo0iIMHnaHTXbt2pWzZsvz999+O8fT0dBo3bswll1zCiRMnsvUajxo1ivr16+NyBZpCt1gs5zJTOk/x67nb8MGGXND4Aj/ZbcnbaPZWM39n7y/h92G/c0FZ/3MCXxS4gMDOXnFM9NBErLNnyTGqutLH2fPg6TlyWaDzRCRBRDJburgb06f0TZ/xMZiiVxmNydwhnrcBizzOntu2Y8BYoBbQJNMnkgNC/dhIDjZLEST1oLMs89GSXit8RyE6Kto06fDmHG24XhRp2bIlgJ/D98MPPxAfH09ycjIbN270O1auXDmWLl3KTz/9lLFVqlSJtm3bOsamT5+e6fW3bNnC+++/z7PPnplT+v3335kyZQplypShefPmufRMg1OyZEkmTZrkNz5x4kRKliwZsp6XX36Ztm3bEhsby9ixY5kzZw69e/dm/PjxNGnShD///DND9u2330ZE6NOnj0PHyJEjSUpKYuzYscTFxTley6xe4969e5OcnMyECRNy+EpYznVEJODNkeXs5rfvfuO3b39zjBU/rzg3v3ezn+yR1CPUfLYmVPA5sBPWPbmOi86/KOsLpgG3YBp+Beqt1xxIBtqEZL7FkhM8Sal7Ahz7BRNymSoiS0UkMYBME0wA8nLvQXe/0jU4Hbj6QAzwUwA9y7z05SqhBNo9F+Y1/gjzfEsh4tRx54zfsRJnVvgiT0SaL2Xf6Od78t4uS/5wwQUXcNFFFwV0+G644QY2bNjADz/8QJ06dTKOLVmyhObNm3P11c5SrTExMZQvX55mzZqFfP0333yTK664gsaNG2eMtWjRgj17zHf02LFjmTt3bk6eWsh06tSJjz/+mOeffz6jOuSJEyf48ssv6dy5M+PHj89Sx8KFCxkyZAgDBgxg1KhRGeMtW7akY8eONGrUiB49erBw4UIAKlasyKhRo7jvvvuYOnUqXbp0YfPmzQwbNox//vOfGY6472uZ2WscFxdHjx49GDlyJD179szpy2E5BxGRKzCRPLcCxQrYHEsuknYqjaldfUI5BbrN9g/lTHOlUXFARVzn+0QJ/AUrHl/BpRdemvUFVwBtgYMBjkVhguEeDt1+yzlFvIgEDXtU1ZAWn0QkEpMxmoYz7PIQ8AEmbu0gUBsYAMwUkX+o6ngv2QuAfaoaaMriL+AaEYlW1VNuWc94IFmAyqHYnh2yXOFT1efC3HbmttGWgiP9ZLpj33uFL94Vf2ZR3EMxbBPUIkbLli356aefSEtLyxj74YcfaN68Odddd53DGfztt9/YvXs3LVq0CPu6J0+e5OOPP+aee5wzCMFKg4eKy+WiZMmSPP/8847xgwcPIiJ+K2Ddu3dnx44d/Pjjjxlj06dPJz09nc6dOxMKr776KmXLluWVV17xO3bhhRcyePBgFi1axM8//5wx3qNHD9q1a0ffvn3Zu3cvDzzwABUqVGDEiBHZeboO7rrrLtavX8/Spb5x2JZzFRG5TETeE5HvROQDEWngdayOiHwFJAEdsMF1RY6pXaZy+rizp2WTh5tw/pXnO8ZcLhcV+lbg5Pk+97d/w/e9vqdxncZkyb+BpgR29i7GRAtZZ8+S97wJNAOGqmpGlSJVfVNV/6mqE1T1G1V9DbM6twcYJSLe/UXiCbw+DZDqJeP9GEjeVzbXsF/WlpBJS01DXc7JlOPFz7RirBRfCWb7nBS4cvM5S6i5bPm15YQWLVpw7NgxkpKSADh06BDr1q2jefPmNG/e3OHwef7ODYdv2bJlHDp0KNfDNjdv3syxY8do0KCBY3z1atNM0ne8evXqtGjRwhHWOXHiRDp27EiJEln3l0pLS2Px4sW0adOG2NjYgDK33XYbAAsWLHCMv//++6SkpNCsWTN+/PFH3nvvPRISErJ+kkG48sorSUhIYPZs3w+u5VxERC7FzGY/iFl3eQBYKiLXiEhXTIfVW8lm2kZ2y5UH0dHeHU51XEQOiMhUEQlYkF9ESonIaBH5y329X0XkYQnypReqbhFpKSLviMhaMeXc94rIf0Xk7kC6RWSRBC/rHoJHlL9s/X4rm79x5ieXOL8E7Ua385O9ZOAlHDrvkHPwAIy5aQw3XJVFHscR4ArgNfwregumJuLv2PsHS1akqKoE20JRICIvAH2BD1TVfwbWB1XdD7yHKbhyjbctmDDNQMR6yXg/BpL3lc01rMNnCZm9651N11NiUkiPOrPid0WVK0yksjeF7ifNEi4e583jzC1ZsoSYmBgaNWpE8+bN+fPPPzOKpvzwww8kJCRw5ZVXhn3dZcuWISLUr18/bF3eeBzXhg0bOsZXr15NTEwMdev61/7u0aMHU6dOJTU1ld27dzN//nx69OgR0vX279/PiRMnMi1Q4znmnccHUK1aNfr27cvWrVvp1KkT7du3D+mawYiIiKB+/fosW7Ysa2HLucBAwDNr4cnHj8aUG/8Qc4PiuZH6A3OjFAqjgDeA9ZhKdlMx5cpniEgo/YA7Ad8CcW4bXwNaAP8VkQt8ZKMxrbh7Y2JO+mE6ur1LgIJy2dENjABuBxYBjwMvA5GYMLAPgpi/D1Nb0nfbmtXzzk9caS7/qpwC986+1y+K4prnrmFrgo/5x+Dfl/ybXh17ZX6hRcD5mKwoX8oAP2PeKRZLHiMiw4AhwDjM90WobHc/epcp2gWUF5FATlxlTLjnKS9Zz3ggWQgc7hkW1uGzhMy+Dc42JI6CLUCnazqBs4igScS2FCkuuugiqlSpkuHw/fDDDzRt2pTo6Ghq1apFxYoVHceuvfZaIiMjw77url27SEhIIDo6Omxd3qxatYqKFStSubLzuzcpKYl69epRrJh/ilKXLl04efIkM2bMYPLkyVSqVInWrVuHdL1wKi0fOXKESZMmISKsWLGCo0ePZn1SFlSoUIFdu3ZlLWg5F7gOs+biAma6t3TM1J1nNW4b0Auoqar/yUqhOMuVd1LVMar6L+BfmP5Xd2VxfjFgNPAn0FxV33XPxLcFzgOG+ZzSC1Pw4F+q+i/39ToB04CnRKR6GLoHAdVVtZ+qfqCqozCz/D8AvYIUsTmuqh8H2A5k9rzzm+n3TSf1kLMoW4MHGnBefWfl5bvfvpufXD61Jk5C5+jOjOibRXj5QMx/PNDaxc2YGgC5XqrCYvFHRDwdBSYCvbLZAsGTqORd4GUFxqe6yuc6scCVwEqv4bWYcE5nYQODJ+F+ZYBjYWEdPkvI7PvN6fAdS3C2ZOgoHf2bpHbKe7ss+U+LFi348ccfUdWM/D0Pnjy+nTt3sn379lwJ5wRITU0lJiZYxETOSUpK8lvdA7PC5xvO6aFkyZJ06NCBSZMmMXHiRLp1C9ybKhDly5cnLi4u09YRnmNVq1Z1jA8cOJCDBw8yc+ZMkpOTefLJJ0O6ZmbExcVx4oRvpSXLOYpn1mOwqt6qqrcCT2JW9RSYANRV1Y9UNS2YEh9CLlcehJaYIgdj3WXLAXCXM18E3Ol23Dzc49Y7xkfPm5is8jtzqltVF6uqI5Hd3Uz5C/dusJLuEe6y7oWygvlfK/5i3SfrHGNx5eK45X3njO3TU5/ms78/c945pkGTfU344qUvCMoRTObTyADHojB99b7F9uu15AsiMhQzmTMJ6OndEN1LJkpESgUYr4rJLN2PswnZ55jvyAE+pzyIyceb7Blwf9fMAFq5C2B5dJfATFj9hk+1z9zAOnyWkDm07ZBj37tCJ0ch9guffKSSnAkOsgBmdacwbTmlRYsWHDx4kGXLlpGUlORw+Dx5fIsXLwbOtHIIl3Llyvn1pwsXVWXNmjV+jl1ycjKbNm0K6vCBCeucOXMma9euDTmcEyAqKooWLVowb948UlNTA8p88803ANxww5lcmMWLFzNmzBhefPFFEhMTGTJkCO+++27YBVcOHDhA+fLlsxa0nAt4vsS9Z5e9/37CKywpVLJTrjzY+RC8hHkCpm8V7vDQhsBqt35vlrvt8L5eyLqzILOS7pWBY5iy7sdEZJqI1AkgVyC4XC4+ueUTv/G7vr7LMYn14ZIPeTnpZWdNVoWqm6uy/INM7k0XYEI41wY4dj4mV+++nNlusWQXEXkE033gD2A+cI+I3Ou1eZp/lAC2i8g4Efm3iDwoIiMx7+RSwMOqmjFTqqprgXeATu7PeC8ReR0ToLwYZ/VPMBNph4G5IjJYRPoASzDfF/1yu+k6WIfPkg2O7Dzi2PcO6Yw4HmHe0t6E8jNpOSvxOHHDhw9HVR0tF6677jp+++03pkyZQnx8vKOFQjjUqVOH06dPs3Nn7hX+3bJlC4cOHfILOR09ejQulyvT3MM2bdrQtWtXevfuTb169bJ13YEDB7J//36eeuopv2Pbtm1jxIgRtGjRgqZNmwKm7UOvXr1o0qQJ/fv3B2DQoEFcdtll9OrVi1OnsnsP7rxe7dq1c3y+pUji/YbKWMlzFyzILlmVKy/vzrvL7HyPbKDz4czKZBlMLp6frPv6+3HmzYRdHt2d5/dPTE7ejz6HtwGvAj2BLpg8wkTgZxG5PBOdwQq9qGRShj4nzOo7i5RkZ4zlpV0updq11TL2v9/wPb2+6XVmOsBNwpoEtn+6Pbjyx4HWBA7h7ATsBKoHOGax5B2eSZ5qmIiFST7b0+7jJ4AvMeHsT2I+u90wTuI1quqT8AqY1b0ngHoY5+8uTMj4Lb6riKr6O3AtZmJpMGb9+zjQTlXn5MLz9MMuoFtC5njycce+9wpfbFqsWYT2Jnci+SyFkDp16lCxYkVmzJhBo0aNHNUpGzRoQIkSJZgxYwbXX399wBy4nOAJDV2+fDlVqjjLt33xhQknWrVqFQCzZs2iQoUKVKhQIdMVRk/BlrFjx1K1alUqVqzI3LlzM1oxrFy5koYNGxIXF+d3bmRkJJ9++mmOnkvr1q15/vnnGTp0KNu3b6dHjx6UKVOGpKQkhg8fTqlSpRxVQIcOHcqOHTuYNm1axqx7sWLF+PDDD2nWrBkvvfQSzz2X/Zaphw4dYvPmzTzxxBM5eh6WIsuPgYtOSrrPmKpqVvcRoZYrDzZrkZ0S5pnJeuS9y52HVR5dROKB6Zj8xltV1dHPQFV9G1x+ISLfYMJF36CAW4kn/5rMyvecqUIxCTF0/uRMe5nf9v7GjR/caGoSelFsTTH2TtkbOJT9CCYbNNCqXhQwFruqZykQVPV+4P4Q5E5iwiuzozsdeN29hSK/AVMEKl+wK3yWkDmx35nn473Cd16x88yXvDdd8sEoS4HRokULVNWvTUJkZCRXX301qppr+XtgKldeddVVzJgxw+9Yly5d6NKlC++99x4Affr0oUuXLjz7rF9RPgdJSUmULVuW4cOH8+yzz9K9e3eOHj3K1KlTSUhI4PPPPw/o7OUGzzzzDLNmzeL48eP07NmTm266iXfffZcePXqwcuVKqlUzM+wrV65k1KhRDB48mMsvdy4KeFb8hg8fzq+//pptG2bOnEl0dDQdO3bMledkKTKIz6buzXc8lJy07JQrD3Y+QXRkp9y5R977Wjkuj+4uxvAVZgWgp6ouCXJNB265H4DrRSTgl0tmpeZDLTcfCpMTJ/u1Rej8WWciosyt4b5j+6jzYh0/Z09+FXaN2RW4gNYCoBKBnb0LsCGcFksBYVf4LCFz6qhzAtZ7ha+ly2cVJQLTUNVSZJk6NVBEg2Hu3LlZnp9Z0ZJgPPzww/Tv35933nmH+PgzE+85DXdftWoVDRs25L777uO++5x3IYcPH3bs33///dx///2Z6mvVqlW2bGnXrh3t2vn3uPKmcePGjib3vrzxxhu88UbgOuZZvcYff/wxXbp0oVy5clnaajlnCORQhONk7AIuFZGYAGGdvuXKg53vkd0Q4Hw4E355EBOK5ReG6S6XXg5n8kF2dHvr8jh7N2Iq/H2cif2B2A60woSgFkjFpO+f+p4jfzpnaS9udzGXJJoChKlpqVR+ujKusj71LH6HtS+sDZz3+zjBWyp0BqZglxkslgLCOnyWkElLdd50ejt8nfd3dgqXx36xW3Kd7t278+qrr/Luu+/mShji6tWr6dUrW1EbRYY1a9awcOFC1q1bl7Ww5VzBNwQxN1gB3IQpV56xCuZVrvyHEM4HU8J8vs+xZpjYks1gKmaKSBLQIICDeRXmV8k7hjFk3V52x2DCOG8CHlLVj7KwPxCXYHIjC6Q1w6Edh/jviP86xqLiorhruumQ4XK5qPTvSpwq6+OH/wnf/eM76tX2yVlOwTSn+F+Ai9kQToulUGAdPktIuFwuXGnOmb6MkM50aLPZJxXh0nwyzHJOERkZyUcffZSRexcOO3bsYP/+/TRq1CgXLDv7+Pvvvxk3bhw1a9YsaFMshQRVnZAHaj8HnsIUNPAOe/QrVy4i52Mq4P2hqp5QysXAbkyfu1Ge9gnucuatgHE+uXOfYoohPIQpmOBhAMbJmuI1li3dbmfvK0yfvt6qOjbYk3aXdD/m28ZBRG522zcrQCXRfOHjmz5GXc5IhA7jOxAVa24JL3r6Ig6XckY4kAzvtHqHxOsTneO/AM3xT+kAE8K5FFuYxWIpBFiHzxISh3c4v/xPFTvFqRj37N8RiNnukwKRO5X4LRY/mjVrRrNmzbIWzILq1auH1ZribCerUFLLuYeIbMVkdXVR1fBnVTDlykXkHaCviEwDvgPqAo/iX678Fcxa0PWYwiao6mkR6Y9xHJeIyBhMu4THgL2Y5snejMGsVL4hIjUwoZrtgY7Ai6q6zcu27OqeDLTDrAamiIhvD8FfVPUX99/Xu22YgangmYZZZbwX2Id/v6584b+v/pf9m53FVqteV5V6Xc2q3bXDr2VH7A7nSYdgQOUB9Lm3j3N8LKY+qV8XM+AOzKtqI30slkKBdfgsIZG8Ntmx7x3OGXk80hST9eaOfDDKYrFYLLlJDYzDF5uFXHYZgMlbewi4GePwjAaGBmp67IuqThWRE8AQTPnyk8D3wCBV/ctH9pSI3Ai8iGn6Xg7YAvTDlErPsW5MgRYwuXs3BjD1OcyaF8AmYBVwC3AepoPdTuA94OUAuvOcY38fY8HTCxxjkdGR3DPzHgB6fNSDpSeWOp20FLg17VZGPTXKqexevNZmvRUCHwGhtya1WCz5gHX4LCGx/zfnjKB3hc7Kx3zy4yOBy/LBKIvFYrEUekItV55ZyXRV/Rb4NsTrHQL6urdQ5EPSrao1QtHnlt1AIatVPTlxsl9qRuLoRGITYnll1itM2jrJ2Vj9NFyx4wq++eybM2NHMOuUmwJcoAymhb1t62mxFDrsYrslJA5uOejY917ha3CkgVO4Yn5YZLFYLBaLJRRWvr+Sv9f87Rir1KASjR5qxPT/TeepH55yOnsuOC/pPNZ8tubM2ApMXl4gZ68JpuapdfYslkKJXeGzhMThP5w5fN4rfC2TfRL27OqexWKxnM38wx0WmSWq+nxeG2MJj9RDqcx+dLZjLCIqgm6zu5H0VxKdPu4EJZznxC2LY+fMnWcGRgP98evbB5iA3VEBxi0WS6HBOnyWkDj29zHnvncPvr98HL7r88Mii8ViseQR2WnPYB2+Qs4nt3xC+ilHsVBuePkGjsUfo8nQJqYuqhcRKyLY9fkuoqKiTEGWLsC0AIqjMDVPO+aN3RaLJfewDp8lJFL2pTj2Mxw+F1y2x2dJr2s+GWWxWCyWvCDURuvnbpnbs4R1n6/jz//+6RgrV7scDfo3oMzgMrhK+dTMWQfrX19P6dKlTWmdq4Bt+FMB+Bm4ME/MtlgsuYx1+CwhcfLwSce+J6Qz+mg00a7oMweigIvz0TCLxWKx5DZ/Y6pVWs5i0lLT+Lrn144xiRDumXUPVZ6uwqlSPo3Vt8Lsh2dTu3Zt+BHTWv5EAMXNgQXYO0iL5SzCflwtIXE65bRj37PCV/GwT4WW8/PLIovFYrHkEXeo6tKCNsISHl8/8DVpJ9IcY9cNvo5m45txsISzEBu74P9a/B9tb2gLrwKDCbx++yTwch4ZbLFY8gzr8FlCIv20M/7f4/BdcugSp+Dl+WWRxWKxWCyWQBzZeYR1n65zjCVUTeClCi/x2+HfnMIH4eGKD/Noz0fhVgI3qIgGvgIS88Zei8WSt1iHz5IlqYdSHTN9LnGREm9y+q48cKVTuE3+2WWxWCwWi8WfqV2n+q3QbeqziQUHF/g1Vm99uDXvDnkXLgJ2BFB2AWdaMlgslrMS24fPkiXJvyY79o8XP45GmF+ShvsbOoU75ZdVFovFYrFYfPnjv3+w86edjrHTV53m/WPvO+/6TkPNX2syv9d8qEZgZ68N8CfW2bNYznKsw2fJkn0b9zn2vVsyXHzQq0JLMcyPhqVIM378eEQk4Fa6dOkMuTlz5nDDDTdQqVIlYmJiqFKlCl27dmX9+vUOfaHKASxcuJDrrruOuLg4ypYtS/fu3dmzZ09A+37//XfH+IoVKyhbtiwNGjRg3z7nezoQ/fr149Zbb83Y37lzJ/369ePqq68mPj4eEWH79u0hvGKh4/3abt682e/4okWLMo7Pnz8/JJ1z584lMTGRcuXKERsbS61atRg0aBAHDx70k+3atStly5bl77+dDZrT09Np3Lgxl1xyCSdOnAj6//featSoAcCoUaOoX78+LpfL73qWQscN7m1dVoIAIlI8b82x5IRp3Zw9FFyRLl697lW/xuqlfyrNphs2mSIsgYqzPAfMxd4pWixFgEL1MRaRCBF5TEQ2ikiqiPwpIq9n50dFRNqLyFIROS4iB0RkqogELBwsIqVEZLSI/OW+3q8i8rCIBCxJHapuEWkpIu+IyFoROSoie0XkvyJydyDdIrJIRDTI1jjU555XHNzivDH0dvguPOT19M/LL4sshYGpU6fy008/OTZvJ+TAgQM0atSIt99+m7lz5/LKK6/w66+/0qxZM3bs2JFtuSVLlnDTTTdRunRpvvzyS/7v//6PH374gdatW3PyZOYFBZcuXcqNN97IJZdcwoIFCyhfvnym8lu2bOH999/n2WefzRj7/fffmTJlCmXKlKF58+bZfbmyRcmSJZk0aZLf+MSJEylZsmTIel5++WXatm1LbGwsY8eOZc6cOfTu3Zvx48fTpEkT/vzTWa797bffRkTo06ePY3zkyJEkJSUxduxY4uLi/P7vlSpVom3bto6x6dOnA9C7d2+Sk5OZMGFCDl4JSz4zBNiiqkeyEhSR5sD/8t4kS3ZIGpvE4R2HHWMzbpzB6QRn4bViPxYjuVQyEY9H+BdnicY4ekPz1FSLxZKfqGqh2YD/w3z1TAMeBN4ATmMKAEeEcH4nTJvQ1UAfTD2pPcAu4AIf2WhguVv/G+7rTXNff1iYupcBO4HRwEPAY+4xBcYE0L0I2AvcG2Arm9PXMz4+XnODL+75QocxLGO7/crblWFosaeLqQvXmSvelCuXK1KsX7++oE3IdcaNG6eA/vbbb9k+d+PGjQroyJEjsy3XunVrvfjii/X06dMZY8uXL1dA33nnnaD2LVq0SEuUKKHXXnutHj58OCQ7+/btq40bN3aMpaenZ/w9ZswYBXTbtm0h6QsVj+333Xef1qhRQ10uV8axlJQUTUhI0Pvvv18BnTdvXqa6FixYoCKiAwYM8Du2detWLVOmjLZq1crv2IQJExTQKVOmqKrqpk2bNDY2Vnv37h30WtWrV9du3boFPT5w4EC99NJLM7U3XLL6rAHHtRD8zhXmzf0bdwDonolMMUwdx9NAekHbfC5uwX7b09PT9eUSLzt+rx8u97DKUFGGkbEVSyymJ2qcCKz9fFX9K6B6i6VQYb/Ts7cVmhU+EakH9AOmqWonVR2jqv8C/gVcD9yVxfnFMA7Wn0BzVX1XVV8B2mLWnob5nNILaAL8S1X/5b5eJ4zT95SIVA9D9yCguqr2U9UPVHUUcA3wA9BLRHw6lQPmjftxgO1AZs87Pzi666hj37PCV/VgVcS7P2/eLnpYigDlypUDoFixYtmWW7ZsGW3atCEq6kytqSZNmlCuXLmM1SRf5s2bR2JiIk2aNGHOnDkkJCRkaePJkyf5+OOPueeeexzjERE5/7p0uVyULFmS559/3jF+8OBBRMRv9at79+7s2LGDH3/8MWNs+vTppKen07lz55Cu+eqrr1K2bFleeeUVv2MXXnghgwcPZtGiRfz888+OYz169KBdu3b07duXvXv38sADD1ChQgVGjBgR6tP146677mL9+vUsXXp2VfoXkVoi8ryILHNHahwVkTUi8nSgyBMRqS0iX4nIQXckyBIRuSGI7mxFtGRHd5iUAsaLyDQRcSyFi8iVwCrgcSAyD65tCYO5j8/l1DFnb73ZN8/OyLkHiF8bz+FFh4ndHuuv4HrgD2y+nsVSBCk0Dh9wNyDAmz7jY4AUzGpXZrTEfE2NVdWMmENVXYNZQbvT7bh5uMetd4yPnjcxM5h35lS3qi5WVUcfA1V1AV+4dwM5fJ4bgIRgIaUFxfHk4459j8NX52Adp2CHfDLobEYK2RYG6enppKWlObZAeVrp6emcOnWK3377jX/+859UqlSJu+7yn7/JSi4yMpLo6Gi/82JiYli3zj/laObMmdx66620aNGCmTNnUrx4aJHhy5Yt49ChQ7katrl582aOHTtGgwYNHOOrV68G8BuvXr06LVq0cIR1Tpw4kY4dO1KiRIksr5eWlsbixYtp06YNsbEBbuyA2267DYAFCxb4HXv//fdJSUmhWbNm/Pjjj7z33nshOcvBuPLKK0lISGD27Nk51lFA/AMTobEFeB4YCGwCXgSWikicR1BELgaWAldjVsAGAiWAOSJyYwDdozDRJesxk51TgUeBGSLi+G3Oge6cspwz3wy3A+tE5DYxDMFEqtTzkvkgF69tCYPUQ6mseHuFY2xj7Y1su2hbxn7pLaXZ+9Ve4k7E+Z4OT2GbqVssRZjC5PA1wYSTLPceVNVUYI37eFbnA/wU4NgyIAGoBcaxAhoCq936vVnutsP7eiHrzoIq7sc9AY5VBo4Bh4Fj7tnVOgHkMsgk709FJFDL1ByRetD5EnkcvosPeRVsiSCIG2spqtSpU4dixYo5No8T4U3Tpk2JiYmhVq1a/PLLLyxYsICKFStmW6527dosW7bMcc6OHTvYvXs3Bw74L4QPGDCAKlWq8PXXXxMXF+AGJwjLli1DRKhfv37I52RFUlISAA0bOqvarl69mpiYGOrWret3To8ePZg6dSqpqans3r2b+fPn06NHj5Cut3//fk6cOJFROCUQnmO+eXwA1apVo2/fvmzdupVOnTrRvn37kK4bjIiICOrXr+/3/zsL+AKooqrdVHW0qr6nqncCLwH1gQe8ZF8BSgNtVfUVVX0XE/ewC3jHeyIvBxEtIesOk2swmVtpGKeuIjAd2IYp4RHtHt8D3KKqD+fSdS1h8uU9X+JKOzPhlh6Rzrw28zL2S+8tzdYpW4lPj3eeWAyYgXlHWyyWIkthcvguAPapaqDqC38B5UXEf3rfeb5HNtD5YJwqgDJAXCBZ9/X3e8lmV3dAROQC4J/AVuBHn8PbMLO2PYEuwLuY9qY/i0iBtzI/ddQZIuJx+C486FWwJfMaGJYiyPTp01mxYoVje/PNN/3kJk2axLJly/jkk09ISEigTZs2AatbZiXXv39/li9fzpAhQ0hOTmbjxo10796diIiIgOGWN998M1u2bAkY0pgZu3btIiEhIeBqYk5ZtWoVFStWpHJl59dEUlIS9erVCxji2qVLF06ePMmMGTOYPHkylSpVonXr1iFdz6Q35JwjR44wadIkRIQVK1Zw9OjRrE/KggoVKrBr166w9eQnqrpSVQ8HOPS5+/EyyKhWeRuwyB354Tn/GDAWMyHoPYkYckRLDnTnGFV1qeqLQDPgV48JmPrLwpkc+8tU9bvcuKYlfPZu2Mvvs3yqEjdZwf7y+wGITY1l2WfLKHOyjPPECsBvwC35Y6fFYik4CtPifTwQrNReqpfMqSAynmmrQDpSfWQyk/XIe0+DZUe3HyISj5klLQ7cqqqOclmq2tPnlC9E5BtMuOgbBGlnrqqZzuoWL148V1b50lLTHPseh++igxedGQxlfdNSpLjsssuoWbNmlnKe1aumTZuSmJhIjRo1GD58OO+991625Lp168bGjRsZOXIkL730EiLCnXfeSfv27QOGdI4aNYpKlSrx3HPPERsby+DBg0N6XqmpqcTExIQkGypJSUl+q3tgVviuueaagOeULFmSDh06MGnSJLZv3063bt1CziMsX748cXFxmbaN8ByrWrWq37GBAwdy8OBBZs6cSceOHXnyySd5++23Q7p2MOLi4jhxIlDt97MS32iN+kAMwaNAwDhly73+DhjRIiJrcDpw2dUdNqq6WkT6APM4U8xfMJOTfVV1f25dyxI+U7tOdeyfiD3B4paLM/anTJtC7f21nSddiwnhzL15LYvFUogpTCt8KZgftUDEeslkdj5BdPien5msR977WtnR7UBEYoGvgMZAT1VdEuSaDtxyPwDXe+eJ5Dcul8sRJgJeK3zeLRmuzk+rzmK0kG35TOnSpalZs6Zfj7xQ5V544QX27dvHL7/8wu7du/n000/57bffuO666/x0iAgffPAB9957L08++WTA1cdAlCtXLmCPupyiqqxZs8YvTy85OZlNmzb5jXvTo0cPZs6cydq1a0MO5wSIioqiRYsWzJs3j9RU36h1wzfffAPADTc4634sXryYMWPG8OKLL5KYmMiQIUN49913wy64cuDAgSzbYeQx8bkRAi8ikZwJe/zEPZzdKJDsRLSEHWGSHUQkUkSeA77H6ewpcCHwi4h0ya3rWcJj0zeb2Ltur2NsccvFnIg3kyvPLXyOWzff6jzpX5g4I+vsWSznDIXJ4duF+ZEL5FRVxvw4Blvd85zvkQ10Ppz5cTyIaTPqJ+u+fjmcP67Z0e2ty+Ps3Qg8qKofBzc/INsxldDKZCGXZxzbdcyxfzrqNCdjzD2KI6TThoRYQmDPnj1s3LiRiy++OMdyxYsX5/LLL+e8885j9uzZbNy4kd69ewfUExERwfjx4+natSuPPfaY36piIOrUqcPp06fZuXNnaE8qC7Zs2cKhQ4eIjHQWNRw9ejQul4srr7wy6Llt2rSha9eu9O7dm3r16mXrugMHDmT//v089dRTfse2bdvGiBEjaNGiBU2bNs0YP3HiBL169aJJkyb0798fgEGDBnHZZZfRq1cvTp3K7Cs4c7Zt20bt2rWzFiz8vIkJeRyqqpvcY9mNAgk1oiUnunOMiNTFrBoOwUQACea3bSQmukYwAfyficinIlJgv00Wwze9vnHs7y+7nxVNTPGWDhs6MOSHIWcORmGyUl/PP/ssFkvhoDCFdK4AbgKuAjJWwdxO05WY1a6szgez1jTf51gz4AiwGUyegogkAQ1EJMZnlvUqjCO8Mie6veyOwYRx3gQ8pKofZWF/IC7BzCIXWGuG5F+THfvHShwDgfLHy1PylLsBtAD+CyyWIs6aNWvYt2+f33jjxo2JioqiY8eONGzYkPr165OQkMDmzZsZNWoUUVFRPP744xnyocqtXr2aWbNmZYRG/vjjj7z22mv8+9//DhoWCaa65+TJkzl58iR9+vQhJiaGnj19o6jP0KJFCwCWL19OlSpVHMe++MIU2l21ahUAs2bNokKFClSoUIGWLVsG1Ocp2DJ27FiqVq1KxYoVmTt3bkYrhpUrV9KwYcOAhWUiIyP59NNPg9qaGa1bt+b5559n6NChbN++nR49elCmTBmSkpIYPnw4pUqV8mvuPnToUHbs2MG0adMywkeLFSvGhx9+SLNmzXjppZd47rnnsm3LoUOH2Lx5M0888USOnksukaKqoZVqDYKIvAD0BT5wt+bJ0O1+DDUKJAVTECUQ2YlICSX6JTskcaYwC8BkTAjnYRGZAEwEPEvSXTGFY6r4abHkC0teWULKXue/fl6beaRHpVN3b10mTp9IhLrn9Utj7moyn2uzWCxFlYJuBOjZgMsxOQ1f+oz3w4SS3Os1dj5QB4j3GiuGWYnbAZTwGr8CSMe0VPDW+4hbbz+f8S8xDWUvDEN3DDDL/XweyuJ5lwIiA4zf7Lbvu5y+prnReH3ZW8scTVwfqPKAMgxt8mCTM1cqHfZliixFufF6sG3v3r2qqjp8+HBt2LChlipVSuPi4rRWrVr60EMP+TUrD1Vu3bp1eu2112qpUqU0NjZWGzRooB999FFQ+3wbw588eVITExM1IiJCJ0+enOlzvOqqq/T+++/3Gw/2nFu2bBlU16BBg7Rs2bI6fvx4rVSpkpYoUULvvfdenTlzpiYkJOjVV1+dpe3eLFy4MKTG6x5mzZqlN910k5YuXVqjo6O1Zs2a+sQTT+j+/fsdcitWrNDIyEh95plnAup57LHHNDo6WtetW+d3LKvG6x9//LHGxMTovn37QrI5J+R143VMv1UFPgLE59jV7mMvBjivjfvYI15jc9y/HTEB5P8L7M2p7jCfo8u9JQOdAhyPAl7ArPa5sI3XC2SLj4/X0ydP6wsxLzh+n3tW66k8i5YaXEo3ldt05oyLVPWoWixFinC/08+1TcxrVjgQkdGY2dPpwHdAXUxfov8CN6jpZYeIjAfuA65X1UVe53fBVE/7H6baWQKmh5ICjVT1Ly/ZaExfoyuAt4ANQHugI+aH9Rkf27Kj+wugM2Y10NlR2fCLqv7ilu2AKcwyA1PBMw2zyngvZmXvWlXdHEBHlhQvXlyPHz+etWAmzH5sNj+/eaYx84Y6G/j8rs+5c92dfPbFZ2awIaYVr8WPDRs2BCy5byncjB8/nv79+7N7927i48OLlmvTxtRcmjdvXhaSRZfExETKly/vt6KYm2T1WRORHK/wicizGIdvIiYX2+VzvASwD/ivqrb2OfYMpodfM1X92T32IvA00EK98rrdES37gR9UNTEnusNBRFyY36KHVDVQ+yCPXBPMa1FLVW0D9nymePHiOqnzJNZOWusY/+DBD9h9wW5mfDKDm3+72Qxej7kTKUwJPBZLLhDOd/q5SGH7ChgAPIFp7PoOphfRaEy/H/+Ozj6o6lRM+eqTmJyDQZjw0Gu9HTK37ClMbt37mBLZ72BWDfthEvJzrBtToAW3/kkBtk5espsw7tItmE44b2ACJN8Drsyps5dbHP7DWZE8YEuGq/LTIosl7+nevTuVK1fm3XffDVvX6tWradSoUS5YdXayZs0aFi5cyLPPPlvQpuQIERmKcfYmEcDZg4wWCTOAViJyhde5JYBemOL33lU0P8dMFg7wUfUgJh9vchi6w+FBVb09M2fPbdMKTGjnW7l0XUt2UFg72ens/a/+/9hVeRcvLHjhjLPXG1OJs7Dd6VkslnynMOXwoarpmHTiTFOKVfV+4P4gx74Fvg3xeocwK4p9Q5QPSbeq1ghFn1t2A6b3XqHk2G5n0ZaAFTrb5adFFkveExkZyUcffZSRf5dTduzYwf79+89ph+/vv/9m3LhxIbXwKGyIyCOYhuN/YNZJ7vHpcb5HVT1Lt08CrYG5IjIKk9v9IKaw183qFU6jqmtF5B2gr4hMwxnRspgz1T/Jru5wUNUPvZ57BCZH/QpM6sFh4Bdgmaqmq2oqJsolS9y6+mN60dYA9gJTMIVvQgpDEZH2mGIyV2AmXr8H/q2q2wLIlgJexEyulgO2AG8D7wV6rQqL7lCJORljAmrdnI46zfetv6fT+k48teQpk4H5f5jpa4vF4iA3vo/ORgqVw2cpfKTscyaEB+zB1zY/LbJY8odmzZrRrFmzsHRUr16dwhQ2XxC0a3dWzwh5+uFVI3B4/mJMrzpU9XcRuRYYDgzGFD9JAtqpqm+xLzCre9uBhzA52/swES1DfVcRc6A7LESkIybapFqAw3+IyOOqOi0bKkdhnNnpmAldj3PbQERuzCqCR0Q6YepL/g8YiHFABwD/FZHGqrrLSzYa8z9pgHk9NwCJwLvAeZjV2kKnOzvEuJz1e5Zes5QqJ6sw/qvxSJTAN26rLBZLIML6PjpbsQ6fJVNSDzl7ePmFdMZxpk6cxWKxFCEyiyYJIr8BuD1E2ZAiWnKiOxxE5J8YBwbO9N/Da786MFVEHlHVLPuciEg9zFrTNFXt7DW+DRMSehf+K5re5xfDOFd/As3dIa6IyCxMOsQwjNPsoRfGUX9UVUe7x8aIyJfAUyIyTlV3FELdISOcWWU+WuIo6xqtY+mEpZSMKQk/Y25fLRaLH+F+H53N2MhuS6acOubsu3WsxDEiXBFUO+ye+LUFuS0Wi6VIICIXYYIB4UxrBvHawDiAArwpIqHE6d7tkfcZH4NpJ3FvFue3xDSfH+txmgBUdQ2wCLjT7Vx5uMetd4yPnjcxFbfvLKS6c8SCGxYwccZEahavaQKPrbNnsWRGuN9HZy3W4bNkSvrJdMf+sRLHqHKkCsVc7t+p7PWCtlgsFkvhpS8mXBRMyGgXTI5LnPuxC2dqMhcD+oSgswkm48xRWMadA7iGM2GzmZ0P8FOAY8swFbNrQUZuTkNgtVu/N8vddnhfr1Dozil/n/c3d+y/g3YV2pka36XD0WaxnBOE+3101mIdPktQ0k6loS5n/tGxEseocajGmQHbcN1isViKCq0xK3hLMK0evlTVP1T1pPvxS0xfwCWYWfLWmejycAGwT1VPBjj2F1DenRuX2fke2UDngyleA1AG45z6ybqvv99LtjDpdiAimtnmkUupncLAGgNNgymboGM594gP5XPiQ7jfR2ct9ivCEpQDvx1w7J+IPUF6VLqzQuct+WyUxWKxWPKK6u7Ht1U1LZCAqqa7e+Y2x6z6ZUU8pjplIFK9ZE4FkfE0wgykI9VHJjNZj7x3Y83Cojtb7GY3wxiWwg8wkYleTTwKHM/zSclUKv8prHaBtS2n5LRBbrjfR2ct1uGzBGXfhn2Ofb+CLRFA7Xw2ymKxWCx5hacE1/4s5DyzgTGZShlSgIpZXC+zG0rPsUDX8j0/M1mPvPe1CotuB6oqgcbBrP65ZQpdw+nCalthtQusbTnFy7agn5UghPt9dNZiQzotQdn/m/M33+PwZYR0lstngywWi8WSl3i+9K/NQu4a9+OBTKUMuzBhUoEcn8qY8KrMZtN3eckGOh/OhEgeBE4EknVfvxzOEMvCottiseQP4X4fnbVYh88SlEPbDjn2/ZquX4TFYrFYig5JmNy8f4vIzYEE3I3E/43J9UsKQecKzL3GVT56YoErgZUhnA8md9CXZpgm9JsB3P2zkjD9tHxv6K5y2+F9vUKh22Kx5Bvhfh+dtViHzxKUIzuPOPb9Qjob5bdFFovFYslDPnc/Fge+EZHVIjJGRF5yPyYBM4ASbrnPQtSpmIbj3jyIyZXJyEATkfNFpI6IeOfnLAZ2A71EpISX7BVAK2Cqqp72kv/Urde3x90AIA2YUkh1WyyWvCfk76Oihs3hswTl2J5jzv0SxyiWXowLjrqLj91UAEZZLBaLJa/4FNOawTP7Xd+9eePJmVnpls8UVV0rIu8AfUVkGvAdplvcoxinyLvJ8SvAfcD1mF51qOppEemPuVFbIiJjMC0NHgP2As/6XHIM0BN4Q0RqABuA9kBH4EVV3eZlW2HSbbFY8phsfh8VKazDZwnKif0nHPvHShyj2uFqRGqkGWhTAEZZLBaLJU9wV+DsAMwEGmCcO+/y5h5nbw3QQVWdjVqDMwDYjlkZuxnYB4wGhrpDJbOya6qInACGACMxVfa+Bwap6l8+sqdE5EbgRUyT5XLAFqAf8E5h1W2xWPKNAYTxfXS2YkM6LUE5edhZufZYiWNnwjnjyHlRXMtZzfjx4xGRgFvp0qUz5ObMmcMNN9xApUqViImJoUqVKnTt2pX169c79IUqB7Bw4UKuu+464uLiKFu2LN27d2fPnj0B7fv9998d4ytWrKBs2bI0aNCAffucFWgD0a9fP2699daM/Z07d9KvXz+uvvpq4uPjERG2b98ewisGixYtyvL1yg28/zebN/unB3nbMX/+/JB0zp07l8TERMqVK0dsbCy1atVi0KBBHDx40CHXtWtXypYty99//+0YT09Pp3HjxlxyySWcOHEi6HvHe6tRowYAo0aNon79+rhcRfY3uNChqn9jcsx6AwsxhVnS3Y8L3eNNVXV3NnSmq+rrqlpbVWNUtbKq/ktVj/nI3a+qoqqLAuj4VlWbqWq8qpZR1TtUdUuQ6x1S1b6qeoH7epeq6tuqGrA3V2HRbbFY8p5Qv4+KGnaFzxKU0ynO9IJjJY5x4V9uh++CACdYzimmTp1KlSpVHGNRUWe+Ug4cOECjRo3o06cPFSpU4I8//mD48OE0a9aMtWvXUr169WzJLVmyhJtuuom2bdvy5Zdfsn//foYMGULr1q1ZtWoVMTHBK8QvXbqUxMRE6tSpw+zZsylTpkymz23Lli28//77LF26NGPs999/Z8qUKTRq1IjmzZszd+7cbL9mb731Fk2aNAn4euUmJUuWZNKkSbzwwguO8YkTJ1KyZEmOHj0akp6XX36Zp59+mg4dOjB27FjKli3LqlWrGDFiBF9++SULFy6katWqALz99tvUrVuXPn36MG3atAwdI0eOJCkpiYULFxIXF8dPP/3kuEbHjh254oorGDZsWMaY53/Zu3dvRowYwYQJE+jZs2dOXgpLDnDnln3g3iyFiByUoc83CqtthdUusLbllMJsW6FFVe1WRLf4+HgNh2EyTIdxZivxeAl9qflLRvttYak+Z1i/fn1Bm5DrjBs3TgH97bffsn3uxo0bFdCRI0dmW65169Z68cUX6+nTpzPGli9froC+8847Qe1btGiRlihRQq+99lo9fPhwSHb27dtXGzdu7BhLT0/P+HvMmDEK6LZt20LSt3DhQgV03rx5IcnnFM9zv++++7RGjRrqcrkyjqWkpGhCQoLef//9IdmyYMECFREdMGCA37GtW7dqmTJltFWrVo7xCRMmKKBTpkxRVdVNmzZpbGys9u7dO+h1qlevrt26dQt6fODAgXrppZdmaqtq1p814LgWgu9lu9nNbnazm93ye7MhnZaApJ1Kc2ZuACnxKWdCOq/Lf5ssZz/lypnmjcWKFcu23LJly2jTpo1jVaxJkyaUK1eO6dOnB9Qzb948EhMTadKkCXPmzCEhISFLG0+ePMnHH3/MPffc4xiPiCi4r0uXy0XJkiV5/vnnHeMHDx5ERJgwYYJjvHv37uzYsYMff/wxY2z69Omkp6fTuXPnkK756quvUrZsWV555RW/YxdeeCGDBw9m0aJF/PzzzxnjPXr0oF27dvTt25e9e/fywAMPUKFCBUaMGJGdp+vgrrvuYv369Y7VVkvuIyIHRWS/iFyVtXT451ksFosl/7AhnZaAHNzizM85EXsCV6TrTA++9gVgVBFAnitcUQj6bMC0k5BIT08nLS3NMRYREeHnGKWnp5Oens6OHTsYPHgwlSpV4q677gqoLzO5yMhIoqOj/c6LiYlh3bp1fuMzZ85k0KBBtGrViunTpxMXFxfS81q2bBmHDh2iefPmIclnh27durFv3z5Kly5N27ZtGT58ONWqVcvyvM2bN3Ps2DEaNGjgGF+9ejWA33j16tVp0aIFkyZNyngeEydOpGPHjpQoUYKsSEtLY/Hixdx+++3ExsYGlLntttsYNGgQCxYsoGnTphnj77//PvXq1aNZs2Zs3bqVmTNnhuRoB+PKK68kISGB2bNnc80112R9giWnlMJM82X3viCn51ksFosln7Bf0JaAHNhywLGfEp8CQI1DNUypn3r5b5OlcFGnTh2/sZtvvplvv/3WMda0aVNWrVoFQM2aNVmwYAEVK1b0Ozcrudq1a7Ns2TLHOTt27GD37t0BVwwHDBjAxRdfzNdff51pfp8vy5YtQ0SoX9+3Gn3OKVWqFI8//jgtW7YkISGB1atX8/LLL3P11VezevXqgK+HN0lJpr91w4YNHeOrV68mJiaGunXr+p3To0cPHn/8cd566y0OHjzI/PnzmTVrVkj27t+/nxMnTmQUTwmE59iff/7pGK9WrRp9+/Zl+PDhdOrUifbtw5sdioiIoH79+n7/e0ue8Q93JUqLxWKxFBFsSKclIIe2HXLsp8SnEHc6jvOOnQeZ17uwnCNMnz6dFStWOLY333zTT27SpEksW7aMTz75hISEBNq0aROwumVWcv3792f58uUMGTKE5ORkNm7cSPfu3QOuKoJxPrds2RIwJDEzdu3aRUJCQsDVxJzSoEEDRo4cya233krLli0ZMGAAs2fPZs+ePbz11ltZnr9q1SoqVqxI5cqVHeNJSUnUq1cvoMPbpUsXTp48yYwZM5g8eTKVKlWidevWIdmrmvOV3yNHjjBp0iREhBUrVoRcICYzKlSowK5du8LWYwmJnpgecaFuljAQkQgReUxENopIqoj8KSKvi0jxbOhoLyJLReS4iBwQkakicmFB2iYixUTkPRFZJSL7ROSkiGwTkc9FpEFW5+elbV46okTkURFJcr92h91//7MgbXO/dk+JyAb367ZfRL4UEf9Z1uzb9qT7/bFVRFREtmfz/DIi0l9E5rqf1wkR2SQiH4hI1YK0za1jkfvcQFvjcOw727ErfJaAHP7jsGP/ePHj1DhUA0GgRsHYZClcXHbZZdSsWTNLOc/qU9OmTUlMTKRGjRoMHz6c9957L1ty3bp1Y+PGjYwcOZKXXnoJEeHOO++kffv2AUM6R40aRaVKlXjuueeIjY1l8ODBIT2v1NTUbK0I5pSGDRtSq1YtVqxYkaVsUlKS3+oemBW+YGGOJUuWpEOHDkyaNInt27fTrVu3kPMQy5cvT1xcXKZtJzzHPFU6PQwcOJCDBw8yc+ZMOnbsyJNPPsnbb78d0nWDERcXx4kTJ7IWtIRL4Yo5PzcYhWn6PB14nTNNoBuIyI2aRV8wEekEfAH8DxiICbEdAPxXRBqrajgzJeHYFg00Bv4LTAKOAtUwEwo/i0g7VV1QQLYhItHAN8D1wGTgPcw98SVA9TDsCss2ERHgayDR/TgaqAD0AZaJyDWq6t+zKHRexrRYSQJK5+D8ppjn9D3wNqaH3WXAP4GuYdoXrm0e9gGPBRjfGobOsx7r8FkCcnSXc1Y+JT7FhHMC+N93WkIknJy5okDp0qWpWbOmX4+8UOVeeOEFBg8ezNatW6lYsSLnnXcedevW5brr/KsIiQgffPABJ0+e5MknnyQ2NpYBAwZkaWO5cuX8eszlFaqK+X3PXGbNmjU8/PDDjvHk5GQ2bdrEI488EvTcHj16cPPNN+Nyufj0009DtisqKooWLVowb948UlNTA+bxffPNNwDccMMNGWOLFy9mzJgxvP766yQmJjJkyBCGDh3KPffcE1b+3YEDByhfvnyOz7eExHNhnv9HrlhxDiEi9TBN26epamev8W3AW8BdwCeZnF8M4xD8CTRXdx8xEZkFrAKGYZpL57ttqnoc4/D56n0P8155AsiRwxeubW6eAW4E2qjqwpzYkUe23Y5x9j5Q1YyVRhGZBKxz6wgn5PpiVd3q1rkOyDqp28lGoLb69JIUkZnAPOB54I4Css3DcVX9OIfnFlmsw2cJyPE9xx37KfEp1DpYy+yEFhVmsfixZ88eNm7cSLdu3XIsV7x4cS6//HIAZs+ezcaNG/nwww8D6omIiGD8+PGcOnWKxx57jNjYWHr37p3ptevUqcPp06fZuXOnX5/B3GTlypVs3ryZrl27Ziq3ZcsWDh06RGRkpGN89OjRuFwurrzyyqDntmnThq5du1K6dGnq1cte4u3AgQO58cYbeeqpp3jjjTccx7Zt28aIESNo0aJFRsGWEydO0KtXL5o0aUL//v0BGDRoEFOmTKFXr16sWbMmx2Gy27Zt46qrbBHIvERVw3X4LNnnbsyq6ps+42OA4cC9ZO4ctMR0xR2qXk2jVXWNiCwC7hSRR9T0Vcxv24KRDKQSXnJIWLa5Qyv7A1+r6kL3qloJVQ0//jz81+169+M470FV3SoiS4CbRKSaquZogsXjUOUUVd0eZHy+iBzArPblVHeurcCJSATGYTyq4eQoFCGsw2cJSMq+FMf+8eLHz1ToTCwAgyyFjjVr1rBv3z6/8caNGxMVFUXHjh1p2LAh9evXJyEhgc2bNzNq1CiioqJ4/PHHM+RDlVu9ejWzZs3KCG388ccfee211/j3v/+d6epRZGQkkydP5uTJk/Tp04eYmJhMm3i3aNECgOXLl/s5fF988QVARnGZWbNmUaFCBSpUqEDLli0Bs8rVunVrPvroI3r06AGYcNQLL7yQhg0bUrp0aVavXs0rr7xC5cqV6devX/AXmTMFW8aOHUvVqlWpWLEic+fOzWjFsHLlSho2bBiwCmlkZGS2Vva8ad26Nc8//zxDhw5l+/bt9OjRgzJlypCUlMTw4cMpVaoUkyZNypAfOnQoO3bsYNq0aRmho8WKFePDDz+kWbNmvPTSSzz3XPZ9ikOHDrF582aeeOKJHD0Pi6UQ0wRwAcu9B1U1VUTWuI9ndT7ATwGOLQNuAGoBvxaAbQCISCTGuYsCqmJW9koA3+XAptyyrTlQElglIv8H/AMoISL7MI7ZUFVNy0xBHtrmySdICXDMM9aUQraiLiKlMK+pf35F/lMZOAbEASkiMgd4SlU3FqxZBUxBNwK0W95t4TReH1V9lKPp+hUdrtCpl05VjcmxynOSotx4Pdi2d+9eVVUdPny4NmzYUEuVKqVxcXFaq1Ytfeihh/yalYcqt27dOr322mu1VKlSGhsbqw0aNNCPPvooqH2+jeFPnjypiYmJGhERoZMnT870OV511VV6//33+40He84tW7bMkPE0WR83blzG2Msvv6yXX365JiQkaFRUlFapUkUffPBB3bVrV6Z2qKoOGjRIy5Ytq+PHj9dKlSppiRIl9N5779WZM2dqQkKCXn311Vk+d2+y2wR+1qxZetNNN2np0qU1Ojpaa9asqU888YTu378/Q2bFihUaGRmpzzzzTEAdjz32mEZHR+u6dev8jmXVeP3jjz/WmJgY3bdvX6Z22sbrdjvbNmAtsCfIsSnu75foTM4f7ZapG+BYH/exmwrCNi/Zy3y+Lw9hcrWiCvB16++WSQZ2Ag8DXTE5cwpMKEDb+rllBviMxwO73Mf+lUvvv3XA9lzS9Zrbtn8UpG2YldGXgDsxoaWvASeAw8DluWHb2bqJ+wWyFEGKFy+ux48fz1owAK+We5UTB84USZh8z2Q+XfgpjYo1gh25ZWHRZ8OGDQFL5lsKN+PHj6d///7s3r2b+Pj4ArWlTZs2gGkify6SmJhI+fLlHauJgcjqsyYiKaoacgU/iyWvEZEtQDFV9WvGKSITge5AGVU9FOT8DzGrUxm5T17H/gF8CHRU1a/y2zYv2eLA1ZgiLjUxIY0rgH+ryfPLNrnwug0BXgDSgcvUa+VHRBYCrYB6moPiI7lgWxlMnlwc8DgwHyiPybG9ESgGPKOqL2bXtgDXWocJZa0Rpp47MM7sXCBRc8GxyC3b3LqaA4uABaraJlx9Zyu2LYMlIKdPOEP+jxc/TvXD1SHsosAWS+Gne/fuVK5cmXfffbegTWH16tU0atSooM0oENasWcPChQt59llb/d9SJEnhTAifL7FeMpmdTxAdoZyfGeHaBpjiLao6X1W/U9W3MGGmbYBpObQrN2zzzGYvU/8wv4nux5YFYZuqHsQ4dluADzCVJZcDxYERbrEjObQt1xGR9pgqp6uArrnh7OU2qroE+AG4XkT8cx/OEazDZwnI6VNOhy89Op1yKeXMPJ3FUsSJjIzko48+KvDVvR07drB///5z1uH7+++/GTduXEjtPyyWs5BdQHkRCeQgVAb2qeqpLM73yAY6H+CvArItIGqKy0zDFB+5uIBs2+l+/DvAsd3ux5wWlQn7dVPVtaraANMioiVwiaq25IwjWShy0USkHeZ/+SsmdLjQOKIB2A548knPSWzRFosfLpcLTVfTc89N2bSyZt8WbLGcIzRr1oxmzZoVqA3Vq1enEE6Y5hvt2rUraBMslrxkBXATcBWwxDMoIrHAlZhViazOBzMVO9/nWDPMStDmArItMzyrLGUxK1n5bZunoEqgMsyeseQc2JUbtmWgqr8D3r2JEjH/0//m0LZcQ0TaYvoMbgRudK9MFmYuAdIwff7OSewKn8WPY38fI8LrrXE66jSVj7snC0Oqy2WxWCwWiyULPsddoMNn/EFMkY7JngEROV9E6oiId9jBYsyKVC8RKeElewUmD22q5qwlQ9i2iUgFd2l8ByJSCeiCqaKYk+qhYdumqtswTtNVItLQSzbSrSMNk4+W77YFQ0T6YQrgjMpp7mN2CWafiNwEfIWZTGitqvnuRAV5z5Vy/w99ZW8GrgXmqWpqftpZmLArfBY/Dmx2fnZT4lOoerQqJGCnCCwWi8ViyQVUda2IvAP0FZFpmFYFdYFHMc6cd7+2V4D7MH3aFrnPPy0i/TFOxhIRGYP5pX4M2AvkOPk1XNuAbsAAEZkObANOYVpE3IcJq+ulqjnKL8wF28BUw1wCzBeRt4D9mMqOVwHPa8773IVtm4h8h8ndW4+70irQAZiJqUCZY0SkO1DdvVsBiHYXsQHYoare1bH87BORxphqpoKpiJlo2hieQXPY9Dxc29x/vyEiMzCvXxrm/3kvsA9/J/ycwjp8Fj8ObnOuzB8vfpxqh6ud+RhaLBaLxWLJDQZg8oseAm7G3JiOxvSCc2V1sqpOFZETwBBgJHAS+B4YpKo5zd/LDduWYGKCbgUqYap07sGEnv6fqi4tQNtQ1dUicg3woltXLLAB6Kmq4wvSNkxfxTuB+937G4BHgPdVNT1M2x7AvyDNC+7HxUDm5ZDNKqOn+MyoIDI5cvgI37ZNmOIxtwDnYSqa7gTeA17Ohc/DWY1ty1CEyWlbhoXDFvLDc2fCzH+/+HeuT7ief1z6j5x/jM9RbFsGiyV/sG0ZLBaLxWIJjA3Qs/hxdOdRx35KfApVD1eFFgVkkMVisVgsFovFYskR1uGz+HF0t9PhywjpbF9ABlksFovFYrFYLJYcYR0+ix/H9znDQFPiUzj/2PmBCxhb9OQ5zAAAIr9JREFULBaLxWKxWCyWQot1+Cx+7Ene49iXKKFkyZIFZI3FYrFYLBaLxWLJKdbhs/hx5MgRx35xiiPVJYi0xWKxWCwWi8ViKaxYh8/iR9rpNMd+6fTScHnB2GKxWCwWi8VisVhyjnX4LH5Eno507Fc4XQGuKyBjLBaLxWKxWCwWS46xDp/Fj5i0GMf+BakXQGIBGWMpdIwfPx4RCbiVLl06Q27OnDnccMMNVKpUiZiYGKpUqULXrl1Zv369Q1+ocgALFy7kuuuuIy4ujrJly9K9e3f27HHmnHrs+/333x3jK1asoGzZsjRo0IB9+/Zl+Tz79evHrbfemrH/xRdf0LlzZ6pXr05cXBy1a9fmySef5OjRo5loMSxatCjL1ys38P7fbN68OVM75s+fH5LOuXPnkpiYSLly5YiNjaVWrVoMGjSIgwcPOuS6du1K2bJl+fvvvx3j6enpNG7cmEsuuYQTJ04Efe94bzVq1ABg1KhR1K9fH5crlF7FFovlbEdEaoiIeraCtidURKSXl9035NE1Fnld4/4wdU1y6zkoIuVyyURLISaqoA2wFC5OHTtFdFp0xr5LXJROLQ0XFJxNlsLJ1KlTqVLFWbo1KurMV8qBAwdo1KgRffr0oUKFCvzxxx8MHz6cZs2asXbtWqpXr54tuSVLlnDTTTfRtm1bvvzyS/bv38+QIUNo3bo1q1atIibGOVHhzdKlS0lMTKROnTrMnj2bMmXKZPrctmzZwvvvv8/SpUszxkaOHEm1atV4+eWXqVKlCqtXr2bYsGEsXLiQpUuXEhGR9fzZW2+9RZMmTQK+XrlJyZIlmTRpEi+88IJjfOLEiZQsWTIkJxXg5Zdf5umnn6ZDhw6MHTuWsmXLsmrVKkaMGMGXX37JwoULqVq1KgBvv/02devWpU+fPkybNi1Dx8iRI0lKSmLhwoXExcXx008/Oa7RsWNHrrjiCoYNG5Yx5vlf9u7dmxEjRjBhwgR69uyZk5fCYrEUECKyHaiejVOuB7bniTF5iIgUB5537y5T1QUFaU+IvAJ0A0oDQ4H+BWqNJe9RVbsV0S0+Pl6zy65Vu3QYwzK2gfED9bM6n2Vbj8Wwfv36gjYh1xk3bpwC+ttvv2X73I0bNyqgI0eOzLZc69at9eKLL9bTp09njC1fvlwBfeedd4Lat2jRIi1RooRee+21evjw4ZDs7Nu3rzZu3Ngxlpyc7Cc3YcIEBfT777/PVN/ChQsV0Hnz5oV0/Zziee733Xef1qhRQ10uV8axlJQUTUhI0Pvvvz8kWxYsWKAiogMGDPA7tnXrVi1Tpoy2atXKMe55PaZMmaKqqps2bdLY2Fjt3bt30OtUr15du3XrFvT4wIED9dJLL83UVtWsP2vAcS0E38t2s9u5smGcN83G1gqIwSSRXAdcV9DPIcTn+S+v59AtD69zuddrUzEX9M1323wyN/TZrXBvNqTT4uDA7wcc+8eLH6dyXOUCssZS1ChXzkSOFCtWLNtyy5Yto02bNo5VsSZNmlCuXDmmT58eUM+8efNITEykSZMmzJkzh4SEhCxtPHnyJB9//DH33HOPY7xChQp+sp7Vur/++itLveHgcrkoWbIkzz//vGP84MGDiAgTJkxwjHfv3p0dO3bw448/ZoxNnz6d9PR0OnfuHNI1X331VcqWLcsrr7zid+zCCy9k8ODBLFq0iJ9//jljvEePHrRr146+ffuyd+9eHnjgASpUqMCIESOy83Qd3HXXXaxfv96x2mqxWM4K7gCae23jvI797XOsObBaVU+q6o+eLb8Nzi4iIkBv924K8HVeXUtV13q9Nsm5oPJT92M08I9c0GcpxNiQTouDbRu2OfZT4lO4/FJbojO3eE6eK2gTHDyrz+b43PT0dNLSnBVdIyIi/EIb09PTSU9PZ8eOHQwePJhKlSpx1113BdSXmVxkZCTR0dF+58XExLBu3Tq/8ZkzZzJo0CBatWrF9OnTiYuLC+l5LVu2jEOHDtG8efMsZRcvXgxA3bp1Q9LdrVs39u3bR+nSpWnbti3Dhw+nWrVqWZ63efNmjh07RoMGDRzjq1evBvAbr169Oi1atGDSpEkZz2PixIl07NiREiVKZHm9tLQ0Fi9ezO23305sbGxAmdtuu41BgwaxYMECmjZtmjH+/vvvU69ePZo1a8bWrVuZOXNmSI52MK688koSEhKYPXs211xzTY71WCyW/EVVV3rvi8iNXrsnAzl0IlIDyLgRUVXxOuad03cF8DDGqYwFFgH9gB3Ao0BfoBqwFXhRVScHuNadwANAQyAB2O/W84qq/hLi02wEXOL++wdVPeZzjWGA54d2AjAFeAG4FNgFjFLVt0XkEuB1zCqnC5gN9FPVvV66FgEt3bs9VXW8e3w8cJ97/DkgCXgK8xodA6YB/1LV4z62z/T6+y5geIjP2XIWYlf4LA6Wr1ru2NdopVTrUgVkjaUwU6dOHYoVK+bYbrvtNj+5pk2bEhMTQ61atfjll19YsGABFStWzLZc7dq1WbZsmeOcHTt2sHv3bg4cOOCrjgEDBlClShW+/vrrkJ09MA6fiFC/fv1M5f766y+GDh3KjTfeSOPGjTOVLVWqFI8//jhjx45lwYIFPPPMM8yfP5+rr76a5OSsJ2qTkpIAaNiwoWN89erVxMTEBHQ4e/TowdSpU0lNTWX37t3Mnz+fHj16ZHktgP3793PixImM4imB8Bz7888/HePVqlWjb9++bN26lU6dOtG+ffuQrhmMiIgI6tev7/e/t1gs5zRTMStr5YESwC3AAuBd4E2gJmblqg7wsYhc7TlRRCJEZDLwGdAGKAcUAyphHJ/lInKmYlfmtPT6++egUobrgBkYBzMWuAgYLSLDgWXArUBJoBRwJzApRBu8uQezytjUfY3ywEMYZ9KBqv4N/OHerS8iZXNwPctZQqFy+NwfwsdEZKOIpIrInyLyujshNlQd7UVkqYgcF5EDIjJVRC4MIltKREaLyF/u6/0qIg+7l+gLre68ZNefuxz7UZFR0Da/rbCcDUyfPp0VK1Y4tjfffNNPbtKkSSxbtoxPPvmEhIQE2rRpw/bt27Mt179/f5YvX86QIUNITk5m48aNdO/ePeCqIsDNN9/Mli1bAoYkZsauXbtISEgIuJro4dixY9x+++1ERUUxbty4oHIeGjRowMiRI7n11ltp2bIlAwYMYPbs2ezZs4e33nory/NXrVpFxYoVqVzZGV6dlJREvXr1AobIdunShZMnTzJjxgwmT55MpUqVaN26dZbXAjz5HTniyJEjTJo0CRFhxYoVIReIyYwKFSqwa9eurAXzgNz4XbJYLLlOBczqXDfAs3J1IcYJfBtoD3jHgT/q9fc/MY4RwD7gEYzj9yImpy0GmCQimVf3MniHQP2WhezFGEf1ZuBLr/FBwFGMk9fPa7ytiNQOwQZvLsGEat4C/Mdr/AERCRTe4SnnLNiOy0WaQuXwAaOAN4D1mDf9VMyHdIaIZGmriHQCvgXigIHAa0AL4L8icoGPbDQwD/Pl8Ln7epsws0N+cW6FRXdeo4edN3pRRNkKnZaAXHbZZTRu3Nix1axZ00+ubt26NG3alLvvvpvvv/+eY8eOMXy4f+RIVnLdunVjyJAhvP7665x33nlceumlVK5cmfbt23P++ef76Rs1ahQPPPAAzz33XMDrBSM1NTXTip+pqancdtttbN26lTlz5vhVKg2Vhg0bUqtWLVasWJGlbFJSkt/qHpgVPt9wTg8lS5akQ4cOTJo0iYkTJ9KtW7eQKokClC9fnri4uICOuQfPMU+VTg8DBw7k4MGDzJw5k+TkZJ588smQrpkZcXFxnDhxImw9OSSs3yWLxZInPK2qH6nqJ8Bir/HlqtpPVWdhPrseann9/YDX3+OAX4BUYA6wxj1eCugagh3eyd37s5DdBdyrqt8BvonND6vqFFV9G/g1iN2h8CumcMxMTFhrins8CuMQ++IdHuMfemMpMhSaHD4RqYf5MZ2mqp29xrcBb2GW2T/J5PxiwGjgT6C5J45aRGYBq4BhmGVtD72AJsCjqjraPTZGRL4EnhKRcaq6oxDqzlN8m65HFLo5gbObcHLmigKlS5emZs2afj3yQpV74YUXGDx4MFu3bqVixYqcd9551K1bl+uuu85Ph4jwwQcfcPLkSZ588kliY2MZMGBAljaWK1fOr8ech9OnT9O5c2eWL1/O/Pnzufzy8CZEVZUgi/4OmTVr1vDwww87xpOTk9m0aROPPPJI0HN79OjBzTffjMvl4tNPPw0q50tUVBQtWrRg3rx5pKamBszj++abbwC44YYzLacWL17MmDFjeP3110lMTGTIkCEMHTqUe+65J6z8uwMHDlC+fPkcn59Twv1dslgseYb36p23o+Xd98W74ap3uOKlXn8PdG+BqBeCHRLk70AsV1VP4ruvcxiK3aGwQN0hGqrqEpGDQHwmurxtPmv6HlqyT2G6m78b88Z702d8DGaG4t4szm+JWYsa6500q6prMEm4d7qdKw/3uPWO8dHzJiaW+85CqjtPiXI55wCsw2fJTfbs2cPGjRu5+OKLcyxXvHhxLr/8cs477zxmz57Nxo0b6d27dwAtJv9r/PjxdO3alccee4z33nsvSxvr1KnD6dOn2blzp2Pc5XLRrVs3vv/+e77++muaNWuWpa7MWLlyJZs3b3YUPAnEli1bOHToEJGRzsmY0aNH43K5uPLKK4Oe26ZNG7p27Urv3r2pVy+Ue5czDBw4kP379/PUU0/5Hdu2bRsjRoygRYsWGfafOHGCXr160aRJE/r3Ny2dBg0axGWXXUavXr04depUtq7ve73atbMb2ZQrhPu7ZLFY8obDXn+7vP4+FEQ+K2csECVDkPFOws7KOQtmM6p6KMg52bXbN6Hdu7JaIF3eNu8NcNxSRCg0K3yYFTEX4KgaoqqpIrLGfTyr88E5S+JhGXADZmn8V3cYTkMgSVVTfWSXu+3wvl6h0B3geK4Tmea8qYyKLkxvEUthYs2aNezbt89vvHHjxkRFRdGxY0caNmxI/fr1SUhIYPPmzYwaNYqoqCgef/zxDPlQ5VavXs2sWbMyQht//PFHXnvtNf79739nunoUGRnJ5MmTOXnyJH369CEmJibTJt4tWrQAYPny5Y5wzUceeYSpU6fy9NNPU7x4cUcRkSpVqmTILl68mNatW/PRRx9lFEnp1q0bF154IQ0bNqR06dKsXr2aV155hcqVK9Ovn3fKhj+egi1jx46latWqVKxYkblz52a0Yli5ciUNGzYMWJgmMjIyWyt73rRu3Zrnn3+eoUOHsn37dnr06EGZMmVISkpi+PDhlCpVikmTztQUGDp0KDt27GDatGkZoaPFihXjww8/pFmzZrz00ks891z2q9QeOnSIzZs388QTT+ToeYRJuL9LFoul8LEBc58G8E9V/cBXQERigfQQdK31+rtAZqXCxGOzkk/3mZaCoTDdzV8A7FPVkwGO/QVcIyLRqhpsmvgCL9lA5wNUxryhy2Dy5fxkVfWkiOx3yxY23Q58ShT7ER8fn9nhgESlOd8SpSrZCp2WwHTp0iXg+N69eylfvjzNmjVjypQpvP7665w6dYqqVavSqlUrnnzySUf1x1DloqOj+e6773j11Vc5efIkdevW5b333svUefMQFRXFlClT6NChA7169SImJsavz56HGjVqcNVVVzFjxgw6deqUMT5r1iwAXnrpJV566SXHOc8++yzDhg0DTAhmeno6LteZCdzLLruMTz/9lNGjR5OSkkKlSpXo1KkTzz33XJahiklJSZQtW5bhw4czePBgjh07RocOHZg6dSp33303n3/+ecaKWm7zzDPP0KRJE0aNGkXPnj1JSUmhWrVq9OjRgyeffJKyZc3k8MqVKxk1ahRPPfWUX5irZ8Vv+PDhdO3aNdsrjTNnziQ6OpqOHTuG+3TiM/vO9C7/7kW4v0sWi6Xw8SFnHL7XRaQCsAJT1bMqcC1wG1Af0zw+MxZ5/X1VrlqZx4jI+YBnVvNXVfWfwbUUHQq687tnA7YAfwQ5NhEz+1A6k/M/dMtcFODYP9zHOrj3q7r3JwbR9QewprDpDnBcM9vi4+M1O5zee1oHxg/UYQzL2L4Y/UW2dFicrF+/vqBNsOSAcePGaUJCgh4/frygTdEbb7xRb7zxxoI2o8Bo166d3nvvvVnKZfVZy+r7UvPgd8ludrPbmQ1Tk8DzmdseRKZGsM+lz2e2htf4eK/xYV7jrQJdD5PO9ElW3wne18jkOQmmKJ9iwrxLZPKcx4f4PBd5Hbs/hPGAz999bLvXsVY+x3p5HXuqoN8fdsvbrTAlaKVgSuEGItZLJrPzCaLD9/zMZD3y3tcqLLodqKpktgW5flBOcYqD1Q6y66Jd7L5wN7ur76btPbYng+Xco3v37lSuXJl33323oE1h9erVNGrUqKDNKBDWrFnDwoULefbZXCl2lJKD78twf5csFkshQ1VdqnoPpgrnbEzuWhqmWMovwPuYtg5/BlVyRpe65cFEd4UdipCP3O1+PI1ZfLAUYQpTSOcu4FIRiVH/8JnKmLCazMJmdnnJbghwPpwJkTwInMAZWgmAiMRgmnB6l/ktLLrzlPjy8YzZ4FtnxmI594iMjOSjjz7KyJ8rKHbs2MH+/fvPWYfv77//Zty4cQHbfeQT4f4uWSwWN6o6DLPilZnMdoIUKgk2MaOq9wP3BxhfFEyX+/hUTJuVcHkfeAI4H9PTLyO5OdhzzuJ5tsrm+P0EeP7uYzUCjbsrEF/v3v2Pqu4JJGcpOhSmFb4VGHscMdDuxNkrgZUhnA9wdYBjzYAjuBtMqqoLSAIauJ0wb65y2+F9vUKh22Kx5B/NmjWjT58+BWpD9erVUdWg+ZJFnXbt2nH33XdnLZh3hPu7ZLFYijiqehx4xr3bVERaF6Q9ITIY43AeAp4vWFMs+UFhcvg+x8QRD/AZfxDTQ2SyZ0BEzheROiLiXZVkMbAb6CUiJbxkr8DEcU9V1dNe8p+69fr2uBuAWdqfUkh1WywWiyV/CPl3yWKxnLuo6odeIeLfF7Q9WaGq3d22llHVrBrGW4oAhSakU1XXisg7QF8RmQZ8B9QFHsU4Rd7NbV8B7sMsRy9yn39aRPpjfqCXiMgYIAF4DBOf7ZsEMgboCbwhIjUw4ZTtMfHXL6rqNi/bCpNui8ViseQD2fxdslgsFoulUFJoHD43AzAVhR4CbsYk0I4GhrpDJTNFVaeKyAlgCDASOAl8DwxS1b98ZE+JyI3Ai5jE1XKYimz9gHcKq26LxWKx5CsDCON3yWKxWCyWgkZMgSFLUaR48eJ6/PjxgjbjnGbDhg3UrVu3oM2wWIo8WX3WRCRFVYvno0kWi8VisRQKClMOn8VSJLGTKhZL3mI/YxaLxWKxBMc6fBZLHlKsWDFOnDhR0GZYLEWaEydOUKxYsYI2w2KxWCyWQol1+CyWPKRixYr89ddfpKSk2FUIiyWXUVVSUlL466+/qFixYkGbY7FYLBZLoaSwFW2xWIoUCQkJAOzatYvTp213DYsltylWrBjnnXdexmfNYrFYLBaLE+vwWSx5TEJCgr0ZtVgsFovFYrEUCDak02KxWCwWi8VisViKKNbhs1gsFovFYrFYLJYiinX4LBaLxWKxWCwWi6WIYh0+i8VisVgsFovFYimiWIfPYrFYLBaLxWKxWIoo1uGzWCwWi8VisVgsliKK2GbQRRcRcQEncnBqvPsxJRfNKazY51o0sc+1aBLOc41TVTvJabFYLJZzDuvwWfwQEQVQVSloW/Ia+1yLJva5Fk3OpedqsVgsFktuYWc7LRaLxWKxWCwWi6WIYh0+i8VisVgsFovFYimiWIfPYrFYLBaLxWKxWIoo1uGzWCwWi8VisVgsliKKdfgsFovFYrFYLBaLpYhiHT6LxWKxWCwWi8ViKaLYtgwWi8VisVgsFovFUkSxK3wWi8VisVgsFovFUkSxDp/FYrFYLBaLxWKxFFGsw2exWCwWi8VisVgsRRTr8FksFovFYrFYLBZLEcU6fJYMRCRCRB4TkY0ikioif4rI6yJSvKBty01EpJaIPC8iy0Rkr4gcFZE1IvJ0UXuuvohIvIhsExEVkbcL2p7cRkTKishIEfnd/R7eKyILRaR5QduWm4hICRF5SkTWut+/+0RkqYjcLyJS0PblBBF5UkSmishW9/tz+/+3d+/Bdo13GMe/j2oQ0URKCSlxp6m0dWu06torhqoJjcQUCaIRlz/QVkWkippBhrSq7k1JMRXDuBsTVbdQkxGhpJS0JEglQSKSTH794107WXb3ydnnZO+9TtZ5PjN71lrvWnvt59g52/nt913vauf4nSTdJWm+pEWSHpd0YIvimpmZrTXWLTqAdSlXAKcBU4DLgF2y7a9J+nZErCgyXAOdAIwG7gZuAZYBBwAXAkdJGhwRHxeYr5nGA5sUHaIZJG0NTAV6AdcDrwK9gUHAlsUlayxJ6wD3A98AbgauAnoCQ4EbSb+35xQWsPMuAt4Hngf6rO5ASdsBTwLLgUuBhcCJwIOSfhARjzQ3qpmZ2drDt2UwACQNBGYAUyLiyFz7GOBKYFhE3FpUvkaStAcwKyIWVrVfCJwLjImIMvZ+7QZMA84mFfS/jYhTi03VOJIeBwYAe0XEnILjNI2kvUnFzoSIODPX3gP4B9A3IvoUFK/TJG0bEa9n6y8CvSJiQBvH3g4cCeweEdOztl7ATGAJsHP4f25mZmaAh3TaKkMBAROq2q8FFgPDWx2oWSLiuepiL3NbtvxyK/O0gqTPkN7LB4A7C47TcJL2BfYBLo2IOZI+K6ln0bma5HPZ8u18Y0QsBeYBi1qeqAEqxV57smHXhwFTK8Ve9vyPgOuAHYE9m5HRzMxsbeSCzyr2BFaQeoBWioglwHS6xx9Q/bPlO4WmaI4zgZ2B0vToVTk4W86WdA/wMbBI0quSSvNlRWYasAA4W9IQSVtl17NdDOwOjCsyXAsMAtYDnqqx7+ls2R0+r8zMzOrigs8qtgDmRcQnNfa9BWySDRkrpawHbCzpmqBSDF2tkLQNcAEwPiLeKDhOs+yULa8F+gI/AUYAS4FJko4vKlijRcR8Ug/X+8DtwJukoZyjgSMj4toC47XCFtnyrRr7Km2luWbTzMxsTXnSFqvoCdQq9iBdE1M5Zmlr4rTcBGAw8IuIeKXgLI12NfAv4PKigzTRRtnyQ+CAbHgjkqYArwMXSbq5RBMPfQS8SJp46ElSkTsauFXS4RHxcJHhmqwyVLfW59WSqmPMzMy6PffwWcVi0jCpWtbPHVM6kn5FGur4h4i4uOg8jZQNZ/wuMCoilhWdp4kqs6pOrhR7sLI37G5gc1b1Aq7VJO1KKvIejoizImJKRFxPuoZxLnBt1mNdVpXPoVqfV6X+rDIzM+sMF3xW8TZp2GatP6K2JA33LF3vnqRxwC9J09mPKjZNY2Xv5eXAfcBcSdtL2h7YOjukd9bWp6iMDfSfbDm3xr7KjJ0btyhLs51JKmzuyDdGxGLgXtL7O6D1sVqmMllNrWGblbZawz3NzMy6JRd8VvEs6d/DXvlGSesDXwWeKyBTU0k6Hzgf+CMwsoTTuG8AbAocAszKPaZm+4dn2yOLCNdglcmG+tfYV2l7t0VZmq1S1NTqxVu3allGM0jDOfeusW9wtizd55WZmVlnueCzituAAM6oaj+RdD3MLa0O1EySxpJmM5wEHF+ia7vyFgFDajx+mu1/INu+u5B0jXUX6fq94dn92ACQ1A/4Iem+i/8sJlrDvZQtj8s3Zj21hwPzgddaG6l1stsv3APsL+krlfbsfR9J+hJjWhtPNzMz63Z843VbSdJVpGvZppCGAe4CnAY8ARxYlqJI0mhgIjAbOI90O4q8d8o86YWkAaRJXMp24/WTgGtIN9++AegBnAL0Aw6NiIcKjNcwkrYGnicNUb2F9PvZl/TlzABgdET8rrCAnSTpWFYNNx5Dev8uy7bfjIhJuWO3JxV1y4ArgA9IP/+uwCER8WCrcpuZmXV1LvhspWyihzOAk0h/OM4j9fyNzb5VLwVJN5Gm7W/LYxGxf2vStF5ZCz4AST8Czib94b+CdK+2CyLiiUKDNZik7Ui3ETkI2Iw0ac10YEJE3FlgtE6TNBXYr43d//c7KWkX4JLsOT1IRfC4iHikiTHNzMzWOi74zMzMzMzMSsrX8JmZmZmZmZWUCz4zMzMzM7OScsFnZmZmZmZWUi74zMzMzMzMSsoFn5mZmZmZWUm54DMzMzMzMyspF3xmZmZmZmYl5YLPbC0maYCkqDyKzlMvSSNzuQ9s0mtMzb3GcWt4rknZeeZL+nyDIpqZmZk1nQs+sy5C0hv54q2Ox/5FZ+4MSRsC47PNpyPi0SLz1OliIIA+wNhio5iZmZnVb92iA5jZGpkDfKvoEB10MtAvW5/YxNcZA/TO1l9dkxNFxEuSHgUOAkZJ+nVEvLumAc3MzMyaTRFrzSgws1KTtAewfq7pBOD4bH0uMKTqKTMiYmErsjWKJAGvADsAi4HNIuKjYlPVR9II4Lps8+cRcUmReczMzMzq4SGdZl1ERDwXEX+rPIDZud2f5Pdlj4Wru4avavjnIElXS3pP0oeS7smeK0mnS5ol6RNJL0saViufpKMlPSRpnqSlkuZImixpUAd+zN1JxR7AX6uLPUnjcplvknSwpL9L+ljSa5JOzY7bQdLdkj6QtEDSnyVtWnWumtfwZeettI+TdJikp7PXeE/SNdmw02r35tZ/3IGf2czMzKwwHtJp1j3cAeyY2z4UGAg8CIzKte8M/EnS6xHxFICkdYBJwDFV59ycVPgcIWlIRNxTR479cuvPtHPsPsCxrPpialvgKkn9gROBvrljjyZdX/f9OjLkHQOcn9teHziJdL1e/r8LETFX0mxgK2CQpL4R8X4HX8/MzMyspdzDZ9Y9bAqMAIYBi7K2bUhFzUTgYODJ3PGn5dZPZlWxNw8YDXwHuJBUGK0HTJK0cR05ds2tz2rn2O1IheohwF9y7ecAH5KKvDG59u9J2qmODHk7AJNJBfDVufYRknrVOL5yLaD49M9iZmZm1iW54DPrHs6NiBsi4lbgsVz7tIgYExH3A1fk2vO9gSNy6zcCLwBLSL2D07P23sBRdeTID7v8bzvHvg0Mj4j7gN9U7TslIm6PiInAzDZy12MmMCwi7gVOJV1XCGn0wzY1js/36H2hg69lZmZm1nIe0mnWPeR77/KF1lO59Xm59fxwyS/l1s/KHrUMrCOH2livZVpELM/Wq4vDenLX49HIZq6KiBWS5gM9V3OufGbPeGVmZmZdnnv4zLqH/GyeK3LrC9o4vr1irJaN6jgmfyuD9oqztjITEQvaeE5Hc1dfg7c8t17rXPnM73XwtczMzMxazgWfmbXn5dz6yRGh6gewAWmyk/bMyK139Hq7rqCSOfj0UFIzMzOzLslDOs2sPdcDu2Xrl2W3P3gW6AF8EfgmcBgwCHijnXNNza3v1dCUTSapH9A/25wZEfNWd7yZmZlZV+CCz8za83vSLRKGAr1Is3N21vOkmS53BPaV1GttufE6abbQismFpTAzMzPrAA/pNLPViogVEXEMaRbOB0jXri0nTZbyAnAN6bYO/67jXJEdD2kY6BHNyNwkQ7PlMlKvp5mZmVmXp2yCOjOzlpC0IekefP2AZyJicMGR2iVpIOn6QwFXRsTpBUcyMzMzq4t7+MyspSJiEXBetvl1SQcVmadOPyMVewuA8cVGMTMzM6ufe/jMzMzMzMxKyj18ZmZmZmZmJeWCz8zMzMzMrKRc8JmZmZmZmZWUCz4zMzMzM7OScsFnZmZmZmZWUi74zMzMzMzMSsoFn5mZmZmZWUm54DMzMzMzMyup/wHlOxRqBw88XwAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 864x576 with 3 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "def oxtmodel(x, t):\n", " \n", " kon = 6.8e+5 # per molar per min (from Phaneuf paper)\n", " koff = 0.0011 # per min (from Phaneuf paper)\n", " oxt = x[0]\n", " oxtr = x[1]\n", " oxr = x[2]\n", " \n", " \n", " doxtdt = -kon*oxt*(oxtr) + koff*oxr\n", " doxtrdt = -kon*oxt*(oxtr) + koff*oxr\n", " doxrdt = kon*oxt*(oxtr) -koff*oxr\n", "\n", " return(doxtrdt, doxtrdt, doxrdt)\n", "\n", "\n", "# oxtr conc is 2000 copies/cell\n", "# we need to get the molar concetration of oxtr in mol/litre\n", "# conc. = N/V = 2000/1.4e-11\n", "# conc = 1428e+11\n", "# molar concentration c = conc/NA = 1428e+11/6e+23 mol/L = 2.38e-10 mol/L\n", "# time span\n", "initial_t = 0\n", "end_t = 10\n", "num = 100\n", "\n", "t = np.linspace(initial_t, end_t, num)\n", "t1 = np.linspace(initial_t, 6, num)\n", "# initial condition for wild type \n", "x0_wt = [1e-6, 1.678e-9, 0]\n", "\n", "# initial condition for mutants E339K\n", "#x0_e339k = [3.23e-8, 1.19e-9, 0] cocentration required for 2 mins\n", "x01_e339k = [1e-6, 1.19e-9, 0]\n", "x02_e339k = [1.2e-6, 1.19e-9, 0]\n", "x03_e339k = [1.5e-6, 1.19e-9, 0]\n", "x04_e339k = [2.25e-6, 1.19e-9, 0] # 2 min activation\n", "x05_e339k = [2.25e-6, 1.19e-9, 0] # 5 mins activation\n", "x06_e339k = [3.3e-6, 1.19e-9, 0] \n", "x07_e339k = [4.2e-6, 1.19e-9, 0] # equilibrium activation\n", "x08_e339k = [6e-6, 1.19e-9, 0]\n", "\n", "# initial condition for mutants P108A\n", "\n", "# x0_p108a = [1e-8, 2.658e-9, 0]\n", "# # initial condition for mutants L206V\n", "# x0_l206v = [1e-8, 3.044e-9, 0]\n", "# # initial condition for mutants V45L\n", "# x0_v45l = [1e-8, 1.96e-9, 0]\n", "# # initial condition for mutants E339K\n", "# x0_e339k = [1e-8, 1.19e-9, 0]\n", "\n", "\n", "# ode integration for all types \n", "x_wt = odeint(oxtmodel,x0_wt,t) \n", "x1_e339k = odeint(oxtmodel,x01_e339k,t) \n", "x2_e339k = odeint(oxtmodel,x02_e339k,t) \n", "x3_e339k = odeint(oxtmodel,x03_e339k,t) \n", "x4_e339k = odeint(oxtmodel,x04_e339k,t) \n", "x5_e339k = odeint(oxtmodel,x05_e339k,t) \n", "x6_e339k = odeint(oxtmodel,x06_e339k,t) \n", "x7_e339k = odeint(oxtmodel,x07_e339k,t) \n", "x8_e339k = odeint(oxtmodel,x08_e339k,t) \n", "\n", "# Volume and avagadro's number \n", "Av = 6e+23\n", "V = 1.4e-11 # litre It is given as 14047 cubic micro meter \n", "Div = V*Av\n", "\n", "# solution extraction for wild type\n", "oxt_wt = x_wt[:, 0]\n", "oxtr_wt = x_wt[:, 1]\n", "oxr_wt = x_wt[:, 2]\n", "\n", "oxt_wt_c = oxt_wt*Div\n", "oxtr_wt_c = oxtr_wt*Div\n", "oxr_wt_c = oxr_wt*Div\n", "\n", "# solution extraction for mutant E339K\n", "\n", "oxt1_e339k = x1_e339k[:, 0]\n", "oxtr1_e339k = x1_e339k[:, 1]\n", "oxr1_e339k = x1_e339k[:, 2]\n", "\n", "oxt1_e339k_c = oxt1_e339k*Div\n", "oxtr1_e339k_c = oxtr1_e339k*Div\n", "oxr1_e339k_c = oxr1_e339k*Div\n", "\n", "# solution extraction for mutant E339K\n", "\n", "oxt2_e339k = x2_e339k[:, 0]\n", "oxtr2_e339k = x2_e339k[:, 1]\n", "oxr2_e339k = x2_e339k[:, 2]\n", "\n", "oxt2_e339k_c = oxt2_e339k*Div\n", "oxtr2_e339k_c = oxtr2_e339k*Div\n", "oxr2_e339k_c = oxr2_e339k*Div\n", "\n", "# solution extraction for mutant E339K\n", "\n", "oxt3_e339k = x3_e339k[:, 0]\n", "oxtr3_e339k = x3_e339k[:, 1]\n", "oxr3_e339k = x3_e339k[:, 2]\n", "\n", "oxt3_e339k_c = oxt3_e339k*Div\n", "oxtr3_e339k_c = oxtr3_e339k*Div\n", "oxr3_e339k_c = oxr3_e339k*Div\n", "\n", "# solution extraction for mutant E339K\n", "\n", "oxt4_e339k = x4_e339k[:, 0]\n", "oxtr4_e339k = x4_e339k[:, 1]\n", "oxr4_e339k = x4_e339k[:, 2]\n", "\n", "oxt4_e339k_c = oxt4_e339k*Div\n", "oxtr4_e339k_c = oxtr4_e339k*Div\n", "oxr4_e339k_c = oxr4_e339k*Div\n", "\n", "# solution extraction for mutant E339K\n", "\n", "oxt5_e339k = x5_e339k[:, 0]\n", "oxtr5_e339k = x5_e339k[:, 1]\n", "oxr5_e339k = x5_e339k[:, 2]\n", "\n", "oxt5_e339k_c = oxt5_e339k*Div\n", "oxtr5_e339k_c = oxtr5_e339k*Div\n", "oxr5_e339k_c = oxr5_e339k*Div\n", "\n", "# solution extraction for mutant E339K\n", "\n", "oxt6_e339k = x6_e339k[:, 0]\n", "oxtr6_e339k = x6_e339k[:, 1]\n", "oxr6_e339k = x6_e339k[:, 2]\n", "\n", "oxt6_e339k_c = oxt6_e339k*Div\n", "oxtr6_e339k_c = oxtr6_e339k*Div\n", "oxr6_e339k_c = oxr6_e339k*Div\n", "\n", "# solution extraction for mutant E339K\n", "\n", "oxt7_e339k = x7_e339k[:, 0]\n", "oxtr7_e339k = x7_e339k[:, 1]\n", "oxr7_e339k = x7_e339k[:, 2]\n", "\n", "oxt7_e339k_c = oxt7_e339k*Div\n", "oxtr7_e339k_c = oxtr7_e339k*Div\n", "oxr7_e339k_c = oxr7_e339k*Div\n", "\n", "# solution extraction for mutant E339K\n", "\n", "oxt8_e339k = x8_e339k[:, 0]\n", "oxtr8_e339k = x8_e339k[:, 1]\n", "oxr8_e339k = x8_e339k[:, 2]\n", "\n", "oxt8_e339k_c = oxt8_e339k*Div\n", "oxtr8_e339k_c = oxtr8_e339k*Div\n", "oxr8_e339k_c = oxr8_e339k*Div\n", "\n", "\n", "\n", "\n", "## OXT binding code for mutants to plot as copies per cell and nM both\n", "\n", "\n", "fig, ax = plt.subplots()\n", "fig.set_figheight(8)\n", "fig.set_figwidth(12)\n", "fig.subplots_adjust(right=0.5)\n", "\n", "\n", "twin1 = ax.twinx()\n", "\n", "# wild type plot for oxtrc\n", "b1, = ax.plot(t, oxr_wt/1e-6, '-', linewidth=4, color='black', label='WT (1 $\\mu$M OXT)')\n", "b11, = twin1.plot(t, oxr_wt_c, '-', linewidth=4, color='black', label='WT (1 $\\mu$M OXT)')\n", "\n", "# E339K plot for 10 nm OXT\n", "r2, = ax.plot(t, oxr1_e339k/1e-6, '-', linewidth=4, color='magenta', label='E339K (1 $\\mu$M OXT)')\n", "r22, = twin1.plot(t, oxr1_e339k_c, '-', linewidth=4, color='magenta', label='E339K (1 $\\mu$M OXT)')\n", "\n", "\n", "\n", "# E339K plot for 15 nm OXT\n", "g1, = ax.plot(t, oxr3_e339k/1e-6, '-', linewidth=4, color='green', label='E339K (1.5 $\\mu$M OXT)')\n", "g11, = twin1.plot(t, oxr3_e339k_c, '-', linewidth=4, color='green', label='E339K (1.5 $\\mu$M OXT)')\n", "\n", "# # E339K plot for 20 nm OXT\n", "# p1, = ax.plot(t/60, oxr4_e339k/1e-9, '-', linewidth=4, color='magenta', label='E339K (23 nM OXT)')\n", "# p11, = twin1.plot(t/60, oxr4_e339k_c, '-', linewidth=4, color='magenta', label='E339K (23 nM OXT)')\n", "\n", "#E339K plot for 32 nm OXT\n", "m1, = ax.plot(t, oxr5_e339k/1e-6, '-', linewidth=4, color='purple', label='E339K (2.5 $\\mu$M OXT)')\n", "m11, = twin1.plot(t, oxr5_e339k_c, '-', linewidth=4, color='purple', label='E339K (2.5 $\\mu$M OXT)')\n", "\n", "\n", "\n", "\n", "\n", "ax.set_xlabel(\"Time (min)\", fontsize=18, fontweight='bold')\n", "ax.set_ylabel(\"[OXTR Complex] ($\\mu$M)\", fontsize=18, fontweight='bold')\n", "twin1.set_ylabel(\"[OXTR Complex] (complexes/cell)\", fontsize=18, fontweight='bold')\n", "\n", "\n", "# # # # Create the inset axis\n", "# inset1_ax = ax.inset_axes([1.55, 0.55, 0.6, 0.43])\n", "inset2_ax = ax.inset_axes([1.55, 0.15, 0.6, 0.43])\n", "\n", "\n", "# insettwin1 = inset1_ax.twinx()\n", "insettwin2 = inset2_ax.twinx()\n", "\n", "\n", "#inset2 plot for all \n", "\n", "\n", "# wild type plot for oxtrc\n", "b22, = inset2_ax.plot(t, oxr_wt/1e-6, '-', linewidth=4, color='black', label='WT (1 $\\mu$M OXT)')\n", "bt2, = insettwin2.plot(t, oxr_wt_c, '-', linewidth=4, color='black', label='WT (1 $\\mu$M OXT)')\n", "\n", "# E339K plot for 10 nm OXT\n", "r22, = inset2_ax.plot(t, oxr1_e339k/1e-6, '-', linewidth=4, color='magenta', label='E339K (1 $\\mu$M OXT)')\n", "rt2, = insettwin2.plot(t, oxr1_e339k_c, '-', linewidth=4, color='magenta', label='E339K (1 $\\mu$M OXT)')\n", "\n", "\n", "# E339K plot for 15 nm OXT\n", "g22, = inset2_ax.plot(t, oxr3_e339k/1e-6, '-', linewidth=4, color='green', label='E339K (1.5 $\\mu$M OXT)')\n", "gt2, = insettwin2.plot(t, oxr3_e339k_c, '-', linewidth=4, color='green', label='E339K (1.5 $\\mu$M OXT)')\n", "\n", "\n", "#E339K plot for 32 nm OXT\n", "m22, = inset2_ax.plot(t, oxr5_e339k/1e-6, '-', linewidth=4, color='purple', label='E339K (2.5 $\\muM$ OXT)')\n", "mt2, = insettwin2.plot(t, oxr5_e339k_c, '-', linewidth=4, color='purple', label='E339K (2.5 $\\muM$ OXT)')\n", "\n", "\n", "\n", "\n", "# # # Set the limits and formatting of the inset2 axis\n", "inset2_ax.set_xlim(0.0, 1.5)\n", "inset2_ax.set_ylim(0, 0.00125)\n", "insettwin2.set_ylim(0, 10500)\n", "inset2_ax.set_xlabel(\"Time (min)\", fontsize=18, fontweight='bold')\n", "\n", "\n", "tkw = dict(size=8, width=2, labelsize=18)\n", "ax.tick_params(axis='both', **tkw)\n", "twin1.tick_params(axis='both', **tkw)\n", "# Set your custom tick positions\n", "custom_ticks = [0, 0.3, 0.6, 0.9, 1.2, 1.5]\n", "\n", "# Set the ticks on the x-axis (assuming it's the x-axis)\n", "\n", "insettwin2.set_xticks(custom_ticks)\n", "# Set properties for the ticks and tick labels using tkw2\n", "tkw2 = dict(size=8, width=2, labelsize=18)\n", "inset2_ax.tick_params(axis='x', **tkw2)\n", "\n", "\n", "#inset1_ax.tick_params(axis='both', **tkw2)\n", "inset2_ax.tick_params(axis='both', **tkw2)\n", "#insettwin1.tick_params(axis='both', **tkw2)\n", "insettwin2.tick_params(axis='both', **tkw2)\n", "# ax.tick_params(axis='x', **tkw)\n", "\n", "\n", "ax.legend(handles=[b1, r2, g1, m1], fontsize=16, loc= 'best') #loc=(1.25, 0.0005)\n", "#plt.text(0.01, 50, '$y=x^3$', fontsize=22, bbox=dict(facecolor='red', alpha=0.5))\n", "plt.savefig(\"oxtrc_dose_e339k_wt_v1.jpg\", dpi=400, bbox_inches='tight')\n", "\n", "plt.show()\n", "\n", "\n", " \n" ] }, { "cell_type": "code", "execution_count": null, "id": "58e62ffb", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }